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Abstract This paper considers a vehicle routing problem with pickup and
delivery, time windows and location congestion. Locations provide a number
of cumulative resources that are utilized by vehicles either during service (e.g.,
forklifts) or for the entirety of their visit (e.g., parking bays). Locations can
become congested if insufficient resources are available, upon which vehicles
must wait until a resource becomes available before proceeding. The problem is
challenging from a computational standpoint since it incorporates the vehicle
routing problem and the resource-constrained project scheduling problem. The
main contribution of this paper is a branch-and-price-and-check model that
uses a branch-and-price algorithm that solves the underlying vehicle routing
problem, and a constraint programming subproblem that checks the feasibility
of the location resource constraints, and then adds combinatorial nogood cuts
to the master problem if the resource constraints are violated. Experimental
results show the benefits of the branch-and-price-and-check approach.

Keywords Vehicle Routing Problem · Synchronization

1 Introduction

A Vehicle Routing Problem (VRP) is a combinatorial optimization problem
that aims to construct routes for a fleet of vehicles that service customer
requests while minimizing some cost function. The family of VRPs is extensive
and includes variants that specify additional side constraints, such as time
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window constraints that restrict the time at which service of a request can
commence, and precedence constraints that require one request to be serviced
before another.

This paper explores a rich variant named the Vehicle Routing Problem
with Pickup and Delivery, Time Windows, and Location Congestion (VRP-
PDTWLC, or VRPLC for short). The VRPLC is motivated by applications
in humanitarian and military logistics, where Air Force bases have limited
parking spots, fuel reserve, and landing and takeoff times for airplane oper-
ations. At the modeling level, the VRPLC is based on the traditional VRP
with Pickup and Delivery, and Time Windows (VRPPDTW), but includes a
cumulative resource constraint at every location to limit the number of vehi-
cles present and/or in service at any given time. Examples of resources may
include parking bays for the first case, and forklifts for the second case. If all
resources at a location are in use, incoming vehicles cannot proceed but must
wait until a resource becomes available. This leads to temporal dependencies
between vehicles and a scheduling substructure not present in conventional
VRPs. In particular, a delay on one route may entail a delay on another route
if both routes visit a common location. Furthermore, the delay on the second
route may cause it to become infeasible because of a time window constraint,
for example.

This paper studies a mixed integer programming model, a constraint pro-
gramming model and a branch-and-price-and-check (BPC) model for the VR-
PLC. The BPC approach, inspired by a branch-and-cut-and-price method for
the VRPPDTW [17], combines a branch-and-price algorithm that solves the
VRPPDTW, and a constraint programming subproblem that lifts the VRP-
PDTW to a VRPLC by checking the VRPPDTW solutions against the lo-
cation resource constraints. If these constraints are violated, a combinatorial
Benders cut (or nogood) is added to the master problem to prohibit this in-
feasible VRPPDTW solution.

The three models are evaluated on instances with up to 300 requests (150
pickup and delivery requests) and both types of resources. Results indicate
that the BPC algorithm scales better than both the mixed integer program-
ming and the constraint programming models, optimally solves instances with
160 requests in under 10 minutes, and finds high quality solutions to larger
problems. The BPC model nicely exploits the strengths of constraint program-
ming for scheduling and branch-and-price for vehicle routing.

The rest of this paper is structured as follows. Section 2 reviews prior
work on relevant problems and solution techniques. Section 3 describes the
problem. Sections 4 and 5 present the mixed integer programming model and
the constraint programming model. Section 6 discusses the BPC approach.
Section 7 reports experimental results, and Section 8 concludes this paper.
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2 Literature Review

Vehicle routing problems are studied extensively in the literature and can be
solved using a range of methods [21]. A standard formulation is a flow-based
mixed integer programming (MIP) model that uses big-M rewritings to model
logical constraints. Since the linear relaxation of this model is typically weak,
it cannot scale to larger instances. This issue is mitigated in branch-and-cut
approaches, which periodically solve a separation subproblem during search to
generate valid inequalities that strengthen this formulation (e.g., [1,18]).

VRPs have also been approached using column generation, in which the
flow-based MIP model undergoes Dantzig-Wolfe decomposition to form a mas-
ter problem and a pricing subproblem [7]. Column generation iterates between
the two problems until convergence. The pricing subproblem solves a resource-
constrained shortest path problem to generate a number of individual routes.
These routes are added to a large set of routes, and on this set, the master
problem solves the linear relaxation of a set covering or set partitioning prob-
lem to select a subset that visits all requests. Since the master problem is a
linear program, the final solution of column generation may select a fraction of
a route. In this case, integrality constraints are enforced by embedding column
generation in a branch-and-bound search tree, giving us the branch-and-price
scheme (e.g., [9]).

These two approaches are merged in the branch-and-cut-and-price method,
which iterates between the master, separation and pricing problems (e.g., [17]).
However, because the master problem is not a flow model, the cuts generated
by the separation subproblem must be translated into a form that is suitable
for the set covering or set partitioning master problem.

In addition to the aforementioned mathematical programming methods,
VRPs can be solved using other technologies, such as constraint programming
(CP), which can quickly obtain high quality solutions to large VRPs using
large neighborhood search ([19,5]), but has considerable difficulty in proving
optimality.

Related to routing problems are scheduling problems. In these problems,
activities must be processed by a number of machines and the objective may in-
volve minimizing makespan or tardiness. Examples of scheduling problems in-
clude the Job Shop Scheduling Problem and the Resource-Constrained Project
Scheduling Problem (RCPSP), which requires activities of fixed duration to be
scheduled on a number of machines such that precedence constraints and re-
source capacities are respected. Many benchmark instances of these problems
are closed using CP.

Some scheduling problems can be translated into routing problems, and
vice versa [3,4]. However, few problems exhibit both routing and scheduling
constraints simultaneously. The VRPLC is one such example: it overlays either
a regular RCPSP or a variable-duration version on top of a VRP. In the
VRPLC, vehicles must communicate their schedules in order to satisfy resource
capacities at locations. Hence, the VRPLC is classified as a rich VRP with
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synchronization [8]. Synchronization refers to the interaction between vehicles
and the transfer of information from one vehicle to another.

Location resource scheduling within VRPs have received little attention in
the literature. One method of modeling these resource constraints is to redefine
individual routes as segments within a single long route [11]. In this approach,
the resource constraints can only appear at destination depot locations, unlike
the VRPLC, in which resource constraints can appear at any location.

The Log Truck Scheduling Problem is a related problem and features as-
pects of the VRPLC. In particular, it allows resource constraints at interme-
diate locations. This problem can be solved using a variety of methods, of
which two are relevant. The first method models the location resources using
scheduling constraints in a CP model [10], while the second uses a time-indexed
column generation model [16].

Since the VRPLC incorporates both routing and scheduling, it may be ad-
vantageous to hybridize MIP and CP to capitalize on their unique strengths in
routing and scheduling. One method for hybridization is branch-and-check [20,
2], a form of logic-based Benders decomposition [12]. In branch-and-check, the
problem is separated into “easy” and “hard” parts. The easy parts are solved
normally, and the hard parts are delayed until a solution for the easy parts is
found. If the hard parts are infeasible for the given solution to the easy parts,
a constraint prohibiting this solution is added to the master problem. Branch-
and-check iterates between the master problem and the checking subproblem
until a globally optimal solution is found. Since branch-and-check adds no-
good cuts into the master problem, it is essentially a branch-and-cut search
that uses a Benders subproblem as its separation subproblem.

3 The VRPLC Problem

This section describes the VRPLC problem, which augments a regular VRP
with Pickups and Deliveries, and Time Windows (VRPPDTW) with two major
additions: the explicit modeling of locations and their resource constraints.

In traditional VRPs, requests and locations are synonymous; each request
is assumed to be at its own location, even if it overlaps another location. In
the VRPLC, requests are grouped by location, and locations cannot overlap.
Distance costs and travel times are defined between locations. Moreover, every
location features a number of cumulative resources, with a fixed capacity that
cannot be exceeded at any given time. Two types of resources are considered: a
service resource is used while a request is in service, and a presence resource is
used by a vehicle from the moment it arrives at a location until it departs from
the location. Service resources are fully encompassed by presence resources,
since the start of a visit is necessarily before the start of service, and the end
of a visit after the end of service. Even though the problem studied within
this paper only considers one of these two types of resources, the formulation
naturally generalizes to multiple copies of these types of resources.
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Contrary to traditional VRPs, delaying a route in a VRPLC may affect the
feasibility of other routes since, for example, a delayed vehicle may postpone
the availability of a resource required by another vehicle. The delay incurred
by the second vehicle may induce, for instance, a time window violation on this
second route. These temporal interactions between vehicles require reasoning
about the timing and scheduling of the vehicle visits, and make VRPLCs more
challenging to solve than their more traditional counterparts.

4 The Mixed Integer Programming Model

This section presents the mixed integer programming model of the VRPLC.
The model is based on the regular three-index VRP formulation, but uses
additional time variables to record the arrival and departure times at locations,
and includes the location resource constraints.

Table 1 lists the data and decision variables of the MIP model. Every
request i ∈ R is grouped into a location l ∈ L. Locations have either a service
resource or a presence resource with capacity Cl. The resources are scheduled
using event variables [13]. Every request i ∈ Rl at l is associated with two
events: a start event and an end event. For service resources, the start and end
events correspond to the start and end of service. For presence resources, the
start and end events correspond to the arrival and departure of the servicing
vehicle. The location resources are then scheduled by tracking the number of
start and end events.

The primary decision variables of the model are the flow variables, which
are defined on the arc set

A ={(s, i) : i ∈ P} ∪ {(i, j) : i ∈ R, j ∈ R, i 6= j}∪
{(i, e) : i ∈ D} ∪ {(s, e)}.

(1)

Figure 1 depicts the model, where M is an appropriate big-M constant. The
objective function minimizes the total travel distance (Eq. (2)). Constraints (3)
to (5) are the flow constraints. Constraint (6) links flow variables to visit indi-
cator variables. Constraint (7) is the request cover constraint. Constraints (8)
and (9) are the pickup-delivery constraints. Constraints (10) to (12) order
the arrival, service start, service end, and departure times at each request.
Constraint (13) constrains the start node and end node to one common ar-
rival/service/departure time. Constraints (14) and (15) are the travel time
constraints. Constraints (16) to (19) are the usual load constraints.

The novelty of the model lies in Constraints (20) to (30), which model
service resources. Constraint (20) requires every event to be classified as either
a start event or an end event. Constraints (21) and (22) state that every
request has a start event and an end event. Constraint (23) initializes the
resource use count. Constraint (24) counts the resource use after every event.
Constraint (25) initializes the event time variables. Constraint (26) orders
the events. Constraints (27) to (30) are implication constraints that link the
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Variable Description

T > 0 Time horizon.
T = [0, T ] Time interval.
V ∈ {1, . . . ,∞} Number of vehicles.
V = {1, . . . , V } Set of vehicles.
Q ≥ 0 Vehicle capacity.
P ∈ {1, . . . ,∞} Total number of pickup-delivery pairs.
R = 2P Total number of requests.
P = {1, . . . , P} Set of pickup requests/nodes.
D = {P + 1, . . . , R} Set of delivery requests/nodes.
R = P ∪ D Set of all requests.
s Start node.
e End node.
N = R∪ {s, e} Set of all nodes.
L ∈ {1, . . . ,∞} Number of locations, excluding the depot location.
L = {1, . . . , L} Set of locations.
Cl ∈ {1, . . . ,∞} Resource capacity of location l ∈ L.
Rl = {i ∈ R : li = l} Requests at location l ∈ L.
Kl = {1, . . . , 2|Rl|} Set of events at location l ∈ L.
A Set of arcs. Defined in Eq. (1).
li ∈ L Location of i ∈ R.
di,j ∈ T Distance and travel time along the arc (i, j) ∈ A.
ai ∈ T Earliest start of service at i ∈ N .
bi ∈ T Latest start of service at i ∈ N .
ti ∈ T Service duration of i ∈ N .
qi ∈ [−Q,Q] Demand at i ∈ N .

flowv,i,j ∈ {0, 1} Indicates if vehicle v ∈ V traverses (i, j) ∈ A.
visitv,i ∈ {0, 1} Indicates if vehicle v ∈ V visits i ∈ R.
arrv,i ∈ T Arrival time of vehicle v ∈ V at i ∈ N .
servv,i ∈ [ai, bi] Start of service by vehicle v ∈ V at i ∈ N .
servEndv,i ∈ [ai + ti, bi + ti] End of service by vehicle v ∈ V at i ∈ N .
depv,i ∈ T Departure time of vehicle v ∈ V at i ∈ N .
loadv,i ∈ [0, Q] Load of vehicle v ∈ V after servicing i ∈ N .
startl,k,i ∈ {0, 1} Indicates if k ∈ Kl represents the start event of i ∈ Rl.
endl,k,i ∈ {0, 1} Indicates if k ∈ Kl represents the end event of i ∈ Rl.
usel,k ∈ {0, . . . , Cl} Resource use after event k ∈ Kl ∪ {0} at l ∈ L.
timel,k ∈ T Time of event k ∈ Kl ∪ {0} at l ∈ L.

Table 1 Data and decision variables of the mixed integer programming model.

event time variables to the route time variables. To model presence resources,
Constraints (27) to (30) can be replaced with

timel,k − arrv,i ≤M(2− startl,k,i − visitv,i), ∀l ∈ L, k ∈ Kl, v ∈ V, i ∈ Rl,

arrv,i − timel,k ≤M(2− startl,k,i − visitv,i), ∀l ∈ L, k ∈ Kl, v ∈ V, i ∈ Rl,

timel,k − depv,i ≤M(2− endl,k,i − visitv,i), ∀l ∈ L, k ∈ Kl, v ∈ V, i ∈ Rl,

depv,i − timel,k ≤M(2− endl,k,i − visitv,i), ∀l ∈ L, k ∈ Kl, v ∈ V, i ∈ Rl,

which link the event time variables to arrival and departure times instead of
service start and end times.
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min
∑
v∈V

∑
(i,j)∈A

di,jflowv,i,j (2)

subject to∑
j:(s,j)∈A

flowv,s,j = 1, ∀v ∈ V, (3)

∑
h:(h,i)∈A

flowv,h,i =
∑

j:(i,j)∈A
flowv,i,j , ∀v ∈ V, i ∈ R, (4)

∑
h:(h,e)∈A

flowv,h,e = 1, ∀v ∈ V, (5)

∑
h:(h,i)∈A

flowv,h,i = visitv,i, ∀v ∈ V, i ∈ R, (6)

∑
v∈V

visitv,i = 1, ∀i ∈ P, (7)

visitv,i = visitv,P+i, ∀v ∈ V, i ∈ P, (8)

depv,i + di,P+i ≤ arrv,P+i, ∀v ∈ V, i ∈ P, (9)

arrv,i ≤ servv,i, ∀v ∈ V, i ∈ R, (10)

servv,i + ti = servEndv,i, ∀v ∈ V, i ∈ R, (11)

servEndv,i ≤ depv,i, ∀v ∈ V, i ∈ R, (12)

arrv,i = servv,i = servEndv,i = depv,i, ∀v ∈ V, i ∈ {s, e}, (13)

depv,i + di,j − arrv,j ≤M(1− flowv,i,j), ∀v ∈ V, (i, j) ∈ A, (14)

arrv,j − depv,i − di,j ≤M(1− flowv,i,j), ∀v ∈ V, (i, j) ∈ A, (15)

loadv,i = 0, ∀v ∈ V, i ∈ {s, e}, (16)

qi ≤ loadv,i ≤ Q, ∀v ∈ V, i ∈ P, (17)

0 ≤ loadv,i ≤ Q+ qi, ∀v ∈ V, i ∈ D, (18)

loadv,i + qj − loadv,j ≤M(1− flowv,i,j), ∀v ∈ V, (i, j) ∈ A, (19)∑
i∈Rl

startl,k,i +
∑
i∈Rl

endl,k,i = 1, ∀l ∈ L, k ∈ Kl, (20)

∑
k∈Kl

startl,k,i = 1, ∀l ∈ L, i ∈ Rl, (21)

∑
k∈Kl

endl,k,i = 1, ∀l ∈ L, i ∈ Rl, (22)

usel,0 = 0, ∀l ∈ L, (23)

usel,k = usel,k−1 +
∑
i∈Rl

startl,k,i −
∑
i∈Rl

endl,k,i, ∀l ∈ L, k ∈ Kl, (24)

timel,0 = 0, ∀l ∈ L, (25)

timel,k−1 ≤ timel,k, ∀l ∈ L, k ∈ Kl, (26)

timel,k − servv,i ≤M(2− startl,k,i − visitv,i), ∀l ∈ L, k ∈ Kl, v ∈ V, i ∈ Rl, (27)

servv,i − timel,k ≤M(2− startl,k,i − visitv,i), ∀l ∈ L, k ∈ Kl, v ∈ V, i ∈ Rl, (28)

timel,k − servEndv,i ≤M(2− endl,k,i − visitv,i), ∀l ∈ L, k ∈ Kl, v ∈ V, i ∈ Rl, (29)

servEndv,i − timel,k ≤M(2− endl,k,i − visitv,i), ∀l ∈ L, k ∈ Kl, v ∈ V, i ∈ Rl. (30)

Fig. 1 Constraints of the mixed integer programming model.
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Name Description

T ∈ {1, . . . ,∞} Time horizon.
T = {0, . . . , T} Set of time values.
V ∈ {1, . . . ,∞} Number of vehicles.
V = {1, . . . , V } Set of vehicles.
Q ∈ {0, . . . ,∞} Vehicle capacity.
P ∈ {1, . . . ,∞} Total number of pickup-delivery pairs.
R = 2P Total number of requests.
P = {1, . . . , P} Set of pickup requests/nodes.
D = {P + 1, . . . , R} Set of delivery requests/nodes.
R = P ∪ D Set of all requests.
S = {R+ 1, . . . , R+ V } Set of vehicle start nodes.
E = {R+ V + 1, . . . , R+ 2V } Set of vehicle end nodes.
s(v) = R+ v Start node of vehicle v ∈ V.
e(v) = R+ V + v End node of vehicle v ∈ V.
N = R∪ S ∪ E Set of all nodes.
L ∈ {1, . . . ,∞} Number of locations, excluding the depot location.
L = {1, . . . , L} Set of locations.
Cl ∈ {1, . . . ,∞} Resource capacity of location l ∈ L.
Rl = {i ∈ R : l(i) = l} Requests at location l ∈ L.
l(i) ∈ L Location of i ∈ R.
d(i, j) ∈ T Distance and travel time from i ∈ N to j ∈ N .
a(i) ∈ T Earliest start of service at i ∈ N .
b(i) ∈ T Latest start of service at i ∈ N .
t(i) ∈ T Service duration of i ∈ N .
q(i) ∈ {−Q, . . . , Q} Demand at i ∈ N .

succ(i) ∈ N Successor node of i ∈ N .
veh(i) ∈ V Vehicle that visits i ∈ N .
arr(i) ∈ T Arrival time at i ∈ N .
serv(i) ∈ {a(i), . . . , b(i)} Start of service at i ∈ N .
dep(i) ∈ T Departure time at i ∈ N .
dur(i) ∈ T Visit duration at i ∈ R.
load(i) ∈ {0, . . . , Q} Load of vehicle veh(i) after servicing i ∈ N .

Table 2 Data and decision variables of the constraint programming model.

5 The Constraint Programming Model

This section presents the constraint programming model for the VRPLC,
which is adapted from the standard constraint programming model of VRPs
using successor variables.

Table 2 lists the data and decision variables in the model. Note the inputs
Rl and Cl which, respectively, represent the set of requests and the capacity
of the resource at location l. The primary decision variables are the successor
variables, which determine the route of each vehicle. The secondary decision
variables are the arrival, service, and departure times.

Figure 2 depicts the model. The objective function minimizes the total
travel distance (Eq. (32)). Constraints (33) to (35) are the domain restrictions
that ensure the requests along a route are correctly ordered. Constraints (36)
and (37) link the end of a route to the start of the next route, and en-
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min
∑

i∈R∪S
d(i, succ(i)) (32)

subject to

succ(s(v)) ∈ P ∪ {e(v)}, ∀v ∈ V, (33)

succ(i) ∈ P ∪ D, ∀i ∈ P, (34)

succ(i) ∈ P ∪ D ∪ E, ∀i ∈ D, (35)

succ(e(v)) = s(v + 1), ∀v ∈ {1, . . . , V − 1}, (36)

succ(e(V )) = s(1), (37)

Circuit(succ(·)), (38)

veh(s(v)) = veh(e(v)) = v, ∀v ∈ V, (39)

veh(i) = veh(succ(i)), ∀i ∈ R ∪ S, (40)

veh(i) = veh(P + i), ∀i ∈ P, (41)

dep(i) + d(i, P + i) ≤ arr(P + i), ∀i ∈ P, (42)

arr(i) ≤ serv(i), ∀i ∈ R, (43)

serv(i) + t(i) ≤ dep(i), ∀i ∈ R, (44)

dur(i) = dep(i)− arr(i), ∀i ∈ R, (45)

arr(i) = serv(i) = dep(i), ∀i ∈ S ∪ E, (46)

dep(i) + d(i, succ(i)) = arr(succ(i)), ∀i ∈ R ∪ S, (47)

load(i) = 0, ∀i ∈ S ∪ E, (48)

q(i) ≤ load(i) ≤ Q, ∀i ∈ P, (49)

0 ≤ load(i) ≤ Q+ q(i), ∀i ∈ D, (50)

load(i) + q(succ(i)) = load(succ(i)), ∀i ∈ R ∪ S, (51)

Cumulative({serv(i) : i ∈ Rl}, {t(i) : i ∈ Rl},1, Cl), ∀l ∈ L. (52)

Fig. 2 Constraints of the constraint programming model.

ables the Circuit global constraint to eliminate subtours in Constraint (38).
Constraints (39) and (40) track the requests visited by each vehicle. Con-
straints (41) and (42) are the pickup and delivery constraints. Constraints (43)
and (44) order the arrival, service and departure times at each request. Con-
straint (45) calculates the duration of each visit. Constraint (46) enforces
a common arrival/departure time at the start and end depot nodes. Con-
straint (47) implements travel times. Constraints (48) to (51) are the usual
load constraints. Constraint (52) models the service resources. For presence
resources, it can be replaced with

Cumulative({arr(i) : i ∈ Rl}, {dur(i) : i ∈ Rl},1, Cl), ∀l ∈ L. (31)

The resource constraints are modeled using the Cumulative(s,d, r, C) global
constraint, where s, d, and r are vectors that, respectively, represent the start
time, duration, and resource requirement of each activity, and C is the capacity
of the resource. It is important to note that the service durations are fixed by
the instance data, whereas the presence durations are variables.
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min
∑
r∈Ω

crxr (53)

subject to∑
r∈Ω

ai,rxr = 1, ∀i ∈ P, (54)

∑
r∈Ω

Brxr ≤ |B| − 1, ∀B ∈ B, (55)

xr ∈ [0, 1], ∀r ∈ Ω. (56)

Fig. 3 Master problem of the branch-and-price-and-check model.

6 The Branch-and-Price-and-Check Model

This section describes the branch-and-price-and-check (BPC) approach to the
VRPLC. The BPC algorithm builds upon the ideas of the branch-and-cut-
and-price model of the VRPPDTW [17], which employs column generation to
produce routes, and a separation subproblem to generate valid inequalities that
forbid certain classes of infeasible routes. Although column generation itself
can solve the problem, the cuts add problem-specific knowledge and greatly
improve convergence. In other words, these cuts are implied cuts since they
are not necessary to correctly formulate the problem.

The BPC model follows a similar approach; the difference is that the cuts
generated by the separation subproblem enforce the location resource con-
straints. These cuts are not implied cuts since they are necessary to solve the
problem correctly, and they do not appear elsewhere in the problem. In that
sense, BPC is related to Benders decomposition with the difference that the
subproblem is solved at each node of the branch-and-price tree.

The rest of this section is organized as follows. Sections 6.1 to 6.3 introduce
the master, pricing, and separation problems. Section 6.4 discusses the search
tree and branching rules.

6.1 The Master Problem

The master problem, depicted in Figure 3, is the linear relaxation of a set
partitioning problem. It selects a subset of routes from a main pool Ω of routes
such that this subset satisfies certain constraints. The variable xr denotes
whether route r ∈ Ω is selected. The total cost of the subset is minimized by
the objective function (Eq. (53)), where cr is the cost of route r.

Constraint (54) ensures that all pickup requests are visited. The coefficient
ai,r is equal to 1 if route r visits request i ∈ P and equal to 0 otherwise. For
column generation models of VRPs, the request cover constraints are usually
written as inequalities, rather than strict equalities, because the linear relax-
ation of the set covering problem with inequalities is easier to solve than the set
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partitioning problem [14]. For the VRPLC, the cover constraints are expressed
as equalities because of the location resource constraints. Indeed, covering a
request multiple times would artificially inflate the number of resources re-
quired, which should be avoided.1 Constraint (55) imposes the nogood cuts.
A nogood cut has an associated set B of arcs, and coefficient Br that denotes
the number of arcs in B that are traversed by route r. When a set of routes
is determined to be infeasible by the separation subproblem, one nogood cut
is added to the master problem, with B containing the arcs traversed by the
routes in this set. Hence, the nogood cut prohibits this set of routes by allowing
at most |B| − 1 of their arcs to be used in any feasible solution.

6.2 The Pricing Subproblem

The pricing subproblem generates routes to add to Ω by solving an elementary
resource-constrained shortest path problem using a labeling algorithm (e.g., [9,
17]). Each route must:

1. leave the start node, visit a number of requests, and return to the end
node;

2. satisfy the service start time window, travel time, load, and pickup-delivery
constraints; and

3. have negative cost with respect to the reduced cost matrix di,j , which is
defined as

di,j =


di,j − πi +

∑
B∈B

1B,i,jµB , ∀i ∈ P, j ∈ N ,

di,j +
∑
B∈B

1B,i,jµB , ∀i ∈ N \ P, j ∈ N ,

where P is the set of pickups, N is the set of all nodes (pickups, deliveries,
one start node, and one end node), di,j is the distance cost from i ∈ N to
j ∈ N , πi is the dual value of Constraint (54), 1B,i,j is equal to 1 if the arc
(i, j) appears in B, and equal to 0 otherwise, and µB is the dual value of
Constraint (55),

The labeling algorithm begins with a label at the start node. This label repre-
sents a subpath consisting of only the start node. The label is then extended
to each pickup node in turn, giving subpaths consisting of the start node and
one pickup node. Provided that these subpaths are feasible with respect to
the constraints mentioned above, their corresponding labels are extended to
other nodes. This process is repeated until a number of subpaths reach the
end node, or an early termination criterion stops the algorithm.

1 An alternative approach would be to transfer only one of these requests to the separation
subproblem but this would introduce some random choices in the communication between
the master and the subproblem.
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Name Description

T ∈ {1, . . . ,∞} Time horizon.
T = {0, . . . , T} Set of time values.
V ∈ {1, . . . ,∞} Number of vehicles.
R ∈ {1, . . . ,∞} Total number of requests.
R = {1, . . . , R} Set of all requests.
S = {R+ 1, . . . , R+ V } Set of vehicle start nodes.
E = {R+ V + 1, . . . , R+ 2V } Set of vehicle end nodes.
N = R∪ S ∪ E Set of all nodes.
L ∈ {1, . . . ,∞} Number of locations, excluding the depot location.
L = {1, . . . , L} Set of locations.
Cl ∈ {1, . . . ,∞} Resource capacity of location l ∈ L.
Rl = {i ∈ R : l(i) = l} Requests at location l ∈ L.
l(i) ∈ L Location of i ∈ R.
d(i, j) ∈ T Distance and travel time from i ∈ N to j ∈ N .
a(i) ∈ T Earliest start of service at i ∈ N .
b(i) ∈ T Latest start of service at i ∈ N .
t(i) ∈ T Service duration of i ∈ N .
succ(i) ∈ R ∪ E Successor node of i ∈ R ∪ S as per the routes in the

master problem.

arr(i) ∈ T Arrival time at i ∈ N .
serv(i) ∈ {a(i), . . . , b(i)} Start of service at i ∈ N .
dep(i) ∈ T Departure time at i ∈ N .

Table 3 Data and decision variables in the separation subproblem.

6.3 The Separation Subproblem

This section describes the separation subproblem for both service and presence
resource constraints. The subproblem is modeled using constraint programing
and contains similar constraints to those in the constraint programming model.

6.3.1 Service Resources

For the case of service resources, the constraints in the separation subproblem
are extracted from the time and scheduling constraints of the CP model of
the VRPLC. Table 3 lists the data and decision variables. The number V of
vehicles and the successor variables succ(·) are not decision variables; they are
fixed according to the routes selected by the master problem. Figure 4 lists
the constraints. The decision variables are the arrival, service and departure
times. Constraints (57) to (60) are the time constraints and serve as activity
precedence constraints. Constraint (61) schedules the resources.

6.3.2 Presence Resources

Consider now the separation subproblem for presence resources. Although it is
possible to implement Constraint (31) in this subproblem, it is more effective
to preprocess the routes selected by the master program and introduce the
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arr(i) ≤ serv(i), ∀i ∈ R, (57)

serv(i) + t(i) ≤ dep(i), ∀i ∈ R, (58)

arr(i) = serv(i) = dep(i), ∀i ∈ S ∪ E, (59)

dep(i) + d(i, succ(i)) = arr(succ(i)), ∀i ∈ R ∪ S, (60)

Cumulative({serv(i) : i ∈ Rl}, {t(i) : i ∈ Rl},1, Cl), ∀l ∈ L. (61)

Fig. 4 Constraints of the separation subproblem for service resources.

Name Description

K Set of visits.
l(k) ∈ L Location of visit k ∈ K.
Kl = {k ∈ K : l(k) = l} Set of visits to location l ∈ L.
first(k) ∈ R First request of the visit k ∈ K.
last(k) ∈ R Last request of the visit k ∈ K.

start(k) ∈ T Start time of visit k ∈ K.
end(k) ∈ T End time of visit k ∈ K.
dur(k) ∈ T Duration of visit k ∈ K.

Table 4 Additional data and decision variables for visits in the separation subproblem for
presence resources.

concept of a location visit to reduce the number of activities in the subproblem.
A location visit starts when a vehicle arrives at a location and lasts until the
vehicle departs from the location. In other words, a location visit is a sequence
of requests at a given location. The start time of a visit is the arrival time at
the first request in the visit, and the end time is the departure time at the last
request in the visit. The visits are transferred to the subproblem as data, but
the arrival and departure times of the visits are variables.

The visits require additional data and decision variables, which are listed
in Table 4. The subproblem is shown in Figure 5. Constraints (62) to (65) are
the time constraints. Constraints (66) and (67) link the start and end times of
a visit to the arrival and departure times at the first and last requests of the
visit. Constraint (68) calculates the duration of a visit, and Constraint (69) is
the cumulative resource constraint. Unlike for service resources, the durations
of the visits are variables.

6.4 The BPC Search Algorithm

This section presents the BPC algorithm, which integrates the components
presented earlier. The algorithm, described in Figure 6, begins by choosing an
open node to solve (step 1). Nodes are chosen using two alternating heuristics.
The first heuristic chooses the node with the largest number of flow variables
fixed by branching, and the second heuristic selects the node with the smallest
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arr(i) ≤ serv(i), ∀i ∈ R, (62)

serv(i) + t(i) ≤ dep(i), ∀i ∈ R, (63)

arr(i) = serv(i) = dep(i), ∀i ∈ S ∪ E, (64)

dep(i) + d(i, succ(i)) = arr(succ(i)), ∀i ∈ R ∪ S, (65)

start(k) = arr(first(k)), ∀k ∈ K, (66)

end(k) = dep(last(k)), ∀k ∈ K, (67)

dur(k) = end(k)− start(k), ∀k ∈ K, (68)

Cumulative({start(k) : k ∈ Kl}, {dur(k) : k ∈ Kl},1, Cl), ∀l ∈ L. (69)

Fig. 5 Constraints of the separation subproblem for presence resources.

1. Node Selection: Select an open node, otherwise, terminate if no open nodes remain.
2. Master: Solve the master problem in Figure 3.
3. Separation: If

∑
r∈Ω(xr = 1) ≥ minl∈L Cl, solve the separation subproblem described

in Figure 4 (or Figure 5). If the separation subproblem is infeasible, generate a nogood
cut, and go back to step 2.

4. Feasible Solution: If all xr variables are integral, a feasible solution is found.
5. Pricing: Solve the pricing subproblem described in Section 6.2. If at least one new route

is generated, go back to step 2.
6. Branching: If the lower bound given by the master problem is smaller than the upper

bound, and there is at least one route r with 0 < xr < 1, select one such route r′ =
(i1, i2, . . . , in−1, in). Create n open nodes, one for each (possibly empty or full) prefix
of r. In the open node corresponding to prefix (i1, i2, . . . , ij), require all edges in the
prefix and exclude the edge (ij , ij+1). Go to step 1.

Fig. 6 The branch-and-price-and-check algorithm.

lower bound. By alternating between these two heuristics, the BPC algorithm
attempts to both find feasible solutions and improve the lower bound.

In the chosen node, the BPC algorithm solves the master problem (step
2). It then counts the number of integer routes, i.e., routes r with xr = 1.
If there are at least c = minl∈L Cl integer routes, the BPC algorithm solves
the separation subproblem on these routes (step 3). It is unnecessary to solve
the separation subproblem if there are fewer than c integer xr variables as the
location constraints are automatically satisfied. Note that the solution to the
master problem may consist of fractional values for some routes, but only the
integer routes are transferred to the separation subproblem.

If no feasible schedule exists for these routes, a nogood cut is added to
the master problem, which is reoptimized. Otherwise, if all routes are integral,
then the routes and the schedules form a solution (step 4). Since the algorithm
may iterate through this step multiple times in a node, it is possible, though
unlikely, that multiple solutions are found within one node.

The algorithm then proceeds to the pricing subproblem to generate new
routes (step 5). If new routes are found, they are added to the master problem,
which is reoptimized. When no new routes are found, the node completes.
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Branching occurs if any route in the master problem is fractional, and
the lower bound of the node is lower than the incumbent solution (step 6).
The BPC algorithm selects a fractional route r′ = (i1, i2, . . . , in−1, in) of
length n, and creates n children, in which certain arcs must or must not be
used. Each child corresponds to a prefix (i1, i2, . . . , ij), in which the edges
(i1, i2), . . . , (ij−1, ij) must be present and the edge (ij , ij+1) must be absent.
This branching scheme is easily implemented by restricting the successor ma-
trix. Similar branching rules have previously appeared in the literature [9].
The children nodes are added to the set of open nodes.

Note that the pricing algorithm may be terminated early to avoid the
tailing-off effect that prevents convergence [6,15]. In this case, the lower bound
can be computed using the dual variables and reduced costs.

7 Experimental Results

This section reports experimental results for the three approaches.

The Instances A set of hard random instances are created by independently
generating five locations and 150 pickup and delivery requests, and then dis-
tributing these requests among the locations. Smaller instances are created by
discarding some of the requests. Resource capacities between one and eight
are tested for all instances.

The Implementations The MIP model is solved using Gurobi with default
parameters. The CP model is solved using Chuffed, a state-of-the-art CP
solver with nogood learning. The solver first branches on the successor vari-
ables and then on the time variables. The master problem of the BPC model
is solved using Gurobi. The pricing subproblem is solved using a bespoke im-
plementation of a labeling algorithm, and the separation subproblem is solved
using Chuffed. The three problems within the BPC model are embedded in
the search algorithm discussed in the previous section. All three models are
run for two hours.

Summary of the Results Table 5 displays the results for service resources. The
main findings are summarized as follows.

1. Both the MIP and CP models find optimal solutions to the instances with
10 pickup-delivery requests. Additionally, the MIP model finds feasible
solutions to two of the instances with 20 requests, while the CP model fails
to find any feasible solution to any other instance.

2. The BPC model finds optimal solutions to all instances with 10 and 20
requests, and to some instances with 40 and 80 requests.

3. The CP model proves infeasibility on the instances with 40 or more requests
and resource capacities of 1. On these few problems, the scheduling is
disjunctive, and the activities have fixed duration, which allow the learning
CP solver to make strong deductions about the feasibility of the resource
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schedules. The CP model is unable to prove infeasibility for higher resource
capacities as the reasoning is weaker.

4. Neither the MIP nor the BPC model is able to prove infeasibility on any
instance since the cumulative constraints in the MIP model and the nogood
cuts in the BPC model are weak and do not prune a significant part of the
search space.

5. The BPC solutions to the instances with 80 or fewer requests improve as
the resource capacities increase and the resource constraints relax. This
is a desirable property and indicates that the BPC algorithm deals with
weaker capacity constraints effectively. This behavior is less apparent in
the larger problems, but in these experiments, the time limit is not scaled
with the size of the instances.

6. Similarly, the running times of the BPC approach for instances with up
to 40 requests decreases as the resource constraints relax. The problems
with 80 requests also exhibit this behavior. This is shown via the improved
optimality gap instead of the run time (since the BPC approach cannot
prove optimality within the time limit). The optimality gaps are shown in
Figure 7.

7. For the given time limit, the optimality gap is typically under 8%, and in
most cases, below 5%, whenever the BPC model finds a feasible solution

8. Except for the proofs of infeasibility by the CP model, the BPC model
outperforms both the MIP and CP models on all instances.

Table 6 shows the results for the instances with presence resources. Some
remarks are below:

1. The CP model is unable to prove infeasibility for any of the instances be-
cause the durations in the cumulative constraint are variable, which results
in weaker propagation. It may be beneficial to add the service resources
cumulative constraint as a redundant constraint since, as previously dis-
cussed, the service resources are fully contained in the presence resources.

2. For the problems with 100 or fewer requests, the optimality gap is under
3% if the BPC model is able to find a feasible solution.

3. The BPC model outperforms the MIP and CP models on all instances.

The BPC approach exploits the orthogonal strengths of mathematical pro-
gramming and constraint programming by using column generation to produce
routes and dual bounds, and CP to check the feasibility of the resource con-
straints. These results demonstrate that the BPC model outperforms both
the MIP and CP models on all instances besides those with service resource
capacities of 1.

8 Conclusion

This paper develops the Vehicle Routing Problem with Location Congestion,
which overlays a Resource-Constrained Project Scheduling Problem on a tra-
ditional Vehicle Routing Problem. Two types of location resources are con-
sidered: service resources are used while requests are in service, and presence
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MIP CP BPC

P Cl Obj Time Gap Obj Time Obj Time Gap

10 1 479 354 0.0% 479 52 479 0 0.0%
2 479 1572 0.0% 479 58 479 0 0.0%

20 1 - - - - - 811 417 0.0%
2 929 - 66.1% - - 771 0 0.0%
3 882 - 64.1% - - 771 0 0.0%
4 - - - - - 771 0 0.0%
5 - - - - - 771 0 0.0%

40 1 - - - - 1282 - - -
2 - - - - - 1243 - 7.6%
3 - - - - - 1162 11 0.0%
4 - - - - - 1162 10 0.0%
5 - - - - - 1162 9 0.0%
6 - - - - - 1162 8 0.0%
7 - - - - - 1162 7 0.0%
8 - - - - - 1162 4 0.0%

60 1 - - - - 0 - - -
2 - - - - - - - -
3 - - - - - 1657 - 3.7%
4 - - - - - 1634 - 2.3%
5 - - - - - 1624 - 1.6%
6 - - - - - 1624 - 1.6%

80 1 - - - - 0 - - -
2 - - - - - - - -
3 - - - - - - - -
4 - - - - - 2103 - 7.9%
5 - - - - - 1958 - 1.2%
6 - - - - - 1955 - 0.8%
7 - - - - - 1955 - 0.8%
8 - - - - - 1955 5278 0.0%

100 1 - - - - 0 - - -
2 - - - - - - - -
3 - - - - - - - -
4 - - - - - - - -
5 - - - - - 2401 - 5.7%
6 - - - - - 2385 - 4.9%
7 - - - - - 2294 - 1.2%
8 - - - - - 2299 - 1.4%

150 1 - - - - 1 - - -
2 - - - - - - - -
3 - - - - - - - -
4 - - - - - - - -
5 - - - - - - - -
6 - - - - - 3290 - 100.0%
7 - - - - - 3307 - 100.0%
8 - - - - - 3218 - 100.0%

Table 5 Solutions from the three models for service resources. The first two columns report
the number of pickups, and the resource capacity of each location. For each of the three
models, the table shows the best solution and the run time, which is the time when the
solver proves optimality or infeasibility. For the MIP and BPC models, the table also shows
the optimality gap. Some instances with higher resource capacity are omitted if increasing
the resource capacity does not improve the objective value.
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Fig. 7 Gap between the lower bound and best solution from the BPC method for instances
with increasing service resource capacity.

resources are used whenever a vehicle is present at a location. The problem is
formulated as a mixed integer programming (MIP) model, a constraint pro-
gramming (CP) model and a branch-and-price-and-check (BPC) model. In the
BPC model, the pricing subproblem generates routes for the master problem,
and the separation subproblem verifies the feasibility of the routes selected by
the master problem against the location resource constraints.

Empirical results indicate that the BPC approach finds feasible solutions
to instances with up to 150 pickup-delivery requests and proves optimality on
instances with up to 80 pickup-delivery requests. It outperforms both the MIP
and CP formulations, which are unable to scale to instances larger than 10
pickup-delivery requests. These results highlight the benefits of integrating the
unique strengths of mathematical programming and constraint programming.

Our future work will investigate stronger nogood cuts in the master prob-
lem and whether it is possible to translate temporal nogoods generated by the
learning solver in the separation subproblem to route nogoods in the master
problem, and to retain nogoods in the separation subproblem from one call to
the next.
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MIP CP BPC

P Cl Obj Time Gap Obj Time Obj Time Gap

10 1 479 396 0.0% 479 64 479 0 0.0%
2 479 717 0.0% 479 77 479 0 0.0%
3 479 1071 0.0% 479 63 479 0 0.0%
4 479 1630 0.0% 479 57 479 0 0.0%
5 479 1834 0.0% 479 62 479 0 0.0%
6 479 1373 0.0% 479 81 479 0 0.0%
7 479 736 0.0% 479 64 479 0 0.0%
8 479 1710 0.0% 479 57 479 0 0.0%

20 2 - - - - - 771 0 0.0%
3 - - - - - 771 0 0.0%
4 - - - - - 771 0 0.0%
5 - - - - - 771 0 0.0%
6 - - - - - 771 0 0.0%
7 - - - - - 771 0 0.0%
8 - - - - - 771 0 0.0%

40 3 - - - - - 1162 8 0.0%
4 - - - - - 1162 8 0.0%
5 - - - - - 1162 7 0.0%
6 - - - - - 1162 7 0.0%
7 - - - - - 1162 6 0.0%
8 - - - - - 1162 3 0.0%

60 4 - - - - - 1639 - 2.7%
5 - - - - - 1624 - 1.6%
6 - - - - - 1624 - 1.6%
7 - - - - - 1624 - 1.6%
8 - - - - - 1624 - 1.6%

80 6 - - - - - 1955 3516 0.0%
7 - - - - - 1955 - 0.8%
8 - - - - - 1974 - 2.0%

100 6 - - - - - 2316 - 2.2%
7 - - - - - 2298 - 1.4%
8 - - - - - 2292 - 1.2%

150 7 - - - - - 3294 - 100.0%
8 - - - - - 3262 - 100.0%

Table 6 Solutions from the three models for presence resources. Instances with low resource
capacity are omitted from this table if neither a feasible solution nor a proof of infeasibility
is found.
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