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Overview

* A generic method to find combinatorial Benders cuts.

 Based logic-based Benders decomposition.
* (Generalizes classical Benders decomposition to discrete subproblems.
* No specific form of cuts due to its generality. User must derive cuts valid for their problem.
* Otherwise, naive combinatorial Benders cuts: x1,....x» binary, x1 + X2 + ... + Xn <n -1

* Uses propagation (aka inference) and conflict analysis (aka conflict-driven clause learning)
from constraint programming and Boolean satisfiability (SAT).

* Central idea: find a set of values to some master-problem variables that implicate infeasibility
IN the subproblem.



Example

Vehicle Routing Problem with Time Windows

 Familiar problem to illustrate the method.

e Obviously not the best way to solve the VRPTW.

 Master problem has arc variables and network flow constraints.

* Travel time and time window constraints moved into the Benders subproblem.

* |gnore load in this example.
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Caveat

* |n the example: trace the propagations backwards in the implication graph
until all literals concern variables in the master problem.

* |n practice: trace the implication graph backwards until (1) all literals concern
variables in the master problem and (2) there is only one literal at the current
depth of the branch-and-bound tree. Get a “first unique implication

point” (1UIP) nogood. Experimental evidence from SAT suggests 1UIP
nogoods perform better.



Nutmeg

* A proof-of-concept automatic decomposition solver that implements the
generic form of logic-based Benders decomposition.

o Calls SCIP for the MIP master problem and branch-and-bound.
» Calls Geas for the CP Benders subproblem and conflict analysis.

* Actually, just a bunch of SCIP plug-ins that glue the master problem and
subproblem together.



Vehicle Routing Problem with Location Congestion
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Experimental Results
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Experimental Results

 Nutmeg tested on a range of problems.
| BBD known to perform well on some problems (e.g., VRPLC).

| BBD performance unknown on majority of problems. No one has tried due
to labor of deriving problem-specific cuts.

* Results confirm LBBD successes without manually deriving cuts.
 Mostly does not work. Problem still needs appropriate structure.

* Discovered one new problem suitable for LBBD.



Key Points

* Logic-based Benders decomposition previously required problem-specific cuts.

* Otherwise, naive combinatorial Benders cuts work but are very weak.

* Conflict analysis can find tighter combinatorial Benders cuts (fewer variables).

* Recently implemented in an automatic decomposition solver named Nutmeg.

 Nutmeg works only on problems with appropriate structure.

* |In VRP, “robust” cuts over arcs naturally translate to cuts over paths in branch-and-price.

* VRPs with synchronization become easy/easier. Generate the routes independently and then
prevent a subset of arcs that violate the synchronization constraints. But no guarantee it’s fast.

e Super pre-alpha release at https://github.com/ed-lam/nutmeq.



https://github.com/ed-lam/nutmeg

