
Hybrid Optimization of Vehicle
Routing Problems

Edward Lam

Submitted in total fulfilment of the requirements
of the degree of Doctor of Philosophy

October 2018

School of Computing and Information Systems
University of Melbourne

mailto:ed@ed-lam.com
http://cis.unimelb.edu.au/
http://www.unimelb.edu.au/

Abstract

Vehicle routing problems are combinatorial optimization problems that aspire to design vehicle
routes that minimize some measure of cost, such as the total distance traveled or the time at
which the last vehicle returns to a depot, while adhering to various restrictions. Vehicle routing
problems are of profound interest in both academia and industry because they are opportunities
to study graph structures and algorithms, and because they underpin practical applications in a
multitude of industries, but notably, the transportation and logistics industries. This dissertation
presents two applications relevant to industry and develops a fully hybrid method for solving a
classical vehicle routing problem.

The first application combines vehicle routing with crew scheduling. In industry, vehicle
routing and crew scheduling are usually performed in stages due to the large search space of
integrated models. The first stage finds minimal-cost vehicle routes with little consideration
to crew constraints and objectives. The second stage schedules crews on the routes from the
first stage. Disregarding crew constraints in the first stage can lead to suboptimality or even
infeasibility of the overall problem in the second stage. To quantify the suboptimality of staged
optimization models, two formulations of the integrated problem are developed. The first is
an ordinary mixed integer programming model, and the second is a constraint programming
model containing a linear relaxation global constraint that performs cost-based filtering. The
two integrated models are solved using a branch-and-bound search and a highly specialized
large neighborhood search. The large neighborhood search exploits the substructures linking
the vehicle routing and crew scheduling elements of the problem, and when executed on
the constraint programming model, is shown to perform significantly better than the other
approaches.

The second application introduces a number of scheduling constraints to the Vehicle Routing
Problem with Pickup and Delivery and Time Windows. The scheduling constraints arise from a
lack of loading bays or equipment that unloads and loads incoming vehicles. These constraints
limit the number of vehicles present or in service at any particular site by requiring the arrival
of vehicles to be scheduled around the availabilities of a scarce resource. A mixed integer
programming model, a constraint programming model and a sequential model are implemented
for the problem but are shown to be inferior to a branch-and-price-and-check model, which
hybridizes column generation and constraint programming with nogood learning.

This thesis concludes with a hybrid method, named Branch-and-Check with Explanations,
that unifies linear programming, constraint programming and Boolean satisfiability. The method

iii

begins with a linear programming model that omits several critical constraints. The solver uses
the linear programming model to find objective bounds and candidate solutions, which are
checked by a constraint programming model for feasibility of the omitted constraints. A Boolean
satisfiability model performs conflict analysis on infeasible candidate solutions to derive nogood
cuts, which are placed into the linear programming model and the constraint programming
model. The method is implemented in a proof-of-concept solver for the Vehicle Routing Problem
with Time Windows and is shown to be competitive against a branch-and-cut model while
avoiding the intricacies involved in developing the cutting planes and separation algorithms
required in branch-and-cut.

Declaration

I, Edward Lam, certify that:

• this thesis comprises only my original work,

• due acknowledgement has been made in the text to all other material used, and

• the thesis is fewer than 100,000 words in length, exclusive of tables, bibliographies,
footnotes and appendices.

Signed:

Date:

v

Preface

The work contained in this thesis is conducted under the supervision of Pascal Van Hentenryck
between December 2013 and October 2018. The contributions of this thesis can be found in the
third, fourth and fifth chapters. The main findings of these chapters are respectively published
in the following papers:

Lam, E., P. Van Hentenryck and P. Kilby (2015). ‘Joint Vehicle and Crew Routing and Scheduling’.
In: Principles and Practice of Constraint Programming: 21st International Conference, CP 2015,
Cork, Ireland, August 31 – September 4, 2015, Proceedings. Ed. by G. Pesant. Springer, Cham,
pp. 654–670.

Lam, E. and P. Van Hentenryck (2016). ‘A branch-and-price-and-check model for the vehicle
routing problem with location congestion’. In: Constraints 21.3, pp. 394–412.

Lam, E. and P. Van Hentenryck (2017). ‘Branch-and-Check with Explanations for the Vehicle
Routing Problem with Time Windows’. In: Principles and Practice of Constraint Programming:
23rd International Conference, CP 2017, Melbourne, VIC, Australia, August 28 – September 1,
2017, Proceedings. Ed. by J. C. Beck. Springer, Cham, pp. 579–595.

vii

Acknowledgements

First and foremost, I would like to thank my supervisor Pascal Van Hentenryck. I am grateful
for his expertise and his encouragement, especially during the times when I didn’t believe my
work will be successful. I appreciate him donating many evenings to argue with me when I
didn’t accept his opinion, which turned out correct more times than I want to admit. I could not
have completed this thesis nor tasted unforgettable Belgian fries without Pascal.

I wish to thank Phil Kilby and Andreas Schutt for the advice and discussions in Pascal’s
absence. I am also appreciative of Peter Stuckey, Sandra Stasi, Simon Dunstall and Tim Miller
for administrating my candidature. Almost every time I talk to them, it was to beg for travel
funding or to sign some paperwork, which is always urgent in my view.

I am indebted to my family for supporting me throughout this endeavor as well as all aspects
of life. They all have contributed to my success however minor. I owe my uncle for teaching
me algorithms and coding during my childhood, to whom I repaid by erasing his entire hard
drive repeatedly over the years. I wish to thank my partner, a food critic, who has prevented me
from starving during my candidature, even though sometimes I would rather starve than visit
yet another restaurant. Finally, I have to thank my mother in particular for encouraging me to
strive for excellence in all of my studies, from my childhood until today, despite not having the
opportunity herself as a war refugee.

The work in this thesis is fully funded by CSIRO’s Data61, formerly NICTA.

ix

Contents

Abstract iii

Declaration v

Preface vii

Acknowledgements ix

List of Figures xv

List of Tables xvii

List of Algorithms xix

1 Introduction 1
1.1 Mixed Integer Programming Models . 2
1.2 Constraint Programming Models . 3
1.3 Hybrid Models . 3
1.4 Preview of the Thesis . 4

2 Background 5
2.1 Constrained Optimization Problems . 5
2.2 Linear Programming . 6

2.2.1 Solutions to Linear Programs . 10
2.2.2 Solution Methods . 11

2.3 Mixed Integer Programming . 12
2.3.1 Branch-and-Bound . 14
2.3.2 Branch-and-Cut . 17
2.3.3 Branch-and-Price . 21
2.3.4 Branch-and-Cut-and-Price . 24

2.4 Boolean Satisfiability . 25
2.4.1 The Davis-Putnam-Logemann-Loveland Algorithm 26
2.4.2 Conflict Analysis . 28

2.5 Constraint Programming . 31
2.5.1 Branch-and-Prune . 33

xi

xii Contents

2.5.2 Conflict Analysis . 34
2.6 Hybridization Techniques . 35

2.6.1 Global Optimization Constraints . 35
2.6.2 Constraint-based Lagrangian Relaxation . 36
2.6.3 Constraint-based Column Generation . 37
2.6.4 Logic-based Benders Decomposition and Branch-and-Check 38

2.7 Vehicle Routing Problems . 40
2.8 Models of Vehicle Routing Problems . 41

2.8.1 Mixed Integer Programming Models . 41
2.8.2 Constraint Programming Models . 43

3 The Joint Vehicle and Crew Routing and Scheduling Problem 45
3.1 Literature Review . 46
3.2 Problem Description . 48
3.3 High-Level Modeling Concepts . 49
3.4 The Mixed Integer Programming Model . 54
3.5 The Constraint Programming Model . 59

3.5.1 Breaking Crew Subpath Symmetries within Locations 65
3.5.2 Feasibility and Bounding of Crew Routes . 65
3.5.3 The Search Procedures . 68

3.6 The Large Neighborhood Search . 69
3.7 Experimental Results . 71

3.7.1 The Instances . 71
3.7.2 The Methods . 71
3.7.3 Feasible Solutions . 72
3.7.4 The Impacts of Rescheduling Vehicles . 72
3.7.5 The Impacts of Rerouting Vehicles . 73
3.7.6 The Impacts of Rerouting and Rescheduling Vehicles 74
3.7.7 Detailed Analysis . 75

3.8 Conclusion . 79

4 The Vehicle Routing Problem with Location Congestion 105
4.1 Literature Review . 106
4.2 The High-Level Description . 107
4.3 The Mixed Integer Programming Model . 107
4.4 The Constraint Programming Model . 113
4.5 The Branch-and-Price-and-Check Model . 116

4.5.1 The Master Problem . 116
4.5.2 The Pricing Subproblem . 116
4.5.3 The Separation Subproblem . 117
4.5.4 The BPC Search Algorithm . 119

4.6 Experimental Results . 121

Contents xiii

4.7 Conclusion . 124

5 Branch-and-Check with Explanations 145
5.1 The Branch-and-Check Model of the VRPTW . 146
5.2 Nogood Strengthening . 154
5.3 Experimental Results . 156
5.4 Future Research Directions . 160
5.5 Conclusion . 164

6 Conclusion 167

Bibliography 171

A Supplementary Results for Branch-and-Check with Explanations 181

List of Figures

2.1 Example of a branch-and-bound search tree . 16

2.2 A graphical representation of the feasible space for each node in the branch-and-
bound tree in Figure 2.1 . 18

2.3 Example of a search tree in the DPLL algorithm . 29

2.4 Example of an implication graph . 31

3.1 Example of vehicle routes and crew routes . 50

3.2 Example of locations along a vehicle route . 51

3.3 Example of two crews interchanging vehicles at a location . 51

3.4 Example of two different schedules for the same route in classical vehicle routing
problems without time synchronization . 52

3.5 Example of the significance of branching on the time variables when vehicle routes
are interdependent . 53

3.6 The vehicle component of the mixed integer programming model 57

3.7 The crew component of the mixed integer programming model 58

3.8 Example of four vehicle routes as modeled by successor variables 61

3.9 The vehicle component of the constraint programming model . 63

3.10 The crew component of the constraint programming model . 64

3.11 Example of a partial crew route obtained at an early stage of the search 66

3.12 The linear relaxation of the shortest path problem in the CrewBound optimization
constraint . 67

3.13 Plots of the objective value, the percentage change and the number of vehicles and
crews over time for Flexible CP-LNS on an instance . 78

4.1 Example of a time window violation after delaying a vehicle due to insufficient
location resources . 108

4.2 The constraints of the three-index flow model within the mixed integer program-
ming model . 111

4.3 The constraints for service resources in the mixed integer programming model 112

4.4 The constraints in the constraint programming model . 115

4.5 The master problem of the branch-and-price-and-check model 117

4.6 The constraints of the separation subproblem for service resources 119

4.7 Additional constraints for presence resources in the separation subproblem 120

4.8 The branch-and-price-and-check algorithm . 121

xv

xvi List of Figures

5.1 Initial constraints of the mixed integer programming master problem 147
5.2 Initial constraints of the constraint programming checking subproblem 148
5.3 The branch-and-check with explanations search algorithm . 151
5.4 Example of a network . 151
5.5 Example of an implication graph . 152
5.6 Example of a subtour and a feasible path . 156

List of Tables

3.1 The data and decision variables of the mixed integer programming model 55
3.2 The data and decision variables of the constraint programming model 60
3.3 Number of instances with feasible solutions for each method . 72
3.4 Comparison of the four Semi-flexible methods against their Fixed counterparts and

the best Fixed method of each instance . 73
3.5 Comparison of the four Flexible methods against their Semi-flexible counterparts

and the best Semi-flexible method of each instance . 74
3.6 Comparison of the four Flexible methods against their Fixed counterparts and the

best Fixed method of each instance . 75
3.7 Comparison of the solutions from MIP-BB . 81
3.8 Comparison of the solutions from CP-BB . 87
3.9 Comparison of the solutions from MIP-LNS . 93
3.10 Comparison of the solutions from CP-LNS . 99

4.1 The data and decision variables of the mixed integer programming model 109
4.2 The data and decision variables of the constraint programming model 114
4.3 The data and decision variables in the separation subproblem . 118
4.4 Additional data and decision variables for presence resources in the separation

subproblem . 119
4.5 Solutions to the instances with service resources . 126
4.6 Solutions to the instances with presence resources . 135

5.1 The data and decision variables of the mixed integer programming master problem 147
5.2 The decision variables of the constraint programming checking subproblem 148
5.3 Solutions to the Solomon instances with 100 requests . 158
5.4 The number of cuts found and the proportion of each family of cuts 161
5.5 Upper bounds from variants of the solver with different numbers of nodes solved

using depth-first search before performing best-first node selection 162
5.6 Lower bounds from variants of the solver with different numbers of nodes solved

using depth-first search before performing best-first node selection 163

A.1 Experimental results for 1-minute runs of Branch-and-Check Explanations 182
A.2 Experimental results for 5-minutes runs of Branch-and-Check Explanations 183

xvii

List of Algorithms

2.1 The basic branch-and-bound algorithm for mixed integer programs 16
2.2 The basic branch-and-cut algorithm . 19
2.3 The basic branch-and-price algorithm . 24
2.4 The unit propagation procedure in the DPLL algorithm . 27
2.5 The DPLL algorithm . 28
2.6 The constraint programming propagation engine . 33
2.7 The basic branch-and-prune algorithm for constraint optimization problems 34

3.1 Sketch of the procedure that assigns vehicle routes . 68
3.2 Sketch of the procedure that assigns drivers and crew routes . 69
3.3 Sketch of the procedure that assigns vehicle and crew schedules 70

xix

To Lillian, Ethan and Winston

Chapter 1

Introduction

A vehicle routing problem aims to design minimal-cost routes for a fleet of vehicles that visit
a number of locations to perform tasks while adhering to various restrictions. The original
problem was formulated by Dantzig and Ramser (1959) but has since expanded into a large
family of related problems (e.g., Lahyani, Khemakhem and Semet 2015). Some variants of the
problem family are academic curiosities but others are highly relevant to many industries,
notably, the transportation and logistics industries (e.g., Golden, Assad and Wasil 2001).

Finding efficient routes has historically been performed by human planners, but recently,
algorithms have mostly supplanted human planning (e.g., Irnich, Toth and Vigo 2014). The past
five decades of research into vehicle routing problems have resulted in intricate algorithms
that can find routes with significantly lower cost than routes found by human planners. These
algorithms are grounded in the study of combinatorial optimization. Combinatorial optimization
is an interdisciplinary subfield of mathematics and computer science. The field is backed by
mathematical arguments but appeals to practitioners in a wide range of industries since many
business problems can be modeled as combinatorial optimization problems and then solved
rigorously using scientific methods. Solutions to these optimization problems can be used to
advise decision makers, which may result in significant monetary or time savings or other
efficiencies.

Combinatorial optimization problems are usually formulated as mathematical models. These
models generally consist of

• an objective function that measures the quality of a solution,

• discrete- or integer-valued variables that represent decisions or indivisible quantities,

• continuous real-valued variables that represent divisible quantities, and

• constraints that express relationships between the variables.

Solving a model involves finding values for the variables that minimize or maximize the objective
function without violating any constraint.

Sections 1.1 and 1.2 briefly summarize mixed integer programming and constraint pro-
gramming, which are two technologies that can be used to solve vehicle routing problems and
general combinatorial optimization problems. In particular, these two sections describe the
strengths and weaknesses of the two technologies. Section 1.3 describes hybridizations as a

1

2 Chapter 1. Introduction

path to mitigating weaknesses in the individual techniques. Section 1.4 outlines the structure of
this thesis.

This thesis argues that hybrid models of vehicle routing problems that exploit the individual
strengths of mixed integer programming and constraint programming can solve problems that are
far too difficult for either technology alone. This thesis experimentally compares pure mixed
integer programming and pure constraint programming models of vehicle routing problems to
hybrid models.

1.1 Mixed Integer Programming Models

Vehicle routing problems are commonly formulated as mixed integer programming models (e.g.,
Vigo and Toth 2014). These models admit integer- and real-valued variables but restrict the
objective function and the constraints to be linear functions of the variables.

Mixed integer programming models are frequently solved using a branch-and-bound tree-
search algorithm (e.g., Kianfar 2010). At every node of the tree, branch-and-bound solves a
subproblem, known as the linear relaxation, that disregards the requirement that integer-valued
variables take on integer values. If the constraints are violated in the linear relaxation solution,
the search algorithm explores another node. If any integer-valued variable has a fractional value
in the linear relaxation solution, the search algorithm creates two or more nodes that forbid the
current linear relaxation solution. Otherwise, the linear relaxation solution is a valid solution to
the original mixed integer programming problem. If the value of the objective function, called
the objective value, is better than that of the incumbent solution, then the new solution is stored
as the incumbent solution.

At every node of the search tree, the objective value of the linear relaxation solution is a
bound on the objective value of the entire subtree. If the objective bound is worse than the
objective value of the incumbent solution, the subtree can be pruned. Hence, strong bounds
enable large subtrees to be pruned, resulting in less work required to exhaustively explore the
search tree.

General combinatorial substructure, such as cycles and bijections, must be implemented
using multiple constraints since mixed integer programming only admits linear constraints.
Linearizing certain constraints, such as cycle constraints and logical constraints, is not only
cumbersome but also severely degrades the performance of search since it weakens the objective
bounds (e.g., Hooker 2010).

The linear relaxations can be solved using the simplex algorithm (e.g., Cochran 2010), which
performs elementary row operations on a matrix representing the constraints. Since row opera-
tions can combine multiple constraints, the constraints are said to communicate. Furthermore,
since the objective function is essentially another row in the matrix, the constraints can also
communicate with the objective function and vice versa. For some models, the communication
between the objective function and the constraints gives rise to asymptotically tight objective
bounds (Bramel and Simchi-Levi 1997), which allow these models to completely dominate many
other approaches (e.g., Pecin et al. 2014, Røpke 2012).

1.2. Constraint Programming Models 3

1.2 Constraint Programming Models

Vehicle routing problems can also be formulated as constraint programming models. Constraint
programming models are more general than mixed integer programming models and allow
general constraints and variables.

Constraint programming models are commonly solved using a tree-search algorithm similar
to branch-and-bound (e.g., Michel and Van Hentenryck 2010). Constraint programming lacks
the linear relaxation of mixed integer programming and does not contain an all-encompassing
data structure, like the linear relaxation matrix, that links the variables and constraints. Instead,
every variable is initialized at the root of the search tree with a set of possible values, known as
its domain, which is continually reduced by the constraints as the search progresses deeper into
the tree. The search continues until either the domain of every variable contains exactly one
value or until the domain of at least one variable is empty. In the first case, the values represent
a solution, and in the second case, the empty domain represents a violation of a constraint.

Constraints are implemented using an algorithm known as a propagator (e.g., Bessiere 2010).
Propagators are a key component of constraint programming solvers, which repeatedly call
propagators to reduce the domains of variables. Many propagators can exist for a particular
constraint, and the choice of propagator is selected based on a trade-off that balances speed and
strength, i.e., the number of values removed from the domains.

The constraints in constraint programming models are independent and only communicate
by removing values from the domains. Hence, the objective bounds are highly dependent on
strong propagators for constraints that involve variables in the objective function. Propagators
for linear functions are known to be weak, and unfortunately, linear functions appear frequently
as objective functions in vehicle routing problems (e.g., Vigo and Toth 2014). Because of
this, vehicle routing problems are rarely formulated as constraint programming models in the
literature.

Unlike constraints in mixed integer programming, constraints in constraint programming
can be general. For example, constraints can be logical relations or incorporate entire combinat-
orial substructures. Propagators for combinatorial substructures typically implement dedicated
logic, making them much more effective than linearizations in mixed integer programming
models. Furthermore, bespoke propagators can be built to combine multiple constraints into
one. These propagators should be considered when separate propagators are able to deduce
information that can significantly reduce the domains when combined but are independently
useless.

1.3 Hybrid Models

For linear objective functions, the linear relaxation of mixed integer programming provides
objective bounds that are tighter than those of constraint programming models. Conversely,
constraint programming models directly implement logical relations and many combinatorial
substructures, and with strong propagators, constraint programming models are competitive
against many mixed integer programming models (e.g., Benchimol et al. 2012). However, these

4 Chapter 1. Introduction

stereotypes are not guaranteed: there is no definitive feature that makes a problem better suited
to mixed integer programming or constraint programming.

One approach to mitigating inherent weaknesses of mixed integer programming and con-
straint programming is to hybridize the two technologies. Hybridization has become a highly
active area of study, especially during the past several years, because the weaknesses of both
mixed integer programming and constraint programming are not yet alleviated after decades of
ongoing development (Hooker and van Hoeve 2018).

Vehicle routing problems are historically solved using mixed integer programming because
their objective functions are usually linear, making constraint programming ineffective. How-
ever, many rich vehicle routing problems contain difficult real-world constraints that are better
modeled using logical relations from constraint programming.

1.4 Preview of the Thesis

The remainder of this thesis is organized as follows.
Chapter 2 formalizes mixed integer programming and constraint programming, presents

existing hybridization techniques and introduces several basic vehicle routing problems. Readers
familiar with this material are encouraged to proceed to the main contributions of this thesis,
which are found in Chapters 3 to 5.

Chapter 3 considers an application that integrates vehicle routing and crew scheduling,
which are usually solved in separate stages. Staged models are compared to integrated models
based onmixed integer programming and constraint programming. The constraint programming
model wraps a linear relaxation inside a global constraint to calculate objective bounds. Results
demonstrate that the constraint programming model with the bounding constraint coupled
with a bespoke search algorithm outperforms the other models.

Chapter 4 presents a vehicle routing problem that requires vehicles to be scheduled around
the availability of scarce parking bays and loading equipment. Constraint programming excels
at scheduling but has considerable difficulty in optimizing linear objective functions commonly
seen in vehicle routing problems. The opposite is often true for mixed integer programming.
An elaborate hybrid model is developed and compared to naive mixed integer programming
and constraint programming models. Results indicate that the hybrid model outperforms both
the mixed integer programming and constraint programming models.

Chapter 5 develops a method that unifies mixed integer programming and constraint pro-
gramming. The method is implemented for a classical vehicle routing problem known as the
Vehicle Routing Problem with Time Windows. The hybrid model is compared to mixed integer
programming and constraint programming models as well as a mixed integer programming
model that implements an advanced technique known as branch-and-cut. Experimental results
show that the hybrid model outperforms the other approaches while avoiding the intricacies of
developing specialized algorithms necessary for branch-and-cut.

Chapter 6 concludes this thesis with a summary of the main findings and recommendations
for future research.

Chapter 2

Background

This chapter reviews background material that underpins the main contributions of this thesis.
Section 2.1 introduces constrained optimization problems, which are specialized into a few
important classes in Sections 2.2 to 2.5. Section 2.2 presents linear programming, which is gener-
alized to mixed integer programming in Section 2.3. Section 2.4 considers Boolean satisfiability.
Section 2.5 generalizes Boolean satisfiability to constraint programming. Section 2.6 presents
several techniques for hybridizing mixed integer programming and constraint programming.
Section 2.7 introduces a few basic vehicle routing problems, and Section 2.8 summarizes several
influential models of vehicle routing problems.

Where relevant, the vector operators =, ≤ and ≥ perform component-wise comparison.
The symbols ℝ, ℝ+, ℤ, ℤ+ and 𝔹 respectively denote the real numbers, the non-negative real
numbers, the integers, the non-negative integers and the Boolean domain, i.e., the set {false, true}
or equivalently {0, 1} by an abuse of notation.

2.1 Constrained Optimization Problems

Constrained optimization problems are mathematical problems tasked with finding values to
variables such that the values obey various restrictions, called constraints, and that a function,
called the objective function, attains either a minimum or maximum at the values. The following
definitions formalize constrained optimization problems.

Definition 2.1 (Constrained Minimization Problem). A constrained minimization problem 𝒫
asks to find a vector

x∗ ∈ argmin
x∈S

f (x),

where S = c1 ∩… ∩ cm ⊆ ℝn , called the feasible space, is the intersection of constraints c1, … , cm ⊆
ℝn , x = (x1, … , xn) ∈ ℝn , x1, … , xn are variables, and f ∶ ℝn → ℝ is the objective function. Every
x ∈ S is a feasible solution with objective value f (x). The vector x∗ is called an optimal solution,
and the value f (x∗) is called the optimal value. If f (xk) → −∞ for a sequence k = 1, 2, …, the
problem is said to be unbounded. If S = ∅, the problem is said to be infeasible.

5

6 Chapter 2. Background

Definition 2.2 (Constrained Maximization Problem). A constrained maximization problem with
objective function f (x) is a constrained minimization problem with objective function −f (x).

Maximization problems can be expressed as minimization problems and vice versa since
maximizing f (x) is equivalent to minimizing −f (x) and recovering the value f (x∗) by negating
−f (x∗). The remainder of this thesis only considers minimization problems unless specified
otherwise.

Definition 2.3 (Constrained Optimization Problem). A constrained optimization problem is
either a constrained minimization problem or a constrained maximization problem.

Constrained optimization problems seldom have closed-form solutions. Instead, iterative
algorithms are used to find numerical solutions. These algorithms are implemented in a software
package called a solver. Solvers are only applicable to certain classes of problems. These classes
are categorized according to the form of their objective functions, variables and constraints.
Each of the next four sections surveys a class of constrained optimization problems and its
solution algorithms. Rather than solving a problem directly, some of these algorithms exploit a
relaxation of the problem, defined as follows.

Definition 2.4 (Relaxation). Let 𝒫 be a constrained minimization problem with objective
function f𝒫, feasible space S𝒫 and variables x ∈ S𝒫. A relaxation ℛ of 𝒫 is a constrained
minimization problem with objective function fℛ, feasible space Sℛ ⊇ S𝒫 and variables y ∈ Sℛ
such that fℛ(y) ≤ f𝒫(projS𝒫(y)) for all y ∈ Sℛ.

2.2 Linear Programming

Linear programming (LP) seeks to solve a class of constrained optimization problems known as
linear programs (also abbreviated as LP).

Variables in linear programs can only take non-negative real-values, but linear programs
can model general real-valued variables because any real-valued variable x ∈ ℝ can be expressed
as x = x+ − x− with x+, x− ∈ ℝ+.

The objective function is linear and the constraints are linear inequalities. However, con-
straints can include linear equations since they can be expressed as inequalities. A linear equation
α1 + … + αn = β can be written as the two inequalities α1 + … + αn ≥ β and α1 + … + αn ≤ β . A
linear inequality α1 + … + αn ≥ β can also be written as α1 + … + αn − s = β , where s ≥ 0 is a
variable, called a surplus variable, that absorbs the difference. Similarly, α1 + … + αn ≤ β can be
stated as α1 + … + αn + t = β , where t ≥ 0 is a slack variable. Furthermore, a linear inequality
α1 + … + αn ≥ β can be written as −α1 − … − αn ≤ −β and vice versa. Therefore, linear programs
can model any linear equation or inequality constraint. Even though linear programs cannot
directly model strict inequality (i.e., < or >) nor disequality (i.e., ≠), they can be extended to
model these constraints in certain cases (Van Hentenryck and Graf 1992).

The following definitions summarize well-known results of linear programming. Readers
seeking further details are recommended to consult the excellent textbook by Rader (2010).

2.2. Linear Programming 7

Other sources for introductory material include the textbooks by Nemhauser and Wolsey (1999),
Vanderbei (2014) and Winston (2004).

Definition 2.5 (Linear Program). A (minimization) linear program 𝒫 is a tuple 𝒫 = (x, z,A, b, c)
such that Ax ≥ b, where x = (x1, … , xn) ∈ ℝn+ is a vector of independent variables, z = c ⋅ x ∈ ℝ
is a dependent variable, A ∈ ℝm×n is a constant matrix, and b = (b1, … , bm) ∈ ℝm and c =
(c1, … , cn) ∈ ℝn are constant vectors.

Definition 2.6 (Variable). Given a linear program 𝒫 = (x, z,A, b, c), each component of x, i.e.,
x1, … , xn , is a variable of 𝒫.

Definition 2.7 (Constraint). A constraint of a linear program 𝒫 = (x, z,A, b, c) represents the
set

{x ∈ ℝn+|
n
∑
j=1

Ai,jxj ≥ bi}

for any i = 1, … ,m. For brevity, this constraint is usually stated as

n
∑
j=1

Ai,jxj ≥ bi .

Definition 2.8 (Objective Function). The dependent variable z = c ⋅ x is called the objective
function of the linear program 𝒫 = (x, z,A, b, c).

Example 2.1. Given independent variables x1, x2, x = (x1, x2), dependent variable z, A = [6 4
2 3],

b = (8, 5) and c = (1, 2), then 𝒫 = (x, z,A, b, c) is a linear program. It has constraints

6x1 + 4x2 ≥ 8

and

2x1 + 3x2 ≥ 5,

and has objective function

z = x1 + 2x2.

Definition 2.9 (Feasible Space). The feasible space or solution space S of a linear program
𝒫 = (x, z,A, b, c) is the intersection of all its constraints, i.e., S = {x ∈ ℝn+|Ax ≥ b}.

The feasible space in many vehicle routing problems, including those relevant to this thesis,
are bounded. The discussion below makes this assumption, which simplifies many of the
following definitions and results.

Definition 2.10 (Feasible Solution). Given a linear program 𝒫 = (x, z,A, b, c) and its feasible
space S, any x̂ ∈ S is a feasible solution or simply solution of 𝒫. The value z = c ⋅ x̂ is the objective
value of x̂.

For brevity, this thesis defines a solution as a feasible solution. This definition is widely used
in the constraint programming literature but is uncommon in the linear programming literature,
which usually defines a solution as an optimal solution.

8 Chapter 2. Background

Example 2.2. Consider the linear program in Example 2.1. The vector x̂ = (1, 1) is a feasible
solution with objective value z = c ⋅ x̂ = (1, 2) ⋅ (1, 1) = 3.

Definition 2.11 (Solving a Linear Program). Let 𝒫 = (x, z,A, b, c) be a linear program with
bounded feasible space S. Solving 𝒫 refers to (1) finding a feasible solution

x∗ ∈ argmin
x∈S

z,

in which case x∗ and z = c ⋅ x∗ are respectively called an optimal solution and the optimal value,
or (2) showing that S = ∅, in which case 𝒫 is described as infeasible.

Definition 2.12 (Standard Form). A linear program 𝒫 = (x, z,A, b, c) can be written in standard
form as

min z = c1x1 + … + cnxn
subject to A1,1x1 + … + A1,nxn ≥ b1,

⋮ + ⋱ + ⋮ ≥ ⋮
Am,1x1 + … + Am,nxn ≥ bm ,

xj ≥ 0 ∀j = 1, … , n.

Example 2.3. The linear program in Example 2.1 can be written in standard form as

min z = x1 + 2x2
subject to 6x1 + 4x2 ≥ 8,

2x1 + 3x2 ≥ 5,
x1 ≥ 0,

x2 ≥ 0.

Constraints in standard form are sometimes stated with = or ≤ signs to ease understanding.
These constraints are no different to ≥ constraints because of the rules mentioned at the start of
this section.

Recall from Section 2.1 that maximization problems can be written as minimization problems
and vice versa. Maximization linear programs can be written in standard form usingmax instead
of min. For example, consider the following maximization linear program 𝒫 written in standard
form:

max z = c1x1 + … + cnxn
subject to A1,1x1 + … + A1,nxn ≥ b1,

⋮ + ⋱ + ⋮ ≥ ⋮
Am,1x1 + … + Am,nxn ≥ bm ,

xj ≥ 0 ∀j = 1, … , n.

It can be presented in the tuple form of Definition 2.5 by replacing z with −z and cwith −c. That
is, 𝒫 is equivalent to the minimization linear program 𝒫′ = (x, −z,A, b, −c). This minimization

2.2. Linear Programming 9

problem is written in standard form as

min −z = −c1x1 − … − cnxn
subject to A1,1x1 + … + A1,nxn ≥ b1,

⋮ + ⋱ + ⋮ ≥ ⋮
Am,1x1 + … + Am,nxn ≥ bm ,

xj ≥ 0 ∀j = 1, … , n.

The value −z is the objective value of solutions in the equivalent minimization problem 𝒫′.
Objective values in the original maximization problem 𝒫 are recovered in z.

The following discussion relies on the maximization rewriting to define duality. A review
of duality is needed to discuss advanced techniques later in this chapter.

Definition 2.13 (Dual). Let 𝒫 = (x, z𝒫,A, b, c) be a linear program. The dual 𝒟 of 𝒫 is the
linear program 𝒟 = (y, −z𝒟, −A⊤, −c, −b), where y = (y1, … , ym) ∈ ℝm+ and y1, … , ym are the
variables.

The dual is usually considered a maximization problem. It is presented in Definition 2.13 as
a minimization problem with objective value −z𝒟 = −b ⋅ y. As a maximization problem, it has
objective value z𝒟 = b ⋅ y.

Example 2.4. The dual of 𝒫 in Examples 2.1 and 2.3 is the linear program

min −z𝒟 = −8y1 − 5y2
subject to −6y1 − 2y2 ≥ −1,

−4y1 − 3y2 ≥ −2,
y1 ≥ 0,

y2 ≥ 0,

or equivalently,

max z𝒟 = 8y1 + 5y2
subject to 6y1 + 2y2 ≤ 1,

4y1 + 3y2 ≤ 2,
y1 ≥ 0,

y2 ≥ 0.

Definition 2.14 (Primal). Let 𝒫 be a linear program and 𝒟 be its dual. In the context of a dual,
𝒫 is called the primal.

Proposition 2.1. The dual of the dual of a primal 𝒫 is 𝒫 itself.

Theorem 2.2 (Weak Duality). Let 𝒫 = (x, z𝒫,A, b, c) be a linear program with dual 𝒟, then for
every feasible solution x̂ of 𝒫 and every feasible solution ŷ of 𝒟,

c ⋅ x̂ ≤ b ⋅ ŷ.

Proof. See Theorem 9.1 of Rader (2010).

10 Chapter 2. Background

Theorem 2.3 (Strong Duality). Let 𝒫 = (x, z𝒫,A, b, c) be a linear program and let𝒟 be its dual.
The problem 𝒫 has an optimal solution x∗ if and only if 𝒟 has an optimal solution y∗ such that

c ⋅ x∗ = b ⋅ y∗.

Proof. See Theorem 9.2 of Rader (2010).

Definition 2.15 (Objective Bound). Let 𝒫 = (x, z,A, b, c) be a linear program with a primal
feasible solution x̂. Let 𝒟 be the dual of 𝒫 and ŷ be a dual feasible solution. Then, the value
c ⋅ x̂ is a lower bound and b ⋅ ŷ is an upper bound to the optimal value c ⋅ x∗ by the Weak Duality
Theorem and the Strong Duality Theorem.

2.2.1 Solutions to Linear Programs

The following discussion pertains to an algebraic derivation of the form of the solutions to
linear programs. As explained previously, linear inequalities can be written as linear equations
and vice versa. Therefore, any linear program can be written as

min z = c⊤x
subject to Ax = b, (2.1)

x ≥ 0, (2.2)

where x includes a surplus variable for every row of A. Without loss of generality, reorder the
columns of A and then partition the columns into an invertible submatrix B and a submatrix N ,
i.e., A = [B N]. Using the partition, the above linear program can be written as

min z = c⊤BxB + c⊤NxN (2.3)

subject to BxB + NxN = b, (2.4)

xB ≥ 0, (2.5)

xN ≥ 0, (2.6)

where x = (xB ,xN) and c = (cB , cN) are also partitioned accordingly. The variables in the
components of xB and xN are respectively called the basic variables and the non-basic variables
because the matrix B, being invertible, is a basis for ℝm .

Since B is invertible, Constraint (2.4) can be rearranged to

xB = B−1b − B−1NxN .

Using this equation, any point x = (xB ,xN), with xN ≥ 0, can be expressed as

x = (xB ,xN) = (B−1b − B−1NxN ,xN). (2.7)

This point can be substituted into Objective Function (2.3), resulting in

z = c⊤B (B
−1b − B−1NxN) + c⊤NxN = c⊤BB

−1b + (c⊤N − c⊤BB
−1N)xN . (2.8)

2.2. Linear Programming 11

Each component in the row vector c⊤N − c⊤BB
−1N is called the reduced cost of the corresponding

variable in xN . By observing the form of this objective function, the reduced cost of a variable
can be understood as a bound on the change in the objective value for every unit increase in
the variable’s value.

Next, set xN = 0 in Equation (2.7), yielding the basic solution x̂ = (B−1b, 0). Assuming
that B−1b ≥ 0, then x̂ satisfies Constraints (2.4) to (2.6), and hence, is a basic feasible solution.
Substituting x̂ into Equation (2.8) gives its objective value as

c⊤BB
−1b.

Any point that has a better (lower) objective value than c⊤BB
−1bmust have (c⊤N −c⊤BB

−1N)xN < 0
in Equation (2.8). This term is negative if at least one of the non-basic variables have negative
reduced cost because xN ≥ 0 by definition. Conversely, it can be shown that the basic feasible
solution x̂ is an optimal solution if all reduced costs are non-negative. Any basic feasible solution
can be easily checked to determine whether it is an optimal solution using this criterion.

Once a basic feasible solution is proven to be optimal, a corresponding dual solution can
be constructed. The Strong Duality Theorem (Theorem 2.3) states that the optimal values of
the primal and the dual are equal. Given an optimal basic feasible solution x∗ = (B−1b, 0) with
objective value c⊤BB

−1b, an optimal dual solution y∗ can be constructed by equating its objective
value to c⊤BB

−1b, i.e.,

y∗⊤b = c⊤BB
−1b.

Hence,

y∗⊤ = c⊤BB
−1

is a dual solution called the complementary dual solution of the primal solution x∗. Furthermore,
the vector of reduced costs can be expressed in terms of y∗ as

c⊤N − y∗⊤N . (2.9)

2.2.2 Solution Methods

The set given by Constraints (2.4) to (2.6), i.e., the feasible space, defines a polyhedron. An
optimal solution x∗ = (B−1b, 0) corresponds to a vertex of the polyhedron. Almost all modern
linear programming algorithms find optimal solutions by either moving on the surface or in the
interior of the polyhedron towards an optimal vertex (Bixby 2002).

The simplex algorithm, developed by Dantzig in 1947, is widely used to solve linear programs.
The simplex algorithm is a surface algorithm; it crawls along the edges of the feasible space
from vertex to vertex until it converges to an optimal solution if one exists (e.g., Prabhu 2010).
Even though its worst-case time complexity is exponential (e.g., Prabhu 2010), it performs very
well in practice and is implemented in practically every commercial linear programming solver
(Bixby 2002).

Khachiyan (1979), Karmarkar (1984) and many others developed interior point methods.

12 Chapter 2. Background

These algorithms move inside the feasible space towards an optimal vertex (e.g., Peng and Salahi
2011). Although these algorithms have polynomial-time complexity (e.g., Peng and Salahi 2011,
Terlaky 2010), they do not necessarily dominate the simplex algorithm. Many commercial linear
programming solvers also implement an interior point algorithm (e.g., Benson 2011). Whether
a problem is best solved using the simplex algorithm or an interior point algorithm is difficult
to determine and usually requires experimental comparisons. For a thorough discussion on
interior point methods, interested readers can consult the works by Gondzio (2012), Peng and
Salahi (2011), Terlaky (2010) and Wright (1997).

Other historical algorithms for solving linear programs are surveyed by Murty (2010).
Solution methods for linear programs are not explored any further as they are not relevant to
the main contributions of this thesis.

2.3 Mixed Integer Programming

Two prominent techniques in the field of mathematical programming are linear program-
ming and mixed integer programming (MIP). Mixed integer programming generalizes linear
programming to allow integer-valued variables. This class of problems is known as mixed
integer programs (also abbreviated as MIP). An enormous number of real-world problems can
be modeled using mixed integer programs. Integer-valued variables can be used to model
indivisible quantities, for example. The variables can also be restricted to binary values (i.e., 0
or 1). Binary-valued variables can be used to indicate whether a choice is selected.

The following definitions formalize mixed integer programs. Many of the definitions are
similar or identical to those of linear programming. To make this section self-contained, the
definitions are repeated in this section. A thorough introduction to mixed integer programming
can be found in the textbooks by Nemhauser and Wolsey (1999), Rader (2010), Vanderbei (2014)
and Winston (2004). A recount of the history of mixed integer programming can be found in
the book by Jünger et al. (2009).

Definition 2.16 (Mixed Integer Program). A (minimization) mixed integer program 𝒫 is a tuple
𝒫 = (x, z,A, b, c, I) such that Ax ≥ b, where x = (x1, … , xn) ∈ ℝn+ is a vector of independent
variables, z = c ⋅ x ∈ ℝ is a dependent variable, A ∈ ℝm×n is a constant matrix, b = (b1, … , bm) ∈
ℝm and c = (c1, … , cn) ∈ ℝn are constant vectors, and I ⊆ {1, … , n} is a subset of the index set of
the components of x.

Definition 2.17 (Variable). Given amixed integer program𝒫 = (x, z,A, b, c, I), each component
of x, i.e., x1, … , xn , is a variable of 𝒫. Every xj where j ∈ I is an integer variable, and every xj
such that j = 1, … , n, j ∉ I is a continuous variable.

Definition 2.18 (Constraint). A constraint of a mixed integer program 𝒫 = (x, z,A, b, c, I)
represents the set

{x ∈ ℝn+|
n
∑
j=1

Ai,jxj ≥ bi}

2.3. Mixed Integer Programming 13

for any i = 1, … ,m. For brevity, this constraint is usually stated as

n
∑
j=1

Ai,jxj ≥ bi .

Definition 2.19 (Objective Function). The dependent variable z = c ⋅ x is called the objective
function of the mixed integer program 𝒫 = (x, z,A, b, c, I)

Example 2.5. Given independent variables x1, x2, x = (x1, x2), dependent variable z, A = [6 4
2 3],

b = (8, 5), c = (1, 2) and I = {1, 2}, then 𝒫 = (x, z,A, b, c, I) is a mixed integer program. Both
variables x1 and x2 are integer variables.

Definition 2.20 (Linear Relaxation). The linear relaxation or linear programming relaxation of
a mixed integer program 𝒫 = (x, z,A, b, c, I) is the linear program 𝒫LP = (x, z,A, b, c).

Example 2.6. The linear relaxation 𝒫LP of the problem 𝒫 in Example 2.5 is the linear program
in Example 2.1.

Definition 2.21 (Feasible Space). Let 𝒫 = (x, z,A, b, c, I) be a mixed integer program and let
SLP be the feasible space of its linear relaxation. The feasible space or solution space S of 𝒫 is the
set S = {x ∈ SLP|xj ∈ ℤ for all j ∈ I } = {x ∈ ℝn+|Ax ≥ b, xj ∈ ℤ for all j ∈ I }.

Like in the previous section, the feasible space is assumed to be bounded. This assumption is
valid for many models of applications, and in particular, all concerned vehicle routing problems.

Definition 2.22 (Feasible Solution). Given a mixed integer program 𝒫 = (x, z,A, b, c, I) and its
feasible space S, any x̂ ∈ S is a feasible solution or simply solution of 𝒫. The value z = c ⋅ x̂ is the
objective value of x̂.

Example 2.7. Recall that the linear relaxation 𝒫LP of the mixed integer program 𝒫 in Ex-
ample 2.5 is the linear program in Example 2.1. Example 2.2 shows that the vector x̂ = (1, 1) is a
feasible solution to the linear relaxation. Since x1 and x2 are integer variables and x̂1 = 1 and
x̂2 = 1 are integral, x̂ is also a feasible solution to 𝒫.

Definition 2.23 (Solving a Mixed Integer Program). Let 𝒫 = (x, z,A, b, c, I) be a mixed integer
program with bounded feasible space S. Solving 𝒫 refers to (1) finding a feasible solution

x∗ ∈ argmin
x∈S

z,

in which case x∗ and z = c ⋅ x∗ are respectively called an optimal solution and the optimal value,
or (2) showing that S = ∅, in which case 𝒫 is described as infeasible.

Definition 2.24 (Standard Form). Every mixed integer program 𝒫 = (x, z,A, b, c, I) can be

14 Chapter 2. Background

written in standard form as

min z = c1x1 + … + cnxn
subject to A1,1x1 + … + A1,nxn ≥ b1,

⋮ + ⋱ + ⋮ ≥ ⋮
Am,1x1 + … + Am,nxn ≥ bm ,

xj ≥ 0 ∀j = 1, … , n,
xj integer ∀j ∈ I .

The last line is known as the integrality constraints.

Example 2.8. The mixed integer program from Example 2.5 can be written in standard form as

min z = x1 + 2x2
subject to 6x1 + 4x2 ≥ 8,

2x1 + 3x2 ≥ 5,
x1 ≥ 0,

x2 ≥ 0,
x1, x2 integer.

2.3.1 Branch-and-Bound

Mixed integer programs can be solved using a variety of methods. Even though they are NP-
hard in general, some classes of mixed integer programs can be solved in polynomial time (e.g.,
Nemhauser and Wolsey 1999, Rader 2010). These classes of problems have a totally unimodular
matrix; hence, their linear-relaxation optimal solutions are also optimal for the mixed integer
programs. The Assignment Problem is one such example. Even though it can be solved using
polynomial-time algorithms that are specifically tailored to the problem (e.g., Kuhn 1955), it
can also be modeled using a mixed integer program and solved in polynomial time using a
general-purpose linear programming solver.

General mixed integer programs lack dedicated algorithms, and instead, are commonly
solved using an algorithm based on branch-and-bound (e.g., Kianfar 2010, Lodi 2010). Branch-
and-bound, developed by Land and Doig (1960), is a general-purpose tree-search framework for
solving optimization problems with discrete-valued variables. The framework is based on the
divide-and-conquer concept.

Branch-and-bound initializes the root node of the search tree with the linear relaxation of
the mixed integer program and then solves the linear relaxation. Recall that integer variables
can take on fractional values in the linear relaxation. If any integer variable has a fractional
value, then branch-and-bound removes the current solution by branching. For example, if the
integer variable x has a value of 6.5 in the linear relaxation solution, branch-and-bound can
create two children nodes with the addition of the constraint x ≤ 6 in one node and x ≥ 7 in the
other. Solving and branching recur until the algorithm reaches either an integer node (a node
whose linear relaxation solution satisfies the integrality constraints) or a suboptimal node (a
node whose objective bound is worse than the objective value of the incumbent solution). It

2.3. Mixed Integer Programming 15

discards the node and then backtracks to solve other nodes.

The basic algorithm for solving mixed integer programs is presented in Algorithm 2.1.
Lines 1 and 2 initialize the optimal value z∗ as infinity, representing no incumbent solution, and
the set O of open nodes with the input problem 𝒫. Line 3 is the main loop.

Lines 4 and 5 extract a node, which is represented by its internal mixed integer program 𝒮.
The SelectNode function uses various criteria to choose a node. Two common heuristics are
depth-first search and best bound-first search (e.g., Kianfar 2010, Lodi 2010). Depth-first search
selects the deepest node and intends to find feasible solutions quickly by enforcing decisions
via branching. Best bound-first search selects the node with the smallest objective bound and
strives to find high-quality solutions quickly but may suffer if the problem is difficult in terms
of feasibility.

Line 6 solves the linear relaxation 𝒮LP of 𝒮 and returns an optimal solution x∗LP and the
optimal value z∗LP. If 𝒮LP is infeasible, then z∗LP = ∞. Line 7 discards the current node unless
z∗LP < z∗, i.e., the subtree can contain a solution with an objective value better than the current
z∗.

If all integer variables take on integer values in x∗LP (Line 8), then the linear relaxation
solution x∗LP is valid for the original mixed integer program 𝒫. Line 9 stores x∗LP as the new
incumbent solution x∗. Line 10 stores the objective value z∗LP of x∗LP.

If some integer variables have fractional values, then the linear relaxation solution is not a
valid solution to the original mixed integer program. The algorithm splits 𝒮 into subproblems
that do not contain the current solution (Line 12).

A basic implementation of the CreateChildren function applies the most fractional branch-
ing rule, which selects a variable xj where j ∈ argminj∈I |(x

∗
LP)j − ⌊(x∗LP)j⌋| and creates one child

node with the constraint xj ≤ ⌊(x∗LP)j⌋ and another child node with xj ≥ ⌈(x∗LP)j⌉. A compre-
hensive evaluation of various branching rules is conducted by Achterberg, Koch and Martin
(2005).

Solving and branching continues until the tree is fully explored. If a feasible solution is
found (Line 13), the algorithm returns the optimal solution x∗ (Line 14). Otherwise, the problem
is infeasible and the algorithm terminates (Line 16).

Example 2.9. Figure 2.1 shows a branch-and-bound search tree for the mixed integer program
𝒫 in Example 2.8. At the root node (node 1), it solves the linear relaxation 𝒫LP, which results
in the linearly-feasible solution (2.5, 0). Despite being feasible for the linear relaxation, this
solution is not feasible for 𝒫 because x1 is an integer variable. Branch-and-bound creates two
children nodes and imposes the constraint x1 ≤ 2 in one node (node 2) and x1 ≥ 3 in the other
(node 3). Next, it chooses to solve node 2. The linear relaxation 𝒫LP is augmented with the
constraint x1 ≤ 2 and then solved, which results in the solution (2, 0.33). This vector is not a
feasible solution to 𝒫 since x2 is an integer variable. The algorithm branches again and creates a
child node with the constraint x2 ≤ 0 (node 4) and another with x2 ≥ 1 (node 5). Node 4 is found
to be infeasible. Branch-and-bound then proceeds to node 5. It solves the linear relaxation,
which results in x∗LP = (1, 1). Since (x∗LP)1 = 1 and (x∗LP)2 = 1 are integral, x∗LP is a feasible
solution to 𝒫. The solution x∗LP, with objective value z∗LP = 3, is stored as the incumbent solution

16 Chapter 2. Background

Algorithm 2.1: The basic branch-and-bound algorithm for mixed integer programs.
Input: A mixed integer program 𝒫 = (x, z,A, b, c, I)
Output: An optimal solution x∗ to 𝒫 if one exists

1 z∗ ← ∞ /* initialize optimal value */
2 O ← {𝒫} /* initialize set of open nodes */
3 while O ≠ ∅ /* loop until all nodes are solved */
4 𝒮 ← SelectNode(O) /* get subproblem of a node */
5 O ← O ⧵ {𝒮} /* delete selected node */
6 (x∗LP, z∗LP) ←Solve(𝒮LP) /* solve linear relaxation */
7 if z∗LP < z∗ then /* if not suboptimal */
8 if (x ∗LP)j ∈ ℤ for all j ∈ I then
9 x∗ ← x∗LP /* if integer, store new solution */

10 z∗ ← z∗LP
11 else
12 O ← O ∪ CreateChildren(𝒮) /* otherwise, branch */

13 if z∗ < ∞ then
14 return x∗ /* return optimal solution */
15 else
16 report 𝒫 is infeasible and terminate

x∗ to 𝒫. Branch-and-bound then backtracks and continues exploring the search tree. It proceeds
to node 3. At this node, it solves 𝒫LP with x1 ≥ 3. The resulting solution has an objective value
of 3, which is not better than the incumbent solution, whose objective value is also 3. The
objective value of the linear relaxation solution serves as the objective bound for the entire
subtree, and hence, node 3 can be discarded. The search tree is now entirely explored and x∗ is
an optimal solution to 𝒫.

Example 2.10. Figure 2.2 shows a graphical representation of the feasible space of the sub-
problem in each node of the search tree in Figure 2.1. The feasible space of the mixed integer
program in each node is given by the dots while the feasible space of its linear relaxation is

Node 1
z∗LP = 2.5

x∗LP = (2.5, 0)

Node 2
z∗LP = 2.67

x∗LP = (2, 0.33)

Node 3
z∗LP = 3

Suboptimal

Node 4
Infeasible

Node 5
z∗LP = 3

x∗LP = (1, 1)

x1 ≤ 2 x1 ≥ 3

x2 ≤ 0 x2 ≥ 1

Figure 2.1: Example of a branch-and-bound search tree.

2.3. Mixed Integer Programming 17

given by the grey area. As the branch-and-bound algorithm progresses deeper into the search
tree, the feasible space of the linear relaxation becomes smaller.

Example 2.11. Figure 2.2a shows the feasible space of the mixed integer program and its linear
relaxation in the root node (node 1). The linear relaxation solution is located at the point (2.5, 0).
If the feasible space of the linear relaxation happens to be the convex hull of the feasible space
of the mixed integer program, i.e., the convex hull of the dots, then the linear relaxation solution
will be either (1, 1) or (3, 0), giving an objective value of 3. In this case, no branching is required
since both of these solutions are integral.

In general, if the feasible space of the linear relaxation is the convex hull of the feasible space
of the mixed integer program, solving the linear relaxation will also solve the mixed integer
program (e.g., Rader 2010).

2.3.2 Branch-and-Cut

An alternative to branch-and-bound is the cutting plane algorithm by Gomory (1958, 1960, 1963).
Instead of branching, the cutting plane algorithm adds constraints to the linear relaxation to
enforce integrality. The intention is to remove large portions of the linear relaxation feasible
space and bring it towards the convex hull of the feasible space of the mixed integer program.
In the context of the cutting plane algorithm, the added constraints are known as cuts or cutting
planes.

As the cutting plane algorithm progresses, the incoming cuts gradually prune smaller
sections of the feasible space and become increasingly ineffective. Because of this, the cutting
plane algorithm is rarely used in practice, even if it is elegant in theory (Mitchell 2010). Branch-
and-cut, developed by Padberg and Rinaldi (1991), mitigates this issue by coupling branch-and-
bound with the cutting plane method. Whenever the quality of the cuts tails off, branch-and-cut
branches to two or more subproblems instead of continuing with generating cuts.

The following discussion summarizes branch-and-cut; a detailed account is given byMitchell
(2010). Consider the mixed integer program 𝒫 = (x, z, [AC] , (b,d), c, I), where C ∈ ℝm×n has a
large number of rows: perhaps exponential in the number of columns, i.e., m ≈ 2n . The problem
𝒫 can be written in standard form as

min c ⋅ x
subject to Ax ≥ b,

Cx ≥ d, (2.10)

x ≥ 0,
xj integer ∀j ∈ I . (2.11)

The constraints given by Cx ≥ d may be implicit, i.e., they are not explicitly specified by the
user but instead are implicitly included in the model by the solver after deducing that adding
certain constraints would improve the model. Examples of these cuts include Gomory cuts,
clique cuts and cover cuts.

18 Chapter 2. Background

0 1 2 3 4
0

1

2

3

4

x1

x 2

(a) Node 1.

0 1 2 3 4
0

1

2

3

4

x1

x 2

(b) Node 2.

0 1 2 3 4
0

1

2

3

4

x1

x 2

(c) Node 3.

0 1 2 3 4
0

1

2

3

4

x1

x 2

(d) Node 4.

0 1 2 3 4
0

1

2

3

4

x1

x 2

(e) Node 5.

Figure 2.2: A graphical representation of the feasible space for each node in the branch-and-
bound tree in Figure 2.1. The black lines are the boundary of the constraints. The grey area
is the feasible space of the linear relaxation and the dots are the feasible space of the mixed
integer program. The red line represents the objective function. The optimal solution of the
linear relaxation is where the red line intersects the feasible space.

2.3. Mixed Integer Programming 19

Algorithm 2.2: The basic branch-and-cut algorithm.
Input: A mixed integer program 𝒫 = (x, z,A, b, c, I)
Output: An optimal solution x∗ to 𝒫 if one exists

1 z∗ ← ∞
2 O ← {𝒫}
3 while O ≠ ∅
4 𝒮 ← SelectNode(O)
5 O ← O ⧵ {𝒮}
6 repeat /* cut separation loop */
7 (x∗LP, z∗LP) ←Solve(𝒮LP) /* solve linear relaxation */
8 γ ← SeparateCuts(𝒮,x∗LP) /* find cuts */
9 𝒮 ← 𝒮 ∪ γ /* add cuts */

10 until γ = ∅
11 if z∗LP < z∗ then
12 if (x ∗LP)j ∈ ℤ for all j ∈ I then
13 x∗ ← x∗LP
14 z∗ ← z∗LP
15 else
16 O ← O ∪ CreateChildren(𝒮)

17 if z∗ < ∞ then
18 return x∗
19 else
20 report 𝒫 is infeasible and terminate

Without loss of generality, consider a relaxed problem 𝒫′ defined as

min c ⋅ x
subject to Ax ≥ b,

x ≥ 0,
xj integer ∀j ∈ I ′ ⊆ I .

The key idea behind branch-and-cut is to repeatedly solve the linear relaxation𝒫′
LP of𝒫′ and add

subsets of Constraints (2.10) and (2.11) that are implicitly violated. Adding these cuts discards
the current solution and forces the solver to find another candidate solution. This continues
until the cuts remove exceedingly small sections of the feasible space, at which point the solver
branches.

The branch-and-cut algorithm is shown in Algorithm 2.2. It differs from branch-and-bound
by the addition of the loop in Line 6. Line 7 solves the linear relaxation. Line 8 solves separation
subproblems to find or separate cuts. Line 9 adds the new cuts.

There are many classes or families of cuts in the literature. Each family of cuts is independ-
ently derived using mathematical proofs and intends to remove a specific type of section of
the feasible space. Ideal families of cuts are those proven to be facets of the convex hull of the
feasible space of the mixed integer program because these cuts remove the largest possible
portions of the feasible space. These cuts are termed polyhedral cuts. Many families of cuts,
especially polyhedral cuts, rely on assumptions of the problem and/or model, limiting their

20 Chapter 2. Background

reuse in other problems or even other models of the same problem. A list of families of cuts
relevant to vehicle routing problems is given by Semet, Toth and Vigo (2014).

The families of cuts fall into one of two categories:

• Implied cuts are redundant constraints that shrink the feasible space of the linear relaxation.
Their main purpose is to lift solutions of 𝒫′

LP to solutions of 𝒫′ or 𝒫. Implied cuts are
usually implicitly omitted in the problem specification, and instead, are found internally
by a mixed integer programming solver. An example of implied cuts is the Gomory
cuts, which round fractional solutions, thereby removing fractional solutions that are
𝒫′
LP-feasible but are 𝒫′-infeasible or 𝒫-infeasible.

• Problem cuts are necessary constraints for correctly solving 𝒫 but are deliberately omitted
because, e.g., there are too many. Their main purpose is to lift solutions of 𝒫′ to solutions
of 𝒫. Problem cuts are typically programmed explicitly into a mixed integer program
solver by the user. Examples of problem cuts include subtour elimination cuts, which are
discussed in Example 2.12 and in the main chapters.

Since the purpose of the cuts is to lift solutions of 𝒫′
LP and 𝒫′ to solutions of 𝒫, branch-and-cut

can be viewed as working towards feasibility from an infeasible starting point. This statement will
be contrasted to an orthogonal but complementary statement in the next section.

Cuts are found within a separation subproblem. Separation subproblems implement a
separation algorithm, of which many can exist for a family of cuts. A separation algorithm
checks solutions of the linear relaxation against the idea and logic of its family of cuts, and
if the check fails, derives cuts to disallow the current solution as well as other solutions that
violate these cuts.

Let 𝒮 be the feasible space of 𝒫′
LP. Each call to a separation algorithm derives an implicit

polyhedron 𝒮′ ⊆ 𝒮. Given a feasible solution vector x ∈ 𝒮, a separation algorithm attempts to
determine whether x ∈ 𝒮′, and if not, finds at least one of Constraints (2.10) and (2.11) that
removes x from 𝒮.

Example 2.12 (Traveling Salesman Problem). Consider a set 𝒩 = {1, … ,N } of nodes labeled
from 1 to N . Let 𝒜 = {(i, j) ∶ i, j ∈ 𝒩} be the complete set of arcs and associate a cost ci,j ∈ ℝ+
with every arc (i, j) ∈ 𝒜. The Traveling Salesman Problem (TSP) attempts to find a cycle of
minimal cost that visits every node exactly once. Let xi,j ∈ {0, 1} be a binary decision variable
indicating if arc (i, j) ∈ 𝒜 is included in the cycle, then the TSP can be formulated as

min ∑
(i,j)∈𝒜

ci,j xi,j

subject to ∑
j∶(i,j)∈𝒜

xi,j = 1 ∀i ∈ 𝒩, (2.12)

∑
h∶(h,i)∈𝒜

xh,i = 1 ∀i ∈ 𝒩, (2.13)

∑
i∈𝒮

∑
j∈𝒮

xi,j ≤ |𝒮| − 1 ∀𝒮 ⊆ 𝒩 ⧵ {1}, |𝒮| ≥ 2. (2.14)

Constraints (2.12) and (2.13) require an arc entering and leaving every node, which can include

2.3. Mixed Integer Programming 21

self-cycles. Constraint (2.14) is the subtour elimination constraints, which enforce exactly one
cycle through the arcs. The number of subtour elimination constraints is exponential in the
number of nodes. Hence, stating all these constraints initially is impractical. Instead, the branch-
and-cut model of the TSP starts as the Assignment Problem, i.e., only with Constraints (2.12)
and (2.13), and progressively adds a subset of Constraint (2.14) whenever a linear relaxation
solution violates some of these constraints. Constraint (2.14) is named the DFJ subtour elimin-
ation constraints after its authors Dantzig, Fulkerson and Johnson (1954). There are various
kinds of subtour elimination constraints, including some that are polynomial in the number of
nodes (e.g., Miller, Tucker and Zemlin 1960). Applegate et al. (2003) and Desrochers and Laporte
(1991) discuss these constraints in detail.

Implementing branch-and-cut models requires significant expertise. Proving the validity of
a family of cuts can require deep understanding of the problem and the shape of its feasible space.
Furthermore, developing efficient separation algorithms may require extensive experimentation
with a number of implementations, including heuristics, since some families of cuts can only be
separated in exponential time.

Despite these difficulties, branch-and-cut is highly effective for many classes of problems.
Today, all state-of-the-art commercial and open-source mixed integer programming solvers use
a branch-and-cut algorithm and internally implement many families of cuts in order to remain
competitive (e.g., Lodi 2010).

2.3.3 Branch-and-Price

Branch-and-price, invented by Dantzig and Wolfe (1960) and independently by Gilmore and
Gomory (1961, 1963), is an advanced variant of branch-and-bound. In contrast to branch-and-
cut, branch-and-price extends branch-and-bound with a loop that adds variables instead of
constraints. Since variables are implemented as columns in the linear relaxation, this loop is
known as column generation.

Unlike branch-and-cut, which can be executed on any mixed integer program, branch-and-
price can only be invoked on problems that have a form amenable to adding variables. Models
of this form are called column generation models. Unfortunately, many real-world problems are
difficult or even impossible to formulate as a column generation model. Nonetheless, vehicle
routing problems usually have formulations that can be transformed into column generation
form. Furthermore, many vehicle routing problems can be directly written in column generation
form without a reformulation (Desrosiers and Lübbecke 2010). Column generation models of
vehicle routing problems can be found in the guide by Feillet (2010).

The discussion below formalizes branch-and-price by reformulating a linear program into
column generation form and then proposing the column generationmodel as the linear relaxation
of a mixed integer program. Further details can be found in the works by Barnhart, Johnson et al.
(1998), Chung (2010), Desaulniers, Desrosiers and Solomon (2005), Desrosiers and Lübbecke
(2010), Lübbecke (2010) and Lübbecke and Desrosiers (2005).

Consider a mixed integer program 𝒫 = (x, z𝒫, [AC] , (b,d), c, I) with n variables and with

22 Chapter 2. Background

bounded feasible space, written in standard form as

min z𝒫 = c ⋅ x
subject to Ax ≥ b, (2.15)

Cx ≥ d, (2.16)

x ≥ 0, (2.17)

xj integer ∀j ∈ I . (2.18)

Constraint (2.15) is called the linking or complicating constraints. Constraint (2.16) is called the
structural constraints. The structural constraints typically defines a combinatorial substructure
that has a dedicated algorithm in the absence of the complicating constraints. The goal of
reformulating a model into column generation form is to separate the complicating constraints
and the structural constraints into two problems such that the problem containing only the
structural constraints can be solved with dedicated algorithms. This reformulation process is
called the Dantzig-Wolfe decomposition.

By the definition of 𝒫, the set S = {x ∈ ℝn+|Cx ≥ d, xj ∈ ℤ for all j ∈ I } ≠ ∅, the intersection
of Constraints (2.16) to (2.18), is bounded. Its convex hull conv(S) is a bounded polyhedron that
has a finite number k of extreme points {s1, … sk}. By well-known results from Minkowski and
Weyl, conv(S) can be written as a convex combination of its extreme points. That is, any point
x ∈ conv(S) can be expressed as

x =
k
∑
j=1

sjλj , (2.19)

where λj ≥ 0 and ∑k
j=1 λj = 1.

Incorporating these ideas into the problem 𝒫 and relaxing the integrality constraints on x
results in the column generation model 𝒞, defined as

min z𝒞 =
k
∑
j=1

cjλj

subject to
k
∑
j=1

ajλj ≥ b,

k
∑
j=1

λj = 1, (2.20)

λ ≥ 0,

where λ = (λ1, … , λk), cj = c ⋅ sj and aj = Asj for all j = 1, … , k. Constraint (2.20) is called the
convexity constraint, and the linear program 𝒞 is called the master problem.

Enumerating the extreme points of conv(S) is usually impossible in practice because k is
very large: perhaps exponential in the number of constraints. Instead, columns are iteratively
added to a related problem 𝒞′, called the restricted master problem, that initially contains a small
number of columns of 𝒞. Since not all variables are necessary to prove optimality, column
generation can be terminated prior to finding all k of the λ variables.

2.3. Mixed Integer Programming 23

New columns are found by solving a subproblem known as a pricing subproblem. Recall
from Section 2.2.1 that a linear program solution is optimal if all reduced costs are non-negative.
If the reduced cost of a variable is negative, incrementing the value of this variable from zero to
some positive value will change the objective value by the reduced cost per unit increment. The
pricing subproblem is itself an optimization problem that asks to find a variable with the most
negative reduced cost. Formally, the pricing subproblem attempts to find a vector

x∗ ∈ argmin
x∈conv(S)

{c ⋅ x − π ∗Ax|c ⋅ x − π ∗Ax < 0}. (2.21)

Observe that the objective function of the pricing problem is the reduced cost of a yet undeter-
mined column by comparing it to Equation (2.9) on page 11. The term c ⋅ x is the cost coefficient
of the upcoming column and is equivalent to a component of c⊤N in Equation (2.9). The vector π ∗

is the dual solution of 𝒞′ and is equivalent to y∗⊤ in Equation (2.9). The vector Ax is the column
coefficients of the upcoming variable and is equivalent to a column of N in Equation (2.9).

The λ variables of 𝒞 hide the structural constraints of 𝒫, a highly non-trivial set. Hence, the
set S must be carefully chosen to give the required reformulation. Usually, the λ variables are
crafted to represent alternative options. The restricted master problem selects an optimal subset
of the options and the pricing subproblem progressively finds better options. In contrast to
branch-and-cut, column generation can be viewed as working towards optimality from a suboptimal
starting point.

Branch-and-price models are mixed integer programs that use 𝒞 as its linear relaxation.
In branch-and-price, column generation is interleaved with branching. In practice, branching
usually occurs on the x variables of 𝒫 because it is difficult to prevent λ variables fixed to
0 by branching from being regenerated in a future round of column generation if the dual
values dictate that having these columns is beneficial. Recall that the x variables are readily
available within the pricing subproblem; hence, branching on the x variables simply translates
to removing incompatible λ variables from 𝒞′ and enforcing the branching constraint within
the pricing subproblem.

A major benefit of branch-and-price is that the column generation model has stronger
dual bounds than the linear relaxation of the original problem. The problem 𝒞 has feasible
space {x ∈ ℝn |Ax ≥ b} ∩ conv(S), which is the same as or smaller than the feasible space
{x ∈ ℝn |Ax ≥ b,Cx ≥ d} of the linear relaxation of 𝒫. For some problems, such as set cover
problems and vehicle routing problems, column generation models have significantly tighter
bounds.

Algorithm 2.3 summarizes the basic branch-and-price algorithm. Line 6 is the column
generation loop. Line 7 solves the linear relaxation 𝒮LP and also returns a solution π ∗

LP to the
dual of 𝒮LP. The PriceVariables function in Line 8 solves a pricing subproblem to find new
columns. The vector x∗ in Equation (2.21) represents a new column, which is added to the
restricted master problem via a λj variable with cost coefficient cj = c ⋅x∗ and matrix coefficients
aj = Ax∗. In practice, a large number of columns is found by the pricing subproblem in order
to hasten convergence by reducing the number of iterations of the column generation loop.
Hence, the PriceVariables function returns a set γ of columns, which includes an optimal

24 Chapter 2. Background

Algorithm 2.3: The basic branch-and-price algorithm.
Input: A restricted master problem 𝒞′ = (λ, z,A, b, c, I)
Output: An optimal solution λ∗ to 𝒞′ if one exists

1 z∗ ← ∞
2 O ← {𝒞′}
3 while O ≠ ∅
4 𝒮 ← SelectNode(O)
5 O ← O ⧵ {𝒮}
6 repeat /* column generation loop */
7 (λ∗LP, π ∗

LP, z∗LP) ←Solve(𝒮LP) /* solve linear relaxation */
8 γ ← PriceVariables(𝒮, π ∗

LP) /* find columns */
9 𝒮 ← 𝒮 ∪ γ /* add columns */

10 until γ = ∅
11 if z∗LP < z∗ then
12 if (λ∗LP)j ∈ 𝔹 for all j then
13 λ∗ ← λ∗LP
14 z∗ ← z∗LP
15 else
16 O ← O ∪ CreateChildren(𝒮)

17 if z∗ < ∞ then
18 return λ∗
19 else
20 report 𝒞′ is infeasible and terminate

column, rather than solely one optimal column. Line 9 adds the new columns γ to 𝒮. Column
generation proceeds until no new columns are found (Line 10).

2.3.4 Branch-and-Cut-and-Price

Branch-and-cut-and-price incorporates both column and cut generation. Recall that column
generation gradually reduces suboptimality, while cut generation reduces infeasibility. The
integration of both aspects enables branch-and-cut-and-price models to benefit from orthogonal
views of a problem.

Since branch-and-price operates on a transformed formulation rather than the original for-
mulation, families of cuts developed for branch-and-cut models cannot be directly implemented
in branch-and-cut-and-price. However, for some problems, such as vehicle routing problems,
cuts on the original formulation are easily adapted into cuts for the column generation reformu-
lation because the variables in the original formulation are available in the pricing subproblems
(Fukasawa et al. 2006). Hence, branch-and-cut-and-price for vehicle routing problems can utilize
all conventional cuts.

Furthermore, branch-and-cut-and-price models admit cuts over the variables of the column
generation model. For vehicle routing problems, some of these cuts, such as some variations of
clique cuts, are extremely strong, but are very difficult to separate because they interfere with
the pricing problem (e.g., Jepsen et al. 2008). The inclusion of cuts over the column generation
variables enables branch-and-cut-and-price models to break previous world records on many

2.4. Boolean Satisfiability 25

vehicle routing benchmarks (e.g., Pecin et al. 2014).
Poggi and Uchoa (2014) list several families of cuts applicable to branch-and-cut-and-price

models of vehicle routing problems.

2.4 Boolean Satisfiability

This section reviews Boolean satisfiability (SAT) problems, which are decision problems, not
optimization problems. Decision problems are optimization problems without an objective
function, or equivalently, a constant objective function.

Definition 2.25 (Decision Problem). A decision problem 𝒫 attempts to find a vector

x ∈ S,

where S = c1 ∩… ∩ cm ⊆ ℝn , called the feasible space, is the intersection of constraints c1, … , cm ⊆
ℝn , x = (x1, … , xn) ∈ S, and x1, … , xn are variables. Every x ∈ S is a feasible solution. If S = ∅,
the problem is described as infeasible or unsatisfiable.

Boolean satisfiability problems permit only binary variables and clauses as constraints. A
clause is a disjunction of variables and their negations. Conjunctions can be written as clauses by
using DeMorgan’s laws. Even though this class of problems is highly restricted, modern Boolean
satisfiability solvers can solve problems with up to millions of variables; therefore, enabling
many real-world problems to be formulated and solved as Boolean satisfiability problems by
rewriting them with binary indicator variables. The following discussion formalizes Boolean
satisfiability. Franco and Martin (2009) produced a comprehensive introduction to Boolean
satisfiability.

Definition 2.26 (Variable). A variable x is a name or symbol that represents a value.

Definition 2.27 (Domain). The domain Dx of a variable x is a subset of the Boolean domain
that represents the set of possible values that x can take, i.e., x ∈ Dx ⊆ 𝔹.

Definition 2.28 (Literal). A literal of a variable x is either x itself or its negation ¬x . The literal
¬x is a negated literal.

Definition 2.29 (Clause). A clause c is a disjunction of literals, i.e.,

l1 ∨ … ∨ lk ,

where l1, … , lk are literals.

Definition 2.30 (Boolean Satisfiability Problem). A Boolean satisfiability problem 𝒫 is a triple
𝒫 = (x,D,C), where x = (x1, … , xn) ∈ D, x1, … , xn are variables, D = D1 × … × Dn , Dj ⊆ 𝔹 is the
domain of xj for j = 1, … , n, and C = {c1, … , cm} is the set of clauses.

Example 2.13. Let x = (x1, x2, x3, x4), D = 𝔹4, C = {c1, c2, c3}, c1 ≡ ¬x1 ∨ ¬x2, c2 ≡ x2 ∨ ¬x3 ∨ x4
and c3 ≡ ¬x1 ∨ ¬x3 ∨ ¬x4. The triple 𝒫 = (x,D,C) is a Boolean satisfiability problem.

26 Chapter 2. Background

Definition 2.31 (Variable Assignment). For a Boolean satisfiability problem 𝒫 = (x,D,C) and
any j = 1, … , n, the variable xj is unassigned if |Dj | = 2 and is assigned if |Dj | = 1. If xj is assigned,
it is assigned true if Dj = {1} and assigned false if Dj = {0}.

Definition 2.32 (Literal Assignment). A literal x is assigned true (respectively false) if its
variable is assigned true (respectively false). A negated literal ¬x is assigned true (respectively
false) if its variable is assigned false (respectively true).

Definition 2.33 (Clause Satisfaction). A clause is satisfied if at least one of its literals is assigned
true. A clause is unsatisfied if all its literals are assigned false. A clause is unsatisfiable if no set
of assignments exists that make the clause satisfied.

Example 2.14. Consider the Boolean satisfiability problem in Example 2.13 but with D =
{0}2 × {1} × {0}. The clause c1 is satisfied because the literal ¬x1 (or equivalently ¬x2) is assigned
true. The clause c2 is unsatisfiable because all its literals are assigned false.

Definition 2.34 (Solution Space). Let 𝒫 = (x,D,C) be a Boolean satisfiability problem. For
a clause c ∈ C , let x−1 , … , x−k− be the variables corresponding to its negated literals, and let
x+1 , … , x+k+ be the variables of the remaining literals, then c represents the set

{x ∈ 𝔹n |x−1 = 0} ∪ … ∪ {x ∈ 𝔹n |x−k− = 0} ∪ {x ∈ 𝔹n |x+1 = 1} ∪ … ∪ {x ∈ 𝔹n |x+k+ = 1}.

The solution space of 𝒫 is the intersection of the variable domains and the clauses, i.e.,

S = D ∩ ⋂
c∈C

c.

Definition 2.35 (Solution). Given a Boolean satisfiability problem 𝒫 and its solution space S,
any vector x̂ ∈ S is a solution to 𝒫.

Example 2.15. The vector (0, 0, 0, 0) is a solution to 𝒫 in Example 2.13.

Definition 2.36 (Solving a Boolean Satisfiability Problem). Let 𝒫 = (x,D,C) be a Boolean
satisfiability problem with solution space S. Solving 𝒫 aims to either (1) find a solution x̂ ∈ S, or
(2) show that S = ∅, in which case 𝒫 is described as unsatisfiable or infeasible.

2.4.1 The Davis-Putnam-Logemann-Loveland Algorithm

Davis and Putnam (1960) conceived an algorithm for solving Boolean satisfiability problems. It
was later extended by Davis, Logemann and Loveland (1962). The resultant algorithm, termed
the Davis-Putnam-Logemann-Loveland (DPLL) algorithm, is the basis of all modern Boolean
satisfiability solvers.

The DPLL algorithm is a tree-search algorithm that resembles branch-and-bound but differs
in two main ways. First, it has no suboptimality checking step because Boolean satisfiability
problems are decision problems. Second, instead of solving each node using a linear relaxation
like in mixed integer programming, unit propagation is executed on each node. Unit propagation
is an algorithm that makes assignments by reasoning about clauses that are unit.

2.4. Boolean Satisfiability 27

Algorithm 2.4: The unit propagation procedure in the DPLL algorithm.
Input: A Boolean satisfiability problem 𝒫 = (x,D,C), where D = D1 × … × Dn
Output: Reduced domains D′ ⊆ D

1 D′ ← D /* copy current domains */
2 repeat
3 changed ← false /* mark as not changed */
4 for all c ∈ C such that c is unit
5 l ← unassigned literal of c
6 if l = ¬xj for some j then
7 D′

j ← {x ∈ D′
j |xj = 0} /* assign variable to false */

8 changed ← true /* mark as changed */
9 else
10 D′

j ← {x ∈ D′
j |xj = 1} /* assign variable to true */

11 changed ← true /* mark as changed */

12 until ¬changed
13 return D′

Definition 2.37 (Unit Clause). A clause is unit if all but one of its literals are assigned false
and the remaining literal is unassigned.

According to Definition 2.33, the unassigned literal of a unit clause must be assigned true
in order to satisfy the clause. Unit propagation loops through unit clauses and makes this
assignment. It is formally presented in Algorithm 2.4. Line 1 creates a copy of the initial
domains, which is gradually reduced during the loop in Line 2. Line 3 marks the domains as
unchanged since the previous iteration of the loop. Line 4 loops through all unit clauses. Line 5
retrieves the unassigned literal of the clause. If the literal is a negated literal (Line 6), then the
variable is assigned false to make the literal true (Line 7). Otherwise, the literal is simply a
variable (Line 9), so it is assigned true (Line 10). Lines 8 and 11 mark the domains as changed.
The loop is repeated until the domains do not change (Line 12). After the loop terminates, all
possible propagations have been completed and the problem reaches a state known as a fixed
point. Line 13 returns the reduced domains.

The DPLL algorithm is laid out in Algorithm 2.5. Line 5 calls the unit propagation procedure
from Algorithm 2.4. Line 6 replaces the domains of the subproblem with the new domains. If all
domains are singletons (Line 7), then the value of each variable can be read from the domains.
Line 8 returns these values. If the new domains are not empty, the algorithm branches (Lines 9
and 10). Otherwise, the node is discarded because the subproblem is infeasible.

The CreateChildren function selects an unassigned variable and branches to two children
nodes with the variable assigned to 0 in one node and to 1 in the other. Formally, given a
Boolean satisfiability problem 𝒫 = (x,D,C), it selects a variable xj such that |Dj | = 2 and returns
{𝒫0,𝒫1} where 𝒫0 = (x, {x ∈ D|xj = 0},C) and 𝒫1 = (x, {x ∈ D|xj = 1},C).

The DPLL algorithm terminates in Line 8 if a feasible solution is found. Otherwise, it
terminates in Line 11 because the problem is infeasible.

Practically every Boolean satisfiability solver uses the depth-first node selection rule in the
SelectNode function of Line 3. This rule always selects the deepest open node. Using this

28 Chapter 2. Background

Algorithm 2.5: The DPLL algorithm.
Input: A Boolean satisfiability problem 𝒫 = (x,D,C), where D = D1 × … × Dn
Output: A solution x∗ to 𝒫 if one exists

1 O ← {𝒫}
2 while O ≠ ∅
3 𝒮 ← SelectNode(O)
4 O ← O ⧵ {𝒮}
5 D𝒮 ← UnitPropagation(𝒮) /* call unit propagation */
6 𝒮 ← (x,D𝒮,C) /* replace domains */
7 if |D𝒮

j | = 1 for all j = 1, … , n then /* if all domains are singletons */
8 return x∗ where x∗ ∈ D𝒮 /* return solution */
9 else if D𝒮 ≠ ∅ then /* if all domains not empty */
10 O ← O ∪ CreateChildren(𝒮) /* branch */

11 report 𝒫 is infeasible and terminate

rule enables the entire search tree to be stored in a stack data structure, which allows for easy
implementations. Other node selection rules severely complicate the implementation of the
search tree and remain a difficult research question to this day.

Example 2.16. Figure 2.3 shows a search tree in the DPLL algorithm for the problem from Ex-
ample 2.13. No propagation occurs at the root level (node 1) and all variables remain unassigned.
The DPLL algorithm then selects the literal x1 and branches on it (node 2). Unit propagation
assigns ¬x2 for c1 to be satisfied. Next, the algorithm selects the literal x3 and branches on it
(node 3). Unit propagation assigns x4 in order to satisfy c2. The DPLL algorithm then detects
that c3 cannot be satisfied since all its literals are false. It backtracks, undoing the last decision
x3 and deciding ¬x3 (node 4). At this stage, all clauses are satisfied. The x4 variable is not yet
assigned but can simply be assigned to any value, say x4 = 0. The solution (1, 0, 0, 1) can then
be read from the singleton domains.

2.4.2 Conflict Analysis

Exploring a search tree naively can result in a subtree being explored repeatedly. This is
particularly inefficient if the subtree is infeasible. Marques Silva and Sakallah (1996) invented
what is now called conflict analysis or conflict-driven clause learning (CDCL) to prevent infeasible
subtrees from being explored more than once. Conflict analysis is widely adopted in competitive
Boolean satisfiability solvers of today (e.g., Eén and Sörensson 2004, Moskewicz et al. 2001).

Whenever the DPLL algorithm reaches an infeasible node, it performs conflict analysis,
which inspects the chain of propagations that lead to the infeasibility and then creates a clause,
called a nogood, that prevents the infeasibility from reoccurring. Any subtree that contains the
same propagations can be discarded because the nogood cannot be satisfied; hence, the same
infeasibility cannot reoccur anywhere in the search tree.

Every assignment made by unit propagation is recorded in a graph known as the implication
graph. To derive nogoods, conflict analysis begins with a tentative nogood and repeatedly
replaces literals in the nogood with literals previously added to the implication graph until it

2.4. Boolean Satisfiability 29

Node 1
x1 ∈ {0, 1}
x2 ∈ {0, 1}
x3 ∈ {0, 1}
x4 ∈ {0, 1}

Node 2
x1 ∈ {1}
x2 ∈ {0}
x3 ∈ {0, 1}
x4 ∈ {0, 1}

Node 3
x1 ∈ {1}
x2 ∈ {0}
x3 ∈ {1}
x4 ∈ {}

Node 4
x1 ∈ {1}
x2 ∈ {0}
x3 ∈ {0}
x4 ∈ {0, 1}

x1

x3 ¬x3

Figure 2.3: Example of a search tree in the DPLL algorithm.

fulfils a stopping criterion specified by the type of nogood implemented. The final nogood is
then added to the problem clauses and is henceforth treated as a regular clause (although it may
be removed if excessively many nogoods are found). Conflict analysis is formalized as follows.

Definition 2.38 (Nogood). A nogood is a clause that is not explicitly stated in a model but is
implied by the problem clauses.

Definition 2.39 (Reason for Propagation). A reason for a propagation is a logical relation of
the form l1 ∧ … ∧ lk → lk+1, where l1, … , lk+1 are literals.

Definition 2.40 (Reason for Infeasibility). A reason for an infeasibility is a logical relation of
the form l1 ∧ … ∧ lk → false, where l1, … , lk are literals.

A reason explains a propagation or an infeasibility in terms of the assignments that lead to
the propagation or infeasibility. Reasons can be stated as clauses and vice versa since

(l1 ∧ … ∧ lk → lk+1) ≡ (¬l1 ∨ … ∨ ¬lk ∨ lk+1)

and

(l1 ∧ … ∧ lk → false) ≡ (¬l1 ∨ … ∨ ¬lk ∨ false) ≡ (¬l1 ∨ … ∨ ¬lk).

Definition 2.41 (Implication Graph). Let 𝒫 = (x,D,C) be a Boolean satisfiability problem
where x = (x1, … , xn). An implication graph G = (V , E) is an acyclic directed graph with one
vertex for every literal, i.e., V = {x1, … , xn , ¬x1, … , ¬xn} and no initial edges (i.e., E = ∅). The
edges E is populated by the DPLL algorithm. Associated with every edge e ∈ E is a label
de ∈ {0, 1, 2, …}.

30 Chapter 2. Background

Without loss of generality, assume that unit propagation is considering the clause

l1 ∨ … ∨ lk ∨ lk+1,

where l1, … , lk are previously assigned false and lk+1 is unassigned. Unit propagation will assign
lk+1 with the reason

¬l1 ∧ … ∧ ¬lk → lk+1.

This reason is stored in the implication graph by adding edges from every literal on the left-hand
side of the clause to the literal on the right-hand side, i.e., the edges

(¬l1, lk+1), … , (¬lk , lk+1).

For each e ∈ {(¬l1, lk+1), … , (¬lk , lk+1)}, the current depth of the search tree is stored in de .
A conflict occurs whenever all literals in a clause are assigned false. Consider the clause

l1 ∨ … ∨ lk

where all l1, … , lk are assigned false. Unit propagation fails with the reason

¬l1 ∧ … ∧ ¬lk → false.

This reason serves as the initial nogood. Conflict analysis walks the implication graph and
repeatedly replaces each literal l on the left-hand side with the conjunction of all literals that
lead to l in the implication graph, i.e., the conjunction of all l′ such that (l′, l) ∈ E. This occurs
until a stopping criterion is met. The stopping criterion is specified by the type of nogood
implemented. Once conflict analysis is terminated, the final reason

̄l1 ∧ … ∧ ̄lk → false

is rewritten as the clause

¬ ̄l1 ∨ … ∨ ¬ ̄lk ,

which is then added to the problem clauses C . After adding this clause, the DPLL algorithm
backtracks, selects the next node at some depth d and then removes all e ∈ E with de > d .

Because conflict analysis replaces each literal l in the reason with a conjunction of literals
that lead to l being assigned, the incoming literals are all assigned either at the current node of
the search tree or at an ancestor node. Since conflict analysis uses information in ancestors to
derive nogoods, it is naturally most effective when coupled with a depth-first node selection rule.

The first unique implication point (1UIP) type of nogood is commonly used as it is known to
be efficient (Zhang et al. 2001). To derive 1UIP nogoods, conflict analysis continues replacing
the literals on the left-hand side until exactly one literal is propagated at the current depth of
the search tree.

Example 2.17. Figure 2.4 shows the implication graph corresponding to the search tree in
Example 2.16 and Figure 2.3. No propagation occurs at the root level. After branching on x1,

2.5. Constraint Programming 31

Depth 0

Depth 1

Depth 2

x1 ¬x2

x3 x4 false

Figure 2.4: Example of an implication graph. All irrelevant nodes are omitted.

unit propagation assigns ¬x2 with the reason x1 → ¬x2. Next, the algorithm branches on x3. At
the second level, x4 is propagated with the reason ¬x2 ∧ x3 → x4. The algorithm then identifies
that the clause ¬x1 ∨ ¬x3 ∨ ¬x4 cannot be satisfied since all its literals are false. Conflict analysis
starts with the tentative nogood

x1 ∧ x3 ∧ x4 → false,

and, according to the 1UIP stopping criterion, replaces each literal ordered from the deepest to
shallowest depth until exactly one literal is propagated at the current depth. It replaces x4 with
the left-hand side of its reason, resulting in the nogood

x1 ∧ x3 ∧ (¬x2 ∧ x3) → false.

The literal x3 is duplicated, and hence, is removed, resulting in

x1 ∧ x3 ∧ ¬x2 → false.

Of all the literals in the nogood, only x3 is propagated at the current level. Hence, the nogood is
a valid 1UIP nogood and conflict analysis stops. The reason is rewritten as the clause

¬x1 ∨ ¬x3 ∨ x2,

which is then added to C .

2.5 Constraint Programming

Constraint programming (CP) was developed by the artificial intelligence community in the
late 1980s by Jaffar and Lassez (1987), Jaffar, Michaylov et al. (1992) and Van Hentenryck (1989).
Today, it successfully solves many decision problems and optimization problems. Optimization
problems can be solved using constraint programming by formulating them as constraint
optimization problems. This section directly reviews constraint optimization problems without
considering their underlying constraint satisfaction problems.

32 Chapter 2. Background

Constraint programming admits general variables unlike linear programming, mixed integer
programming and Boolean satisfiability. Examples of variables include set-value variables and
graph-valued variables. Many constraint programming solvers limit the variables to take on finite
integer values. As such, this thesis makes the same assumption. Constraint programming also
allows general constraints, which can be stated using a declarative language like in mixed integer
programming and Boolean satisfiability but are individually implemented and enforced using
an algorithm called a propagator. The following definitions formalize constraint optimization
problems with a focus on minimization. Detailed introductions to constraint programming can
be found in the works by Michel and Van Hentenryck (2010) and Rossi, Van Beek and Walsh
(2006).

Definition 2.42 (Variable). A variable x is a name or symbol that represents a value.

Definition 2.43 (Domain). The domain Dx of a variable x is a finite subset of the integers that
represents the set of possible values that x can take, i.e., x ∈ Dx ⊂ ℤ.

Definition 2.44 (Constraint). A constraint c over a vector x = (x1, … , xn) of variables is a subset
of ℤn , i.e., c ⊆ ℤn .

Definition 2.45 (Constraint Optimization Problem). A (minimization) constraint optimization
problem 𝒫 is a tuple 𝒫 = (x,D,C , f), where x = (x1, … , xn) ∈ D, x1, … , xn are variables,
D = D1 × … × Dn , Dj ⊂ ℤ is the domain of xj for j = 1, … , n, C = {c1, … , cm} is the set of
constraints over x, and f ∈ {1, … , n} is the index of the variable xf that represents the objective
value.

Example 2.18. Given x = (x1, x2), D = [0, 10] × [0, 10], C = {c1, c2}, c1 = {(x1, x2) ∈ D|x1 ≥ x2},
c2 = {(x1, x2) ∈ D|x2 = 8} and f = 1, then the tuple 𝒫 = (x,D,C , f) is a constraint optimization
problem. For brevity, c1 can be written as x1 ≥ x2 and c2 as x2 = 8.

Definition 2.46 (Variable Assignment). Let 𝒫 = (x,D,C , f) be a constraint optimization prob-
lem. For any j = 1, … , n, the variable xj is unassigned if |Dj | ≥ 2 and is assigned if |Dj | = 1.

Definition 2.47 (Solution Space). The set intersection S = D ∩ ⋂c∈C c is the solution space of
the constraint optimization problem 𝒫 = (x,D,C , f).

Definition 2.48 (Solution). Given a constraint optimization problem 𝒫 = (x,D,C , f) and its
solution space S, any vector x̂ ∈ S is a solution to 𝒫 and has objective value x̂ f .

Example 2.19. The set {(8, 8), (9, 8), (10, 8)} is the solution space of 𝒫 from Example 2.18, and
(8, 8) is a solution with objective value 8.

Definition 2.49 (Solving a Constraint Optimization Problem). Let 𝒫 = (x,D,C , f) be a con-
straint optimization problem with solution space S. Solving 𝒫 aims to either (1) find a solution

x∗ ∈ argmin
x∈S

xf ,

in which case x∗ and x∗f are respectively called an optimal solution and the optimal value, or (2)
show that S = ∅, in which case 𝒫 is described as unsatisfiable or infeasible.

2.5. Constraint Programming 33

Algorithm 2.6: The constraint programming propagation engine.
Input: A constraint optimization problem 𝒫 = (x,D,C , f) and a propagator pc for each

constraint c ∈ C
Output: Reduced domains D′ ⊆ D

1 D′ ← D /* copy current domains */
2 repeat
3 changed ← false /* mark as not changed */
4 for c ∈ C
5 D″ ← pc(D′) /* propagate constraint */
6 if D″ ≠ D′ then
7 D′ ← D″ /* store new domains */
8 changed ← true /* mark as changed */

9 until ¬changed
10 return D′

2.5.1 Branch-and-Prune

Constraint optimization problems are solved using a branch-and-prune algorithm similar to the
branch-and-bound algorithms of mixed integer programming (e.g., Michel and Van Hentenryck
2010, Milano 2010). The main difference is that each node of the search tree is solved using
propagation instead of via a linear relaxation.

Definition 2.50 (Propagator). Let c be a constraint over some variables x ∈ D. A propagator
p ∶ D → D of c is a monotonically non-increasing function from domains to domains, i.e.,
p(D″) ⊆ p(D′) whenever D″ ⊆ D′ ⊆ D.

Example 2.20. Consider the constraint c1 from Example 2.18. One possible propagator for c1 is
the function p(D1,D2) = ([min(D2),max(D1)] × [min(D2),max(D1)]) ∩ ([min(D1),max(D1)] ×
[min(D2),max(D2)]).

Algorithm 2.6 outlines the main propagation loop, which resembles the unit propagation
subroutine in the DPLL algorithm for solving Boolean satisfiability problems. Line 4 loops
through every constraint. Line 5 calls the propagator of a constraint. If the domains have
changed (Line 6), then the domains are stored (Line 7). Line 8 marks the domains as changed so
that another iteration of propagation occurs. When the procedure exits, the solver is in a state
known as a fixed point.

Algorithm 2.7 presents the constraint programming branch-and-prune algorithm. It differs
from branch-and-bound for mixed integer programs between Lines 6 and 14. The Propagate
function in Line 6 runs Algorithm 2.6 to propagate the constraints and returns the domains after
propagation. Line 7 replaces the domains of 𝒮 with the reduced domains D𝒮. Line 8 discards
suboptimal nodes, i.e., if the minimum of the domain of the objective variable is greater or
equal to the objective value of the incumbent solution. If all domains are singletons (Line 9), the
solution (Line 10) and objective value (Line 11) are extracted from the domains.

Line 12 decreases the upper bound of the variable denoting the objective value in all open
nodes. The SetNewUpperBound function takes a set of open nodes O and a new upper bound
z∗ then sets the domain Df of xf to Df ∩ [min(Df), z∗ − 1] for every 𝒫 = (x,D,C , f) ∈ O.

34 Chapter 2. Background

Algorithm 2.7: The basic branch-and-prune algorithm for constraint optimization problems.
Input: A constraint optimization problem 𝒫 = (x,D,C , f), where D = D1 × … × Dn
Output: An optimal solution x∗ to 𝒫 if one exists

1 z∗ ← ∞
2 O ← {𝒫}
3 while O ≠ ∅
4 𝒮 ← SelectNode(O)
5 O ← O ⧵ {𝒮}
6 D𝒮 ←Propagate(𝒮) /* propagate constraints */
7 𝒮 ← (x,D𝒮,C , f) /* replace domains */
8 if |D𝒮

f | > 0 and min(D𝒮
f) < z∗ then /* if not suboptimal */

9 if |D𝒮
j | = 1 for all j = 1, … , n then /* if all domains are singletons */

10 x∗ ← x̂ where x̂ ∈ D𝒮 /* store solution */
11 z∗ ← x ∗f /* store objective value */
12 O ← SetNewUpperBound(O, z∗) /* set new upper bound in all open

nodes */
13 else if D𝒮 ≠ ∅ then /* if all domains not empty */
14 O ← O ∪ CreateChildren(𝒮) /* branch */

15 if z∗ < ∞ then
16 return x∗
17 else
18 report 𝒫 is infeasible and terminate

Line 14 creates new children nodes by branching. Branching in constraint programming
differs from branching in mixed integer programming because variables in constraint pro-
gramming do not have a value until their domains are singletons. Branching in constraint
programming partitions the domain of a variable and enforces one of the partitions in each
of the children nodes. Formally, given a constraint optimization problem 𝒫 = (x,D,C , f), the
CreateChildren function

1. finds a variable xj such that |Dj | ≥ 2,
2. finds k partitions of Dj , i.e., finds D1

j , … ,Dk
j such that Dj = D1

j ∪…∪Dk
j and Dk1

j ∩Dk2
j = ∅

for all k1, k2 = 1, … , k, where k1 ≠ k2, and
3. creates k children nodes with constraint optimization problems 𝒫1 = (x, {x ∈ D|xj ∈

D1
j },C , f), …, 𝒫k = (x, {x ∈ D|xj ∈ Dk

j },C , f).

2.5.2 Conflict Analysis

Conflict analysis can also be implemented within a constraint programming solver (e.g., Feydy
and Stuckey 2009, Jussien and Lhomme 2002, Ohrimenko, Stuckey and Codish 2009). It operates
in a similar fashion to Boolean satisfiability. In fact, conflict analysis in constraint programming
frequently relies on an underlying Boolean satisfiability solver (e.g., Feydy and Stuckey 2009).
Propagators return reasons for domain changes rather than making the changes directly. The
reasons are sent to the Boolean satisfiability solver, which tracks the domain changes using
binary indicator variables.

Let 𝒫 = (x,D,C , f) be a constraint optimization problem where x = (x1, … , xn) and D =

2.6. Hybridization Techniques 35

D1 × …Dn . For every possible value v ∈ Dj of every variable xj , the underlying Boolean
satisfiability solver is augmented with two indicator variables named Jxj = vK and Jxj ≤ vK and
two clauses linking the indicator variables. The variable Jxj = vK indicates whether Dj = {v},
and Jxj ≤ vK indicates whether v′ ≤ v for all v′ ∈ Dj . For brevity, writing Jxj ≠ vK, Jxj < vK,
Jxj > vK and Jxj ≥ vK respectively refers to the literals ¬Jxj = vK, Jxj ≤ v − 1K, ¬Jxj ≤ vK and
¬Jxj ≤ v − 1K. The two indicator variables Jxj = vK and Jxj ≤ vK are linked with the clauses

Jxj = iK → Jxj ≤ iK

and

Jxj ≤ i − 1K → Jxj ≤ iK.

Using this framework, nogoods can be naturally translated into domain changes in the constraint
programming model and vice versa. Hence, constraint programming solvers implementing
conflict analysis are themselves hybrid solvers.

Constraint programming solvers that implement conflict analysis are highly effective and are
consistently ranked amongst the fastest solvers today (Stuckey et al. 2014). These solvers have
successfully closed many problems, and in particular, many challenging scheduling problems
(Schutt et al. 2010).

2.6 Hybridization Techniques

This section discusses several methods for hybridizing mixed integer programming and con-
straint programming. It begins with a review of global optimization constraints, followed by
constraint-based Lagrangian relaxation, constraint-based column generation, and finally, logic-
based Benders decomposition and branch-and-check. Readers interested in a comprehensive
appraisal of hybridization techniques can refer to the survey by Hooker and van Hoeve (2018)
and book by Van Hentenryck and Milano (2011).

2.6.1 Global Optimization Constraints

Without loss of generality, consider a minimization constraint program 𝒫 = (x,C ,D, f) with
feasible space S𝒫. Assume that 𝒫 has an objective function f𝒫 that calculates the objective
variable xf , i.e., xf = f𝒫(x). The smallest value of the domain Df of variable xf is the current
lower bound. This lower bound is used to prune suboptimal subtrees in Line 8 of Algorithm 2.7.
Hence, having tight bounds greatly reduces the size of the search tree. Unfortunately, the
link between xf and the other variables is generally weak; perhaps only after assigning many
variables will the minimum of the objective variable increase.

Focacci, Lodi and Milano (1999, 2000, 2002, 2004) remedied this deficiency by including a
global constraint, called a global optimization constraint, in 𝒫 that contains a relaxation ℛ of
𝒫. The relaxation ℛ aims to propagate a tighter lower bound than the existing constraints of
𝒫. Furthermore, some relaxations, such as linear relaxations, provide reduced costs, which are
used to remove values from domains.

36 Chapter 2. Background

Let fℛ be the objective function and Sℛ be the feasible space of ℛ. Recall that S𝒫 ⊆ Sℛ
and fℛ(x) ≤ f𝒫(x) for every x ∈ S𝒫. Hence, the optimal value z∗ℛ of ℛ is a lower bound to
xf . The relaxation ℛ is wrapped within a global constraint r and included in 𝒫. Whenever the
constraint programming propagation engine calls the propagator of r , it solves ℛ to compute
the optimal value z∗ℛ and then tightens the domain with, e.g., Df ← Df ∩ [z∗ℛ,max(Df)].

In some relaxations, reduced costs can also be used to remove certain values from the
domains. Assume that 𝒫 has a variable x with domain Dx = {a, … , b}. Also assume that ℛ is a
linear relaxation with variables ya , … , yb ∈ {0, 1} and the constraint ∑b

j=a yj = 1, which together
are used as a one-to-one mapping to the values in Dx , i.e.,

x = k ↔ yk = 1.

Solvingℛ produces an objective value z∗ℛ and reduced costs ̄ya , … , ̄yb . For j = a, … , b, whenever
z∗ℛ + ̄y j ≥ z∗, then j can be removed from Dx since setting x = j would result in the objective
value being worse than that of the incumbent solution z∗.

2.6.2 Constraint-based Lagrangian Relaxation

The mathematical programming community developed Lagrangian relaxation to compute
stronger objective bounds. Its central idea is to relax a problem by moving difficult constraints
into the objective function and weighting them with a penalty whenever they are violated. The
relaxed problem, called a Lagrangian relaxation, minimizes the original objective function in
conjunction with the penalties. A byproduct of moving constraints into the objective function
is that coupling constraints can sometimes be removed, resulting in multiple independent
subproblems. These can be solved using any appropriate technology, and hence, Lagrangian
relaxation can be used for hybridization even though it is originally built for a different purpose.

Fontaine, Michel and Van Hentenryck (2014) generalized Lagrangian relaxation to constraint
programming in constraint-based Lagrangian relaxation. The following discussion summarizes
constraint-based Lagrangian relaxation with a focus on hybridization. The derivation for the
general case is available in the original work. Bergman, Cire and van Hoeve (2015) and Sellmann
(2004) developed alternative ideas on constraint-based Lagrangian relaxation.

Consider the general problem 𝒫

min
x∈Dx,y∈Dy

{f (x,y)|x ∈ c1,y ∈ c2, (x,y) ∈ c3},

where x ∈ Dx and y ∈ Dy are the variables, Dx and Dy respectively are the domains of x and y,
and c1, c2, c3 ⊆ Dx × Dy are constraints. The satisfiability degree σ ∶ Dx × Dy → ℝ is a function
such that

σ(x,y) ≤ 0 ↔ (x,y) ∈ c3.

The satisfiability degree σ(x,y) measures the violation of constraint c3 in a vector (x,y) and is
non-positive whenever c3 is satisfied. For any constant λ ∈ ℝ+, called the Lagrangian multiplier,

2.6. Hybridization Techniques 37

the generalized Lagrangian relaxation ℒ(λ) is defined as

min
x∈Dx,y∈Dy

{f (x,y) + λσ(x,y)|x ∈ c1,y ∈ c2}.

The additional term λσ(x,y) in the objective function penalizes the infeasibility of c3. Whenever
c3 is satisfied, λσ(x,y) ≤ 0 because λ ≥ 0 and σ(x,y) ≤ 0 for all (x,y) ∈ c3.

Let S𝒫 = c1∩c2∩c3 and Sℒ(λ) = c1∩c2 be the feasible space of𝒫 andℒ(λ) respectively, and let
z∗𝒫 and z∗ℒ(λ) be the optimal value of 𝒫 and ℒ(λ). Obviously, S𝒫 ⊆ Sℒ(λ) and f (x,y)+λσ(x,y) ≤
f (x,y) for all (x,y) ∈ S𝒫. Therefore, ℒ(λ) is a relaxation of 𝒫 by Definition 2.4. As such,
z∗ℒ(λ) ≤ z∗𝒫 for any λ ≥ 0. The tightest possible bound is found by maximizing ℒ(λ) over λ, i.e.,

max
λ∈ℝ+

min
x∈Dx,y∈Dy

{f (x,y) + λσ(x,y)|x ∈ c1,y ∈ c2}.

This problem is called the generalized Lagrangian dual. Now, assume that f (x,y) + λσ(x,y) can
be expressed as a sum of functions of x and functions of y, i.e.,

f (x,y) + λσ(x,y) = g1(x, λ) + g2(y, λ).

Then, the generalized Lagrangian dual can be stated as

max
λ∈ℝ+

{ min
x∈Dx

{g1(x, λ)|x ∈ c1} + min
y∈Dy

{g2(y, λ)|y ∈ c2}}.

The two inner optimization problems can be solved using different technologies, e.g., one with
mixed integer programming and the other with constraint programming.

Lagrangian duals are usually solved using a subgradient method, which moves towards an
optimal solution in the (x,y, λ)-space. A subgradient algorithm begins with an initial value for
λ, solves the two inner optimization problems with this fixed value of λ and then uses the inner
solutions to calculate the next value of λ. This repeats until it reaches a local extremum. For
convex optimization problems, local extrema are global extrema.

2.6.3 Constraint-based Column Generation

Junker et al. (1999) introduced constraint-based column generation. This framework hybridizes
mixed integer programming and constraint programming in column generation models. It solves
the restricted master problem using mixed integer programming and the pricing subproblem
using constraint programming.

Recall that the pricing subproblem attempts to find the vector x∗ in the minimization problem
of Equation (2.21). This vector can be found using any method provided that it satisfies several
criteria; namely, it has negative reduced cost and is a valid point in the original formulation.
Pricing algorithms are commonly based on dynamic programming as these algorithms can be
specialized to specific problems, making them highly efficient. Of course, pricing subproblems
can also be solved using constraint programming.

However, constraint programming is not ideal for solving pricing subproblems because the
solvers generally perform depth-first search. In depth-first search, successive columns are quite

38 Chapter 2. Background

similar; the matrix coefficients of one column to the next may only swap one value. Due to the
nature of the master problem, which selects a subset from a diverse set of columns, having too
many similar columns forces more rounds of column generation prior to convergence. Feillet,
Gendreau and Rousseau (2007) mitigated this issue with advanced search heuristics.

Interested readers can consult the survey by Gualandi and Malucelli (2013) or the book
chapter by Castro, Grossmann and Rousseau (2011) for further details.

2.6.4 Logic-based Benders Decomposition and Branch-and-Check

Benders (1962) developed a decomposition technique now called Benders decomposition. Its key
idea is to divide a problem into a master problem and a subproblem if fixing the value of some
difficult variables simplifies the problem. The master problem retains only the difficult variables
and the subproblem contains the remaining variables. Benders decomposition begins by solving
the master problem to optimality, which results in a candidate solution for the difficult variables.
Next, it fixes the value of these variables in the subproblem according to the candidate solution
and then solves the subproblem. The subproblem is easier to solve because the difficult variables
are fixed. If the candidate solution is suboptimal or infeasible in the subproblem, a cut removing
the current candidate solution is added to the master problem. The master problem is then
reoptimized to compute a new candidate solution. Benders decomposition iterates between the
master problem and the subproblem until the candidate solution is optimal.

Since Benders decomposition adds cuts to the master problem to discard candidate solutions,
it is, in a way, related to branch-and-cut. The key difference between Benders decomposition
and branch-and-cut is that the Benders subproblem encompasses an entire optimization problem
with its own constraints and variables, whereas the separation subproblem in branch-and-cut
only checks specific aspects of the problem (i.e., one family of cuts).

The master problem in Benders decomposition is a mixed integer program and the subprob-
lems are linear programs. Hooker (1994) defined the inference dual of a problem, and using this
dual, generalized Benders decomposition to logic-based Benders decomposition. Logic-based
Benders decomposition can be used for hybridization by implementing the master problem using
mixed integer programming and the subproblem using constraint programming, for example.

Thorsteinsson (2001) proposed the branch-and-check framework. Branch-and-check is today
recognized to be essentially the same as logic-based Benders decomposition even though it is
originally developed from a different perspective. The subproblem in Benders decomposition is
traditionally solved only after the master problem is optimized. Branch-and-check is developed
specifically with the intention that the subproblem is solved throughout the search tree. However,
the classical and logic-based Benders decomposition frameworks do not necessarily stipulate
that the subproblem must be solved only after the master problem is optimized. Due to this,
the terminology is somewhat blurred in recent literature; this dissertation takes the traditional
view and focuses on branch-and-check.

A crucial disadvantage of adding cuts after the master problem is optimized is that the search
may return a superoptimal solution that is infeasible for the original problem because the master
problem lacks knowledge about the constraints in the subproblem. Another disadvantage is that

2.6. Hybridization Techniques 39

the entire search tree is restarted after adding a cut, and hence, suboptimal and infeasible subtrees
are explored again. Branch-and-check avoids these two issues by solving the subproblem
throughout the search tree, and hence, infeasible and suboptimal subtrees are only explored once.
Even though the subproblem can be solved throughout the search tree, it is not necessarily solved
at every node. The frequency of solving the subproblem is controlled by the implementation
and should balance the difficulty of the master problem and the subproblem against the strength
of the cuts. Since branch-and-check adds cuts into the master problem during search, it is
essentially a branch-and-cut method that uses Benders subproblems for cut separation.

A minor disadvantage of branch-and-check is that cuts excluding suboptimal solutions
unnecessarily accumulate during the search. The impact of an excessive number of cuts is not
specifically studied in the literature but is not believed to be significant due to the efficiency of
modern mixed integer programming solvers. Of course these cuts can be periodically removed
during the search.

Branch-and-check is summarized as follows. A thorough treatment can be found in the
work by Beck (2010). Branch-and-check decomposes a problem 𝒫 of the form

min
x∈Dx,y∈Dy

{f1(x) + f2(x,y)|c1(x), c2(x,y)},

where x and y are the variables, (Dx,Dy) is the initial domains and c1 and c2 are constraints.
The constraints c2 link x and y. The master problem ℳ is a relaxation of 𝒫, defined as

min
x∈Dx,z∈ℝ

{f1(x) + z|c1(x), c′2(x), f
′
2 (x) ≤ z},

where c′2(x) and f ′2 (x) respectively are relaxations of c2(x,y) and f2(y) based only on x. Now,
assume that f1, c1 and c′2 are linear. In this case, branch-and-check solves the linear relaxation
of ℳ in every node of the search tree. This results in a candidate solution x̂, which is fed to the
subproblem 𝒮. Given x̂, the subproblem 𝒮 solves

min
y∈Dy

{f2(x̂,y)|c2(x̂,y)}.

If the subproblem finds that x̂ is suboptimal with regards to y, then the constraint

αx̂(x) ≤ z

is added to the master problem, where αx̂(x) is a function of x. This constraint prohibits the
candidate solution x̂ by enforcing a lower bound that is higher than its objective value. If the
subproblem finds that x̂ is infeasible in consideration of y, a constraint

βx̂(x)

is added to the master problem that removes x̂. In both cases, the new constraint forces the
master problem to find another candidate solution.

40 Chapter 2. Background

2.7 Vehicle Routing Problems

Vehicle routing problems model a fleet of vehicles that visit various locations to perform their
duties. The task is to find least-cost routes that adhere to various restrictions on the routes
and on the vehicles. The family of vehicle routing problems is extensive and this section only
summarizes four basic problems. Interested readers seeking an extensive introduction to vehicle
routing problems can consult the book by Vigo and Toth (2014).

The Capacitated Vehicle Routing Problem The Capacitated Vehicle Routing Problem
(CVRP) is a basic problem that requires vehicles to depart a central depot to pick up goods and
then deliver them to the same depot at the end of their routes. Each pickup, called a request, is
associated with a weight, called its load. All vehicles are identical, and each vehicle can carry
requests up to a maximum total weight, called the vehicle capacity. Since the vehicle capacity
and the load of each request are fixed, the number of vehicles necessary to pick up all requests
can be calculated exactly by solving a bin-packing problem. The goal of the CVRP is to find
routes for these vehicles that pick up all requests while minimizing the total travel distance.

The Vehicle Routing Problem with Time Windows The Vehicle Routing Problem with
Time Windows (VRPTW) extends the CVRP with time constraints. Every request is associated
with a time frame, called its time window, within which the request must be picked up. Vehicles
can arrive at the location of a request prior to the opening of its time window but must wait
until its time window opens before commencing service. Due to the time windows, the number
of vehicles necessary to pick up all requests cannot be calculated beforehand in the VRPTW,
unlike the CVRP. Hence, the VRPTW contains an additional source of variability in that the
number of vehicles must also be determined. In particular, this can complicate models that have
vehicle symmetries. The number of vehicles may or may not be limited in the VRPTW, but each
vehicle can perform at most one route, i.e., it must depart and return to the central depot at
most once. Some variants of the VRPTW first minimize the number of vehicles required to pick
up all requests and then minimize the total travel distance.

The Pickup and Delivery Problem The Pickup and Delivery Problem (PDP), also called
the Vehicle Routing Problem with Pickup and Delivery (VRPPD), is an extension of the CVRP.
The problem consists of a number of pickup-delivery pairs instead of single pickup requests.
Each pair is associated with both a pickup request and a delivery request. Every pickup must
be brought to its destination during a route instead of the central depot at the end of a route.
The load of a vehicle cannot exceed its capacity at any time along its route; although making a
delivery will reduce its load and free up the capacity to pick up other requests. Since all pickups
must be delivered, all vehicles return empty to the central depot.

The Pickup and Delivery Problem with Time Windows The Pickup and Delivery Prob-
lem with Time Windows (PDPTW), also known as the Vehicle Routing Problem with Pickup
and Delivery and Time Windows (VRPPDTW), extends the PDP in the same manner that the

2.8. Models of Vehicle Routing Problems 41

VRPTW extends the CVRP. Every pickup request and every delivery request retains its load but
additionally has a time window within which the request must be serviced.

Solomon (1987) published a set of problem instances for the VRPTW. Over the years, these
instances have become the standard benchmarks for the VRPTW: practically all VRPTW models
are evaluated against each other using the Solomon problems. The instances consist of 25, 50
and 100 requests with varying difficulty. The instances are grouped into three classes. The R
class instances have requests that are randomly located, whereas the C class instances have
requests clustered together. The RC instances have a mixture of both randomly located requests
and clustered requests.

Benchmark problems also exist for the CVRP, PDP and PDPTW but these are not relevant
to this thesis.

2.8 Models of Vehicle Routing Problems

This section summarizes several influential mixed integer programming and constraint pro-
gramming models of the basic vehicle routing problems.

2.8.1 Mixed Integer Programming Models

Vehicle routing problems are historically modeled using mixed integer programming. Basic
formulations are based on a three-index model (e.g., Desaulniers, Madsen and Røpke 2014). The
main decision variables in this model are binary variables that indicate if a particular vehicle
traverses an arc. The model is named after the number of components in the indices of the
main decision variables, which are a vehicle and the head and tail of an arc. In the three-index
model, the time windows, vehicle load and other logical constraints are captured using big-M
constraints, which are linearizations of logical constraints. The big-M rewritings weaken the
linear relaxation and inhibits three-index models from scaling to larger instances. Furthermore,
since the decision variables are indexed by vehicle, the model exhibits vehicle symmetry, which
significantly hinders its performance. A benefit of the model, however, is that all the constraints
and variables are stated in the model, and hence, the model can be input directly into a mixed
integer programming solver.

The vehicle symmetries and the big-M linearizations are eliminated in branch-and-cut
approaches. Branch-and-cut models of vehicle routing problem use a two-index model, which
generalizes the standard formulation of the Traveling Salesman Problem (TSP) seen in Ex-
ample 2.12. The primary decision variables in this model are indexed by only the arcs; hence
the name two-index model. The vehicles are unnumbered, and therefore, vehicle symmetries do
not exist. Furthermore, the load and time constraints are hidden behind separation algorithms.
Instead of stating all the load and time constraints, as in the three-index model, the two-index
branch-and-cut model calls separation subproblems to check the feasibility of the load and time
constraints. Load-infeasible or time-infeasible partial paths are prevented using cuts that forbid

42 Chapter 2. Background

combinations of arcs (e.g., Kallehauge, Boland and Madsen 2007). The linear relaxation itself
has no knowledge of the time and load constraints.

Bard, Kontoravdis and Yu (2002) developed a branch-and-cut model of the VRPTW that
inherits the capacity cuts from branch-and-cut models of the CVRP. Capacity cuts generalize the
subtour elimination cuts of the TSP to consider vehicle capacity. Hence, they serve the purpose
of excluding both subtours and partial paths that exceed the vehicle capacity. This model also
implements infeasible path cuts to exclude partial paths that violate the time windows. Infeasible
path cuts require at least one arc in an infeasible partial path to be unused.

Kallehauge, Boland and Madsen (2007) solved the VRPTW with a branch-and-cut model
that uses the subtour elimination constraints from the TSP instead of the capacity cuts. Vehicle
capacity constraints are enforced by the same infeasible path cuts that enforce the time windows.
They also proved that both the subtour elimination cuts and the infeasible path cuts can be
strengthened using ideas conceived by Mak (2001) for a variant of the TSP.

Desrochers, Desrosiers and Solomon (1992) built a branch-and-price model of the VRPTW
based on an earlier model by Desrosiers, Soumis and Desrochers (1984) that excludes vehicle
capacity constraints. The model uses a set partitioning problem as the master problem and a
resource-constrained shortest path problem as the pricing subproblem. The pricing algorithm
finds paths that can have cycles. The cycles make each node in the branch-and-bound tree easier
to solve, but degrade the lower bounds, and hence, increase the number of nodes in the search
tree. This model, developed early in the study of vehicle routing problems, is now fundamental
to all modern branch-and-price models of vehicle routing problems.

Baldacci, Mingozzi and Roberti (2011) presented a sophisticated branch-and-cut-and-price
model of the VRPTW based on the earlier work by Baldacci, Christofides and Mingozzi (2008).
The model uses a series of heuristics that move the dual solution from each iteration towards
their optimal values; thus bypassing the early iterations of column generation. It then invokes a
new pricing algorithm using these dual solutions. This model solved all but one of the Solomon
benchmarks.

Røpke (2012) produced a branch-and-cut-and-price model of the VRPTW that incorporates
many ideas in the literature. Its main contribution is validating that strong branching has a
significant impact. Strong branching solves many candidate children nodes near the root to
optimality, evaluates the candidate children nodes against some criteria and then commits to
branch on only one set of children nodes (e.g., Achterberg, Koch and Martin 2005). This model
successfully solves the last open Solomon instance. This is only achieved after the tremendous
amount of study of the VRPTW over the previous 25 years, which attests to the difficulty of the
VRPTW in general.

Røpke, Cordeau and Laporte (2007) implemented two branch-and-cut models of the PDPTW.
The first model uses variables that represent time and vehicle load, while the second indirectly
models time and vehicle capacity using infeasible path cuts. Subtour elimination and infeasible
path constraints are lifted to also consider the precedence relationships that arise from the
pickup-delivery constraints. Both models also feature many other families of cuts. Their results
indicate that the more compact second model outperforms the first.

2.8. Models of Vehicle Routing Problems 43

Dumas, Desrosiers and Soumis (1991) formulated the first branch-and-price model of the
PDPTW. The model is a straightforward extension of existing branch-and-price models of
vehicle routing problems. They derived new dominance criteria for the PDPTW that enable the
pricing subproblem to eliminate paths that cannot contribute to an optimal solution.

Røpke and Cordeau (2009) constructed a branch-and-cut-and-price model of the PDPTW
that unites many of the existing ideas in the literature. The model is paired to one of two
pricing algorithms: the first solves an elementary shortest path problem and second solves
the non-elementary version. Solving the linear relaxation of column generation model with
non-elementary paths is known to be easier but results in weaker lower bounds, and hence,
more nodes in the search tree. Their experiments show that the performance of the two pricing
algorithms are roughly similar. The authors also show that certain families of cuts are implied
by the elementary shortest path problem, and hence, are unnecessary when using this pricing
problem.

2.8.2 Constraint Programming Models

There are only a small number of constraint programming models of vehicle routing problems.
The constraint programming community generally avoids vehicle routing problems because the
objective function is linear and linear functions are known to have weak propagators.

Backer et al. (2000) developed a constraint programming model for vehicle routing problems
using successor variables. Successor variables describe a path starting at a vehicle’s starting
node to its end node via the requests it visits. The model is tested on the Solomon instances and
is solved using local search coupled with three metaheuristics. This model improved the upper
bounds for four of the instances.

Bent and Van Hentenryck (2004) presented a constraint programming model of the VRPTW.
This model uses two stages to minimize the number of vehicles and then minimize the total
travel distance. The first stage is solved using simulated annealing and the second using large
neighborhood search. This model was instrumental in finding many best solutions to the
Solomon benchmarks at the time. Bent and Van Hentenryck (2006) later extended this model to
the PDPTW.

Rousseau, Gendreau, Pesant and Focacci (2004) applied constraint programming-based
column generation to the VRPTW. In this model, the column generation master problem is a set
covering problem and is solved regularly usingmixed integer programming. The pricing problem
is an elementary shortest path problem that also contains global optimization constraints to
assist with the objective bounds.

Feillet, Gendreau and Rousseau (2007) applied limited discrepancy search in the pricing
subproblem of a branch-and-price model of the VRPTW. Limited discrepancy search is a search
strategy related to depth-first search that uses a heuristic to guide the tree-search algorithm
towards promising nodes by backtracking prior to a complete depth-first exploration (Harvey
and Ginsberg 1995). As the search progresses, deeper subtrees are permitted, allowing the
search to focus on potentially good subtrees in the early stages. The model uses a standard
dynamic programming algorithm in the pricing subproblem but complements its underlying

44 Chapter 2. Background

graph with additional nodes for the limited discrepancy search.
Recently, Benchimol et al. (2012) developed an effective propagator for the WeightedCir-

cuit global constraint, which can be used to infer objective bounds in vehicle routing problems.
However, it is not yet applied to vehicle routing problems.

Chapter 3

The Joint Vehicle and Crew Routing
and Scheduling Problem

Vehicle routing problems are studied in academic circles for their combinatorial properties. As
an academic curiosity, algorithms are developed to solve larger and larger instances of highly
simplified problems such as the Capacitated Vehicle Routing Problem (e.g., Pecin et al. 2014).
However, these simplified problems bear little relevance to the challenges faced in the logistics
industry (Bräysy and Hasle 2014).

A transportation problem commonly encountered is the routing and scheduling of vehicles
and crews. This problem is computationally difficult because the routing and scheduling
subproblems are high interdependent: a change to a vehicle route allows an exponential number
of new crew schedules. To reduce the computational complexity, vehicle routing and crew
scheduling are usually solved sequentially in practice (e.g., Barnhart, Lu and Shenoi 1998). This
involves devising vehicle routes, on which crews are then scheduled. By designing vehicle routes
first, sequential approaches may lead to suboptimal or even infeasible crew schedules since
decisions in the vehicle routing phase may ignore crew constraints and objectives. Therefore, it
is desirable to simultaneously consider vehicle and crew constraints and objectives, particularly
for cases in which crew constraints are tight or crew costs exceed vehicle costs.

This chapter proposes the Joint Vehicle and Crew Routing and Scheduling Problem (JVCRSP),
which adds a second layer of routing for crews to the Pickup and Delivery Problem with Time
Windows (PDPTW) introduced in Section 2.7. In many applications of vehicle routing problems,
goods are moved from one location to another, usually across the course of a day. The JVCRSP is
motivated by applications in humanitarian and military logistics; in these contexts, vehicles (e.g.,
airplanes) travel long routes and transport food and medical supplies across time horizons that
can span several days, and hence, determining crew schedules becomes an important part of the
problem. For example, vehicles must be operated by crews, which have limitations on their duty
times. Crews are able to interchange vehicles at different locations and to travel as passengers
before and after their duty times. The JVCRSP is extremely challenging computationally because

As described in the Preface, early results of this chapter are published in the paper titled “Joint Vehicle and Crew
Routing and Scheduling”.

45

46 Chapter 3. The Joint Vehicle and Crew Routing and Scheduling Problem

vehicle routes and crew routes are interdependent. Allowing crews to interchange vehicles adds
an additional time element to the problem since two vehicles must be synchronized in order for
an exchange to proceed. It is thus necessary to decide whether vehicles wait and for how long
at a location because both vehicles must be present at the same location for an interchange to
occur.

This chapter develops a mixed integer programming and a constraint programming for-
mulation of the JVCRSP that jointly optimize vehicle and crew routing and scheduling in the
hope of remedying some limitations of sequential approaches. The formulations overlay crew
routing constraints over the PDPTW and add a number of synchronization constraints to link
the vehicles and crews. In addition, the constraint programming formulation includes a novel
global optimization constraint that uses a linear relaxation to check whether the current crew
partial routes are feasible and to bound crew costs, which is crucial in the early stages of the
search when the focus is on vehicle routing.

Both the mixed integer programming model and the constraint programming model are
each developed into two additional models that sequentialize the vehicle routing and scheduling
components in order to evaluate the impacts of simultaneously optimizing these decisions.
These six models are then solved using a regular branch-and-bound complete tree search and a
large neighborhood search, giving a total of twelve methods.

Experimental results on instances with up to 100 requests and three cost functions indicate
that (1) the joint optimization of vehicle and crew routing can produce considerable benefits
over sequential methods, (2) the combination of constraint programming and large neighbor-
hood search scales significantly better than pure constraint programming and mixed integer
programming approaches, and (3) vehicle interchanges are critical for obtaining high-quality
solutions. These findings indicate that it is now in the realm of optimization technology to
simultaneously optimize vehicle and crew routing and scheduling in a single model, and that
concurrently modeling vehicle and crew routing may bring significant benefits in cost reduction
compared to methods that sequentialize these decisions.

The remainder of this chapter is organized as follows. Section 3.1 reviews existing work on
related problems. Section 3.2 describes the JVCRSP. Section 3.3 discusses a high-level model of the
problem. Sections 3.4 and 3.5 concretizes the high-level model as a mixed integer programming
model and a constraint programming model. Section 3.6 describes the large neighborhood
search common to both the mixed integer programming and constraint programming models.
Section 3.7 reports experimental results, and Section 3.8 concludes this chapter.

3.1 Literature Review

Simultaneous vehicle routing and crew scheduling problems have not attracted much interest in
the literature at this point, probably due to their inherent complexity (Drexl 2012). This section
reviews three relevant problems from the literature.

Kim, Koo and Park (2010) considered a problem in which vehicles transport teams to service
customers. Vehicles are able to move without any team on board. The problem features three

3.1. Literature Review 47

types of tasks that must be serviced in order, and all customers have one task of each type. Each
team can only service one compatible type of task. The mixed integer programming formulation
has variables indexed by five dimensions and is intractable. The paper develops a simple local
search algorithm that is embedded within a particle swarm metaheuristic. This approach was
developed specifically for the problem and cannot easily accommodate side constraints.

Hollis, Forbes and Douglas (2006) solved a mail distribution problem that features multiple
depots at which vehicle routes begin and end. The model was solved using a two-stage heuristic
column generation approach, which cannot be guaranteed to solve the problem to optimality.
In the first stage, trips that begin and end at the depots are computed. The second stage takes a
scheduling approach and assigns vehicles and crews to the trips. Vehicle interchange can only
occur at the depots at the start or end of a trip. In addition, the model features a 24-hour cyclic
time period and variables indexed by discretized blocks of time.

Drexl et al. (2013) considered a problem that includes European legislation and relay stations
where drivers rest and interchange vehicles. Vehicles must wait a fixed amount of time upon
reaching a relay station. Vehicle interchange can only occur if other drivers arrive at this relay
station during this time interval. The problem also provides a shuttle service, separate from
the fleet of vehicles, that can be used to move drivers between relay stations. The problem
is solved using a two-stage large neighborhood search method. In the first stage, a vehicle
routing problem is solved and the resulting routes form the customers of another vehicle routing
problem in the second stage, in which the crews perform the role of vehicles. Observe that this
approach also cannot jointly optimize vehicle and crew routing. The model features several
fixed parameters, such as the duration during which a vehicle waits at a relay station, and
a search procedure that only explores a limited number of nearby relay stations. Both these
restrictions greatly reduce the search space but negatively impact vehicle interchange, leading
the authors to conclude that allowing for vehicle interchange does not significantly improve
the objective value.

Drexl (2012) classified simultaneous vehicle routing and crew scheduling problems as a
Vehicle Routing Problem with Multiple Synchronization constraints (VRPMS). Synchronization
is a feature present in some vehicle routing problems, in which decisions about one object (e.g.,
vehicle, route, request) imply actions that may or must be taken on other objects.

Drexl (2007, 2014) developed a VRPMS called the Vehicle Routing Problem with Trailers and
Transshipments (VRPTT). It features two vehicle classes: lorries which can move independently,
and trailers which must be towed by an accompanying lorry. All lorries begin at a single
depot with or without a trailer. A lorry can detach its trailer at transshipment locations to visit
customers who are unable to accommodate a trailer (e.g., due to size). Lorries can transfer load
into and/or attach with any trailer at any transshipment location. A lorry that has detached its
trailer can also return to the depot without reattaching a trailer, leaving its trailer behind at a
transshipment location to be collected by another lorry at a future time. Several sophisticated
mixed integer programming formulations were presented, which were solved using branch-and-
cut on instances with up to eight customers, eight transshipment locations and eight vehicles.
Drexl (2013) argued that simultaneous vehicle routing and crew scheduling problems can be

48 Chapter 3. The Joint Vehicle and Crew Routing and Scheduling Problem

reformulated into the VRPTT by casting crews as lorries with zero capacity, and vehicles as
trailers.

The VRPTT is most closely related to the JVCRSP since lorry routes and trailer routes
are jointly computed, and the search space is not artificially limited. A key difference is
that the VRPTT includes load synchronization, which is not considered in the JVCRSP. Load
synchronization refers to the ability to either transfer load from one vehicle to another while
both are present, or partially or fully transporting load to a transshipment location and then
having a different vehicle retrieve the load to deliver it to its final destination.

Finally, observe that vehicle and crew scheduling problems are thoroughly studied (e.g.,
Cordeau et al. 2001, Freling, Huisman and Wagelmans 2001, 2003, Freling, Wagelmans and
Paixão 1999, Haase, Desaulniers and Desrosiers 2001, Mercier, Cordeau and Soumis 2005, Mercier
and Soumis 2007, Mesquita and Paias 2008). These problems aim to assign vehicles and crews
to a predetermined set of trips, with each trip consisting of a fixed route and usually with
fixed arrival and departure times. Trips in these problems correspond to parts of a route in the
JVCRSP, which are not available a priori, but instead, must be computed during search, thereby
increasing the computational challenges.

3.2 Problem Description

This section describes the application and introduces the JVCRSP as an abstraction of interesting
elements of the original problem. Given the complexity of the overall problem, the research
methodology is to find effective solution approaches to interesting aspects of the application
before addressing the problem as a whole.

The JVCRSP is motivated by an air transportation problem faced by the Royal Australian Air
Force. The challenge is to design effective routes for moving goods, known as parcels, around
the world. The majority of parcels originate in Australia and are destined for the Asia-Pacific
region. Most parcels only have a due date for arrival; parcels rarely have a due date for departure,
possibly because of ample storage space at military bases. The parcels are associated with a
weight and a 3-dimensional size of length, width and height. The sizes of the parcels vary: they
can be as small as a spare part for a plane or as large as a tank. They can also include doctors
moving to other bases in order to perform urgent medical procedures on patients, moving
soldiers on and off rotations, moving food and medical supplies to bases, keeping inventories of
spare parts, delivering mail, etc. To simplify the problem, this study only considers the weights
and due dates. Obviously, the full problem contains 3D-packing constraints for the airplanes as
well.

The planes are operated by crews, who have limited flying time. They will often fly to a base
and hand over the plane to another crew. The crew will then spend some recovery time at that
base and then continue in the next plane that arrives. Crews can also be moved on planes to
other bases if needed. The abstracted problem considered in this chapter only accounts for one
duty period. The full problem expands the number of duty periods, which is modeled exactly as
in the chapter with the addition of a minimum rest time between duty periods. The minimum

3.3. High-Level Modeling Concepts 49

rest time depends on the previous flight times, e.g., 12 hours rest for 24 hours of flight, 60 hours
rest for 96 hours of flight, and 4 days rest for 14 days of flight.

Additionally, the full problem restricts the number of planes that can occupy an airfield at
any given time because of the limited availability of taxiing and parking space. This aspect of
the motivating application is studied in the next chapter.

The JVCRSP aims at capturing interesting elements of the motivating application surround-
ing the two layers of interdependent vehicle and crew routing. In particular, the JVCRSP
generalizes the PDPTW introduced in Section 2.7 with two major additions.

First, it groups requests by location, i.e., every request has an attribute for its location. This
contrasts with traditional vehicle routing problems, in which locations are synonymous with
requests. Grouping requests by location makes it possible to model crews interchanging vehicles
because the model can recognize if two vehicles are present at the same location.

Second, the JVCRSP adds crews to the PDPTW. Crews must travel on a vehicle when
traveling from one location to another, and are free to switch vehicles at any location. Hence,
crews can exit a location on a vehicle different to the one on which they entered. Every vehicle
can carry an unlimited number of crews onboard as passengers, and one of the crews onboard,
known as the driver, must operate the vehicle whenever it travels from one location to another.

Each crew is restricted to at most one driving segment, which is defined as the time period
from the beginning of a crew’s first drive to the end of the crew’s last drive. The driving segment
is limited to a maximum duration. During the driving segment, the crew may interchange
vehicles to drive on other vehicles and may travel as a passenger to reach a vehicle before
recommencing driving on this vehicle. The time taken for traveling as a passenger is included
within the driving segment. Crews can travel on any vehicle to reach the location of their first
drive, and crews can travel on any vehicle back to the depot after driving. No distance or time
limitations are placed on crews before and after the driving segment.

The JVCRSP minimizes a weighted sum of the number of vehicles and crews used, as well
as the total vehicle and crew travel distances.

3.3 High-Level Modeling Concepts

This section presents several modeling decisions underlying the constraint programming and
mixed integer programming models and concepts relevant to solving the JVCRSP.

Figure 3.1 illustrates an example of several vehicle routes and crew routes for a problem with
three vehicles, five crews and five locations. Every crew begins at the common crew start node
(CS) and either moves directly to the crew end node (CE), signifying that the crew is unused, or
proceeds to a vehicle start node (S1 to S3) to board a vehicle. The vehicles and crews visit the
locations (L1 to L5) to service requests and then proceed to the vehicle end nodes (E1 to E3),
where the vehicles complete their routes. The crews then disembark the vehicles and proceed
to the crew end node (CE). Observe that the yellow crew changes vehicles at L3 and then drives
the blue vehicle. Also, observe that the blue crew changes vehicles at L3, travels as a passenger
on the red vehicle and then changes vehicles at L5 to drive on the green vehicle. Because the

50 Chapter 3. The Joint Vehicle and Crew Routing and Scheduling Problem

CS

S1

S2

S3

L1

L2

L3

L4

L5

E1

E2

E3

CE

Figure 3.1: Example of vehicle routes and crew routes. Vehicle routes are marked by solid lines
and crew routes are marked by dashed lines and dotted lines. Crews travel as passengers on
dashed lines and as drivers on dotted lines.

driving segment of a crew is defined from the moment that it starts driving to the moment that
it finishes driving, the driving segment of the blue crew is its entire route from S1 to E3.

Like in conventional vehicle routing problems, a route in the JVCRSP is a sequence of
requests. However, each request is associated with an additional input parameter that maps it
to a location. Along a route, a subsequence of requests at the same location can be thought of
as a visit to the location, with an entry at the first request in the subsequence and an exit at the
last request in the subsequence.

Figure 3.2 illustrates a route that visits two locations. A vehicle departs the starting node S
to service requests 1 to 3 at a location and then moves to the next location to service requests 4
to 6 before finishing at the end node E. Even though a vehicle route is a sequence of requests,
semantically, the vehicle enters the first location at request 1, departs it at request 3, enters the
second location at request 4 and departs it at request 6.

The model employs a number of crew routing constraints, which mirror the vehicle routing
constraints. Vehicles and crews are synchronized using constraints that require

• crews to move with a vehicle when moving from one location to another,

• vehicles to have exactly one driver onboard when moving from one location to another,
and

• the driver of a vehicle to be one of the crews onboard.

These requirements allow vehicles and crews to move independently within a location.

Figure 3.3 illustrates two crews switching vehicles at a location. The location contains
requests 1 to 6. A vehicle and crew enter the location at request 1, and another vehicle and crew
enter the location at request 4. While the two vehicles are servicing requests, the first crew
moves to the departure request of the second vehicle (request 6), and the second crew moves to
the departure request of the first vehicle (request 3). The two crews wait for their new vehicles
to complete servicing the requests then leave the location. In order for this interchange to occur,
both vehicles must be at the same location at the same time. Suppose requests 1 to 3 require 10
units of time for service, and requests 4 to 6 require 5 units of time for service. The first crew
can move to the second vehicle because the crew arrived (at time 10) before the departure of

3.3. High-Level Modeling Concepts 51

S 1 2 3 4 5 6 E

Figure 3.2: Example of locations along a vehicle route.

1

10
10
20
20

4

60
60
65
65

2

20
20
30
30

5

65
65
70
70

3

30
30
40
60

6

70
70
75
75

Figure 3.3: Example of two crews interchanging vehicles at a location. Vehicles are marked by
solid lines and crews are marked by dashed lines. Each node has its arrival time, start of service,
end of service and departure time labeled from top to bottom.

the second vehicle (at time 75). The second crew can move to the first vehicle which waits until
time 60 to depart, even though the service for request 3 is completed at time 40.

The crew constraints described above permit many symmetrical solutions due to the nu-
merous subpaths that a crew can travel on within a location. The specific requests that a crew
visits at a particular location are not important; what is significant is the two vehicles that the
crew uses to arrive at and depart from the location. In other words, there are many symmetrical
solutions that differ only by the path that a crew takes within a location. These symmetries are
best explained using Figure 3.3. It is possible for the first crew to enter the location at request
1, visit requests 2 to 5 in order then exit on the second vehicle at request 6. However, this
path is equivalent, for all practical purposes, to one in which the crew moves directly from
request 1 to request 6. Hence, the search space can be reduced by requiring crews to shortcut
intermediate nodes within a location by visiting at most a single entry node and a single exit
node per location. This is accomplished by ensuring that crews cannot visit a subsequence of
three or more requests at the same location. This restriction allows for vehicle interchanges
without considering all the symmetric solutions that have no impact on the objective.

The JVCRSP features a temporal element that emerges from the interdependency between
vehicle routes and crew routes. This time complexity is not present in traditional vehicle routing
problems. Consider a route in the PDPTW, as shown in Figures 3.4a and 3.4b. Figures 3.4c
and 3.4d show two different schedules for the same vehicle route. Delaying the departure
times along one route does not impact other routes nor invalidate the solution (provided that

52 Chapter 3. The Joint Vehicle and Crew Routing and Scheduling Problem

S

[0,100]

1

[20,40]

2

[30,70]

E

[0,100]

(a) A route consisting of two requests and the start
and end depot nodes, and their time windows for
the start of service. Every request requires 10 time
units for service, and every arc requires 10 time
units of travel time.

S

[0,30]

1

[10,40]
[20,40]
[30,60]

2

[40,70]
[40,70]
[50,90]

E

[60,100]

(b) Lower and upper bounds for the arrival time
(top), service start time (middle) and departure
time (bottom) at each request along the route can
be easily computed by considering travel time and
time window constraints.

S

0

1

10
20
30

2

40
40
50

E

60

(c) Since early arrival is permitted, arrival times,
service times and departure times can be fixed to
their earliest possible once a route is determined.

S

5

1

15
25
40

2

50
55
75

E

85

(d) Delaying service or departure along a route,
although possible, is not beneficial since an amount
of time is wasted, which could be better used to
service other requests.

Figure 3.4: Example of two different schedules for the same route in classical vehicle routing
problems without time synchronization.

the delayed route satisfies the time windows). The time variables in classical vehicle routing
problems are used solely to enforce the feasibility of the time windows. Solvers frequently use
this knowledge to avoid branching on time variables by fixing all time variables to their earliest
possible once all routes are determined. Because solvers only need to search on the arcs (i.e.,
space) variables and not the time variables, classical vehicle routing problems are said to possess
one spatial degree of freedom and zero temporal degrees of freedom.

Figure 3.5 shows two crews that switch vehicles at a location. Delaying the top vehicle to
depart at time 60, instead of departing immediately after service at time 40, allows the bottom
crew to move onboard. This delay alters the departure times and can cause a cascade of events
farther along this route and on other routes. For example, the delay may allow a crew to
interchange vehicles at one location but prevent a crew from interchanging vehicles at another
location. Hence, searching on the arrival and departure time variables is essential in the JVCRSP.

The JVCRSP has two spatial degrees of freedom because vehicles and crews can move
independently in space. However, the JVCRSP has only one temporal degree of freedom because
the crew time variables are tightly coupled to the vehicle time variables since the crews move
with vehicles between locations and crews have no notion of time within locations. Hence, the
crew time variables serve a similar purpose to the vehicle time variables in classical vehicle
routing problems, such as the PDPTW, in that they exist only to ensure the feasibility of the
maximum driving duration constraints.

3.3. High-Level Modeling Concepts 53

1

[10,60]
[20,70]

4

[60,70]
[65,75]

2

[20,70]
[30,80]

5

[65,75]
[70,80]

3

[30,80]
[40,90]

6

[70,80]
[75,85]

(a) Consider two vehicles (solid lines) and two crews (dashed lines) that arrive at a location. Next to
each request at the location is the lower and upper bounds for its arrival time (top) and departure time
(bottom). Requests 1 to 3 require 10 units of time for service, and requests 4 to 6 require 5 units of time
for service.

1

10
20

4

60
65

2

20
30

5

65
70

3

30
40

6

70
75

(b) Setting all time variables to the earliest possible
will prohibit the bottom crew from changing to
the top vehicle because the top vehicle departs
the location (at time 40) before the arrival of the
bottom vehicle and crew (at time 60).

1

10
20

4

60
65

2

20
30

5

65
70

3

30
60

6

70
75

(c) Delaying the departure of the top vehicle to
time 60 allows both the top and bottom crews to
exchange vehicles.

Figure 3.5: Example of the significance of branching on the time variables when vehicle routes
are interdependent.

54 Chapter 3. The Joint Vehicle and Crew Routing and Scheduling Problem

It is the temporal degree of freedom that makes the JVCRSP difficult, especially when the
time horizon is large, because the solver must test many combinations of assignments to the time
variables to determine if crews can interchange vehicles or if they have reached the maximum
driving duration.

3.4 The Mixed Integer Programming Model

This section concretizes the high-level JVCRSP model into a mixed integer program.

The inputs and decision variables for the model are listed in Table 3.1. The problem is
defined on a time interval 𝒯 = [0, T], where T > 0 is the time horizon when all V ∈ {1, … ,∞}
vehicles and C ∈ {V , … ,∞} crews must have completed their routes. The vehicles and crews
are represented by the sets 𝒱 = {1, … ,V } and 𝒞 = {1, … ,C} respectively. Each vehicle has a load
capacity of Q ≥ 0 and each crew has a maximum driving duration of ̄T ∈ 𝒯.

Assume that there are P ∈ {1, … ,∞} pickup-delivery pairs, and hence, 2P requests in total.
Define 𝒫 = {1, … , P} and 𝒟 = {P + 1, … , 2P} as the set of pickup nodes and delivery nodes
respectively, and let ℛ = 𝒫 ∪𝒟 be the set of all request nodes. Every vehicle v ∈ 𝒱 has a unique
start node sv and end node ev . These are grouped in the sets 𝒮 = {s1, … , sV } and ℰ = {e1, … , eV }.
Also, define 𝒩 = ℛ ∪ 𝒮 ∪ ℰ to be all nodes that vehicles can visit. Finally, let screw and ecrew be
the common crew start node and end node respectively.

Each vehicle can traverse arcs from its start node to any pickup, from any request to any
other request, from deliveries to its end node, and if the vehicle is unused, from its start node to
end node. For every vehicle v ∈ 𝒱 , define this set of arcs as

𝒜v = {(sv , i)|i ∈ 𝒫} ∪ {(i, j)|i ∈ ℛ, j ∈ ℛ, i ≠ j} ∪ {(i, ev)|i ∈ 𝒟} ∪ {(sv , ev)}. (3.1)

Crews can traverse all vehicle arcs except the arcs indicating that a vehicle is unused.
Additionally, crews can traverse arcs from the crew start node to any vehicle start node, from
any vehicle end node to the crew end node, and directly from the crew start node to the crew
end node. Define the common crew arcs as

𝒜 = {(screw, i)|i ∈ 𝒮} ∪⋃
v∈𝒱

𝒜v ∪ {(i, ecrew)|i ∈ ℰ} ∪ {(screw, ecrew)} ⧵ {(sv , ev)|v ∈ 𝒱}. (3.2)

Define ℒ as the set of locations, including one depot location. For every node i ∈ 𝒩, let
li ∈ ℒ be its location, ai ∈ 𝒯 and bi ∈ 𝒯 be its earliest time and latest time to start service, ti ∈ 𝒯
be its service duration and qi ∈ [−Q,Q] be its load demand. For every arc (i, j) ∈ ⋃v∈𝒱𝒜v ∪𝒜,
define di,j ∈ 𝒯 as the distance and travel time along the arc. Finally, let w1 > 0 and w2 > 0 be
the cost of using one vehicle and one crew, and let w3 > 0 and w4 > 0 be the cost of one unit of
distance traveled by a vehicle and by a crew.

The primary decision variables are the usual vehicle flow variables vehv ,i,j ∈ {0, 1}, which
indicate whether vehicle v ∈ 𝒱 traverses (i, j) ∈ 𝒜v . The variables arrv ,i ∈ 𝒯, servv ,i ∈ [ai , bi]
and depv ,i ∈ 𝒯 represent the arrival time, service start time and departure time of vehicle v ∈ 𝒱
at node i ∈ 𝒩. The loadv ,i ∈ [0,Q] variable contains the load of vehicle v ∈ 𝒱 after it services

3.4. The Mixed Integer Programming Model 55

Name Description

T > 0 Time horizon.
𝒯 = [0, T] Time interval.
V ∈ {1, … ,∞} Number of vehicles.
𝒱 = {1, … ,V } Set of vehicles.
Q ≥ 0 Vehicle capacity.
C ∈ {V , … ,∞} Number of crews.
𝒞 = {1, … ,C} Set of crews.
̄T ∈ 𝒯 Crew maximum driving duration.

P ∈ {1, … ,∞} Number of pickup-delivery pairs.
𝒫 = {1, … , P} Set of pickup nodes.
𝒟 = {P + 1,… , 2P} Set of delivery nodes.
ℛ = 𝒫 ∪𝒟 Set of all requests.
sv Start node of vehicle v ∈ 𝒱.
ev End node of vehicle v ∈ 𝒱.
𝒮 = {s1, … , sV } Set of vehicle start nodes.
ℰ = {e1, … , eV } Set of vehicle end nodes.
𝒩 = ℛ ∪ 𝒮 ∪ ℰ Set of all requests and vehicle start and end nodes.
screw Start node of all crews.
ecrew End node of all crews.
𝒜v Arcs that can be traversed by vehicle v ∈ 𝒱. Defined in Equation (3.1).
𝒜 Arcs that can be traversed by crews. Defined in Equation (3.2).
ℒ Set of locations, including one depot location.
li ∈ ℒ Location of i ∈ 𝒩.
ai ∈ 𝒯 Earliest start of service at i ∈ 𝒩.
bi ∈ 𝒯 Latest start of service at i ∈ 𝒩.
ti ∈ 𝒯 Service duration of i ∈ 𝒩.
qi ∈ [−Q,Q] Load demand at i ∈ 𝒩.
di,j ∈ 𝒯 Distance and travel time along the arc (i, j) ∈ ⋃v∈𝒱 𝒜v ∪𝒜.
w1 > 0 Cost of using one vehicle.
w2 > 0 Cost of using one crew.
w3 > 0 Cost of one unit of vehicle distance.
w4 > 0 Cost of one unit of crew distance.

vehv ,i,j ∈ {0, 1} Indicates if vehicle v ∈ 𝒱 traverses (i, j) ∈ 𝒜v .
arrv ,i ∈ 𝒯 Arrival time of vehicle v ∈ 𝒱 at i ∈ 𝒩.
servv ,i ∈ [ai , bi] Start of service by vehicle v ∈ 𝒱 at i ∈ 𝒩.
depv ,i ∈ 𝒯 Departure time of vehicle v ∈ 𝒱 at i ∈ 𝒩.
loadv ,i ∈ [0,Q] Load of vehicle v ∈ 𝒱 after servicing i ∈ 𝒩.
crewc,i,j ∈ {0, 1} Indicates if crew c ∈ 𝒞 traverses (i, j) ∈ 𝒜.
crewTimec,i ∈ 𝒯 Time when crew c ∈ 𝒞 is at i ∈ 𝒩.
driverc,i,j ∈ {0, 1} Indicates if crew c ∈ 𝒞 drives on (i, j) ∈ 𝒜, li ≠ lj .
driveStartc ∈ 𝒯 Start time of driving for crew c ∈ 𝒞.
driveEndc ∈ 𝒯 End time of driving for crew c ∈ 𝒞.
driveDurc ∈ [0, ̄T] Driving duration of crew c ∈ 𝒞.

Table 3.1: The data and decision variables of the mixed integer programming model.

56 Chapter 3. The Joint Vehicle and Crew Routing and Scheduling Problem

node i ∈ 𝒩.

The secondary decision variables are the crew flow variables crewc,i,j ∈ {0, 1}, which indicate
whether crew c ∈ 𝒞 traverses (i, j) ∈ 𝒜. Variable crewTimec,i ∈ 𝒯 stores a moment when crew
c ∈ 𝒞 is present at node i ∈ 𝒩. In our solutions, it will be either the arrival or the departure time
at the node (or both if they are equal). The driverc,i,j ∈ {0, 1} variable indicates whether crew
c ∈ 𝒞 drives the vehicle that traverses (i, j) ∈ 𝒜 if li ≠ lj . The start and end time of the driving
segment of crew c ∈ 𝒞 is given by driveStartc ∈ 𝒯 and driveEndc ∈ 𝒯, and the total driving
duration by driveDurc ∈ [0, ̄T].

The constraints of the mixed integer programming model are separated into a vehicle
component and a crew component. The vehicle component, depicted in Figure 3.6, is the
standard three-index flow model of the PDPTW with the addition of arrival and departure time
variables and the duplication of the start and end node for each vehicle. Constraints (3.3) to (3.5)
are the usual flow constraints, which ensure that each vehicle follows a path from its start node
to its end node. Constraint (3.6) is the request cover constraint, which requires every (pickup)
request to be visited. Constraints (3.7) and (3.8) are the pickup-delivery constraints, which
ensure that delivery requests are serviced by the same vehicle that serviced their associated
pickup request and are serviced after the associated pickup request. Constraints (3.9) and (3.10)
order the arrival, service and departure times at each request. Constraint (3.11) constrains
each start node and end node to one common arrival/service/departure time. Constraints (3.12)
and (3.13) are the travel time constraints, which linearize the constraint

vehv ,i,j = 1 → depv ,i + di,j = arrv ,j ∀v ∈ 𝒱, (i, j) ∈ 𝒜v .

Constraints (3.14) to (3.16) bound the vehicle load after service of a request. Vehicle loads along
a route are accumulated by Constraint (3.17). Constraint (3.18) is a redundant constraint that
prunes the search space by allowing each vehicle to visit a request at most once. Constraint (3.19)
is a redundant constraint that breaks symmetry between vehicles by forcing a vehicle to be
unused if a lower-numbered vehicle is unused. M1 to M3 are big-M constants.

The crew component, depicted in Figure 3.7, overlays the vehicle component with crew
constraints to obtain the JVCRSP. It contains routing constraints similar to those in the vehicle
component but also includes synchronization constraints to couple the vehicles and crews.
Constraints (3.20) to (3.22) are the crew flow constraints, which ensure that all crews follow a
path beginning at the crew start node through to the crew end node. Constraints (3.23) and (3.24)
are space synchronization constraints that require crews to move with a vehicle and vehicles to
move with a driver onboard when moving from one location to another. Constraint (3.25) is
another space synchronization constraint that restricts the driver along an arc to be one of the
crews that traverses the arc. Constraint (3.26) is the crew travel time constraint. Constraint (3.27)
is a time synchronization constraint that allows crews to be at a node only while a vehicle
is present. Having bounds on the crew time variables, rather than strict equality, is essential
to modeling vehicle interchange because it enables crews to both move off a vehicle when it
arrives at a location and move on a vehicle when it departs a location. In an equality constraint,
crews must either always move off a vehicle at arrival or at departure, which disallow some

3.4. The Mixed Integer Programming Model 57

∑
j∶(sv ,j)∈𝒜v

vehv ,sv ,j = 1 ∀v ∈ 𝒱, (3.3)

∑
h∶(h,i)∈𝒜v

vehv ,h,i = ∑
j∶(i,j)∈𝒜v

vehv ,i,j ∀v ∈ 𝒱, i ∈ ℛ, (3.4)

∑
h∶(h,ev)∈𝒜v

vehv ,h,ev = 1 ∀v ∈ 𝒱, (3.5)

∑
v∈𝒱

∑
h∶(h,i)∈𝒜v

vehv ,h,i = 1 ∀i ∈ 𝒫, (3.6)

∑
h∶(h,i)∈𝒜v

vehv ,h,i = ∑
h∶(h,P+i)∈𝒜v

vehv ,h,P+i ∀v ∈ 𝒱, i ∈ 𝒫, (3.7)

depv ,i + di,P+i ≤ arrv ,P+i ∀v ∈ 𝒱, i ∈ 𝒫, (3.8)

arrv ,i ≤ servv ,i ∀v ∈ 𝒱, i ∈ ℛ, (3.9)

servv ,i + ti ≤ depv ,i ∀v ∈ 𝒱, i ∈ ℛ, (3.10)

arrv ,i = servv ,i = depv ,i ∀v ∈ 𝒱, i ∈ 𝒮 ∪ ℰ, (3.11)

depv ,i + di,j − arrv ,j ≤ M1 (1 − vehv ,i,j) ∀v ∈ 𝒱, (i, j) ∈ 𝒜v , (3.12)

arrv ,j − depv ,i − di,j ≤ M2 (1 − vehv ,i,j) ∀v ∈ 𝒱, (i, j) ∈ 𝒜v , (3.13)

loadv ,i = 0 ∀v ∈ 𝒱, i ∈ 𝒮 ∪ ℰ, (3.14)

qi ≤ loadv ,i ≤ Q ∀v ∈ 𝒱, i ∈ 𝒫, (3.15)

0 ≤ loadv ,i ≤ Q + qi ∀v ∈ 𝒱, i ∈ 𝒟, (3.16)

loadv ,i + qj − loadv ,j ≤ M3 (1 − vehv ,i,j) ∀v ∈ 𝒱, (i, j) ∈ 𝒜v , (3.17)

∑
h∶(h,i)∈𝒜v

vehv ,h,i ≤ 1 ∀v ∈ 𝒱, i ∈ ℛ, (3.18)

vehv ,sv ,ev ≤ vehv+1,sv+1,ev+1 ∀v ∈ {1, … ,V − 1}. (3.19)

Figure 3.6: The vehicle component of the mixed integer programming model.

58 Chapter 3. The Joint Vehicle and Crew Routing and Scheduling Problem

∑
j∶(screw,j)∈𝒜

crewc,screw,j = 1 ∀c ∈ 𝒞, (3.20)

∑
h∶(h,i)∈𝒜

crewc,h,i = ∑
j∶(i,j)∈𝒜

crewc,i,j ∀c ∈ 𝒞, i ∈ 𝒩, (3.21)

∑
h∶(h,ecrew)∈𝒜

crewc,h,ecrew = 1 ∀c ∈ 𝒞, (3.22)

crewc,i,j ≤ ∑
v∈𝒱∶(i,j)∈𝒜v

vehv ,i,j ∀c ∈ 𝒞, (i, j) ∈ 𝒜, li ≠ lj , (3.23)

∑
v∈𝒱∶(i,j)∈𝒜v

vehv ,i,j = ∑
c∈𝒞

driverc,i,j ∀(i, j) ∈ 𝒜, li ≠ lj , (3.24)

driverc,i,j ≤ crewc,i,j ∀c ∈ 𝒞, (i, j) ∈ 𝒜, li ≠ lj , (3.25)

crewTimec,i + di,j − crewTimec,j ≤ M4 (1 − crewc,i,j) ∀c ∈ 𝒞, (i, j) ∈ 𝒜, (3.26)

arrv ,i ≤ crewTimec,i ≤ depv ,i ∀v ∈ 𝒱, c ∈ 𝒞, i ∈ 𝒩, (3.27)

driveStartc − crewTimec,i ≤ M5 (1 −∑
j∶(i,j)∈𝒜

driverc,i,j) ∀c ∈ 𝒞, i ∈ ℛ ∪ 𝒮, (3.28)

crewTimec,i − driveEndc ≤ M6 (1 −∑
h∶(h,i)∈𝒜

driverc,h,i) ∀c ∈ 𝒞, i ∈ ℛ ∪ ℰ, (3.29)

driveDurc = driveEndc − driveStartc ∀c ∈ 𝒞, (3.30)

∑
h∶(h,i)∈𝒜

crewc,h,i ≤ 1 ∀c ∈ 𝒞, i ∈ 𝒩, (3.31)

crewc,screw,ecrew ≤ crewc+1,screw,ecrew ∀c ∈ {1, … ,C − 1}, (3.32)

crewc,i,j + crewc,j,k ≤ 1 ∀c ∈ 𝒞, (i, j, k) ∶ (i, j) ∈ 𝒜, (j, k) ∈ 𝒜, li = lj = lk , (3.33)

∑
(i,j)∈𝒜∶i,j∈S

crewc,i,j ≤ |S| − 1 ∀c ∈ 𝒞, S ⊆ 𝒩. (3.34)

Figure 3.7: The crew component of the mixed integer programming model.

3.5. The Constraint Programming Model 59

interchanges. Constraints (3.28) and (3.29) determine the start and end of driving of each crew.
Constraint (3.28) is a linearization of the constraint

∑
j∶(i,j)∈𝒜

driverc,i,j = 1 → driveStartc ≤ crewTimec,i ∀c ∈ 𝒞, i ∈ ℛ ∪ 𝒮,

which imposes that, if a driver departs the node i, the driver must have already started driving
before or at the departure time at i. Similarly, Constraint (3.29) states that if a crew drives
to node i, the end of driving of the crew must be later than or at the arrival time of i. Con-
straint (3.30) calculates the driving duration of each crew. Constraints (3.31) and (3.32) are
redundant constraints and are equivalent to Constraints (3.18) and (3.19). Constraint (3.33)
prevents crews from visiting subsequences of three or more requests at the same location, as
explained in Section 3.3. M4 to M6 are big-M constants.

When a crew travels between two requests i and j within a location, the distance and travel
time is zero (di,j = 0), and hence, Constraint (3.26) fails to perform subtour elimination. There
are two possible remedies. The first option replaces di,j in Constraint (3.26) with a new crew
travel time cost that has a positive value when traveling between two requests within a location.
This value can be interpreted as the time required for a crew to switch vehicles. The alternative
option is to use the subtour elimination constraints specified by Constraint (3.34). Our algorithm
uses the second approach but adds these constraints lazily in a branch-and-cut scheme.

Objective Function (3.35) minimizes a weighted sum of the number of vehicles and crews
used and the total vehicle and crew travel distances.

minw1∑
v∈𝒱

∑
j∈𝒫

vehv ,sv ,j + w2∑
c∈𝒞

∑
j∈𝒮

crewc,screw,j +

w3∑
v∈𝒱

∑
(i,j)∈𝒜v

di,jvehv ,i,j + w4∑
c∈𝒞

∑
(i,j)∈𝒜

di,jcrewc,i,j .
(3.35)

3.5 The Constraint Programming Model

This section discusses the constraint programming formulation of the high-level model of the
JVCRSP.

The inputs and decision variables of the constraint programmingmodel are listed in Table 3.2.
The definitions of many of the variables are identical to those in the mixed integer programming
model but differ in that some sets are discrete instead of continuous. The problem is defined on a
discrete time interval 𝒯 = {0, … , T }, where T ∈ {1, … ,∞} is the time horizon. Let V ∈ {1, … ,∞} be
the number of vehicles, and Q ∈ {0, … ,∞} be the load capacity of each vehicle. Let C ∈ {V , … ,∞}
be the number of crews, and ̄T ∈ 𝒯 be the maximum driving duration. The vehicles and crews
are represented by the sets 𝒱 = {1, … ,V } and 𝒞 = {1, … ,C} respectively. The set 𝒞0 = 𝒞 ∪ {0}
extends the set of crews with a dummy value 0 that indicates no crew.

The problem has P ∈ {1, … ,∞} pickup-delivery pairs, giving a total of R = 2P requests.
Define 𝒫 = {1, … , P} and 𝒟 = {P + 1, … , R} as the set of pickups and deliveries respectively, and
group them in the set ℛ = 𝒫 ∪𝒟. For every vehicle v ∈ 𝒱, define its unique start and end node
as s(v) = R +v and e(v) = R +V +v . The start and end nodes are grouped in 𝒮 = {R +1,… , R +V }

60 Chapter 3. The Joint Vehicle and Crew Routing and Scheduling Problem

Name Description

T ∈ {1, … ,∞} Time horizon.
𝒯 = {0, … , T } Time interval.
V ∈ {1, … ,∞} Number of vehicles.
𝒱 = {1, … ,V } Set of vehicles.
Q ∈ {0, … ,∞} Vehicle capacity.
C ∈ {V , … ,∞} Number of crews.
𝒞 = {1, … ,C} Set of crews.
𝒞0 = 𝒞 ∪ {0} Set of crews, including a 0 value indicating no crew.
̄T ∈ 𝒯 Maximum driving duration of a crew.

P ∈ {1, … ,∞} Number of pickup-delivery pairs.
R = 2P Number of requests.
𝒫 = {1, … , P} Set of pickup nodes.
𝒟 = {P + 1,… , R} Set of delivery nodes.
ℛ = 𝒫 ∪𝒟 Set of all requests.
s(v) = R + v Start node of vehicle v ∈ 𝒱.
e(v) = R + V + v End node of vehicle v ∈ 𝒱.
𝒮 = {R + 1,… , R + V } Set of vehicle start nodes.
ℰ = {R + V + 1,… , R + 2V } Set of vehicle end nodes.
𝒩 = ℛ ∪ 𝒮 ∪ ℰ Set of all requests and vehicle start and end nodes.
𝒩0 = 𝒩 ∪ {0} Set of all nodes, including the crew depot node 0.
ℒ Set of locations, including one depot location.
l(i) ∈ ℒ Location of i ∈ 𝒩.
a(i) ∈ 𝒯 Earliest start of service at i ∈ 𝒩.
b(i) ∈ 𝒯 Latest start of service at i ∈ 𝒩.
t(i) ∈ {1, … ,∞} Service duration of i ∈ 𝒩.
q(i) ∈ {−Q, … ,Q} Load demand at i ∈ 𝒩.
d(i, j) ∈ 𝒯 Distance and travel time from i ∈ 𝒩 to j ∈ 𝒩.
w1 ∈ {1, … ,∞} Cost of using one vehicle.
w2 ∈ {1, … ,∞} Cost of using one crew.
w3 ∈ {1, … ,∞} Cost of one unit of vehicle distance.
w4 ∈ {1, … ,∞} Cost of one unit of crew distance.

succ(i) ∈ 𝒩 Successor of i ∈ 𝒩.
veh(i) ∈ 𝒱 Vehicle that visits i ∈ 𝒩.
arr(i) ∈ 𝒯 Arrival time at i ∈ 𝒩.
serv(i) ∈ {a(i), … , b(i)} Start of service at i ∈ 𝒩.
dep(i) ∈ 𝒯 Departure time at i ∈ 𝒩.
load(i) ∈ {0, … ,Q} Load of vehicle veh(i) after servicing i ∈ 𝒩.
vehUsed(v) ∈ {0, 1} Indicates if vehicle v ∈ 𝒱 is used.
crewSucc(c, i) ∈ 𝒩0 Successor of i ∈ 𝒩0 for crew c ∈ 𝒞0.
crewTime(i) ∈ 𝒯 Time when all crews that visit i ∈ 𝒩 is present at i.
crewUsed(c) ∈ {0, 1} Indicates if crew c ∈ 𝒞 is used.
crewDist(c) ∈ {0, … ,∞} Distance traveled by crew c ∈ 𝒞.
driver(i) ∈ 𝒞0 Driver of vehicle veh(i) from i ∈ ℛ ∪ 𝒮 to succ(i), with

the value 0 indicating no driver.
driveStart(c) ∈ 𝒯 Start time of driving for crew c ∈ 𝒞0.
driveEnd(c) ∈ 𝒯 End time of driving for crew c ∈ 𝒞0.
driveDur(c) ∈ {0, … , ̄T } Driving duration of crew c ∈ 𝒞.

Table 3.2: The data and decision variables of the constraint programming model.

3.5. The Constraint Programming Model 61

S1 E1 S2 E2

S3E3S4E4

Figure 3.8: Example of four vehicle routes as modeled by successor variables. The S nodes and
E nodes respectively are the start nodes and end nodes of the four vehicles.

and ℰ = {R + V + 1, … , R + 2V }. Let 𝒩 = ℛ ∪ 𝒮 ∪ ℰ be the set of all nodes, and 𝒩0 = 𝒩 ∪ {0} be
the set of all nodes plus the combined crew start and end depot node 0.

Define ℒ as the set of locations, including one depot location. For every node i ∈ 𝒩, define
l(i) ∈ ℒ as its location, a(i) ∈ 𝒯 and b(i) ∈ 𝒯 as the opening and closing of its time window,
t(i) ∈ {1, … ,∞} as its service duration, and q(i) ∈ {−Q, … ,Q} as its load demand. Let d(i, j) ∈ 𝒯
be the distance and travel time from i ∈ 𝒩 to j ∈ 𝒩.

Let w1 ∈ {1, … ,∞} and w2 ∈ {1, … ,∞} be the cost of using one vehicle and one crew, and let
w3 ∈ {1, … ,∞} and w4 ∈ {1, … ,∞} be the cost of one unit of distance traveled by a vehicle and
by a crew.

The primary decision variables are the vehicle successor variables. Successor variables are
frequently seen in constraint programming models of vehicle routing problems (e.g., Kilby,
Prosser and Shaw 2000, Rousseau, Gendreau and Pesant 2002) and serve the same purpose as
the flow variables in the mixed integer programming model. For every node i ∈ 𝒩, succ(i) ∈ 𝒩
denotes the direct successor of i on its route. For example, if succ(i) = j, then the arc (i, j)
is used. The successor of a vehicle’s end node is the start node of the following vehicle, and
the successor of the last vehicle’s end node is the start node of the first vehicle. The time and
load resources are accumulated along a route and then reset at an end node prior to the start
of the next route. Under this modeling, the successor variables describe a Hamiltonian cycle.
Figure 3.8 shows an example of the Hamiltonian cycle formed by four vehicle routes. This
modeling was developed by Christofides and Eilon (1969) and subsequently called the giant tour
representation (e.g., Irnich 2008).

Since the successor variables are not indexed by vehicle, the model uses the veh(i) ∈ 𝒱
variable to store the vehicle that visits node i ∈ 𝒩. This modeling, which uses only two
vectors, is more succinct than the three-dimensional flow variables found in the mixed integer
programming model.

Variables arr(i) ∈ 𝒯, serv(i) ∈ {a(i), … , b(i)} and dep(i) ∈ 𝒯 represent the arrival time,
service start time and departure time at node i ∈ 𝒩. The load after servicing node i ∈ 𝒩 is stored
in load(i) ∈ {0, … ,Q}. Variable vehUsed(v) ∈ {0, 1} indicates whether vehicle v ∈ 𝒱 is used.

There is a significant difference between vehicles and crews in terms of routing. For vehicles,
every request is visited exactly once, which allows the use of a single set of successor variables.
In contrast, multiple crews can be on a vehicle when it visits a node, and hence, it is not

62 Chapter 3. The Joint Vehicle and Crew Routing and Scheduling Problem

possible to associate a single crew successor variable with every node. Instead, the model needs
a crew successor variable for every crew and every node. However, for any given crew, its
successor variables do not need to cover all requests. The crew successor variables are a matrix
crewSucc(c, i) ∈ 𝒩0 that stores the immediate successor of node i ∈ 𝒩0 for crew c ∈ 𝒞0. If
crew c does not visit a node i, then crewSucc(c, i) = i. The crewTime(i) ∈ 𝒯 variable stores
a moment when every crew that visits i ∈ 𝒩 is present at i. For every crew c ∈ 𝒞, variable
crewUsed(c) ∈ {0, 1} indicates whether the crew is used, and crewDist(c) ∈ {0, … ,∞} stores the
distance traveled by the crew.

Every node i ∈ ℛ ∪ 𝒮 has an associated driver(i) ∈ 𝒞0 variable that either denotes the driver
of vehicle veh(i) if the vehicle travels from i to its successor succ(i) at a different location, or
takes the value 0, indicating that no driver is necessary, if the successor is at the same location.
The variables driveStart(c) ∈ 𝒯 and driveEnd(c) ∈ 𝒯 store the start and end time of driving of
crew c ∈ 𝒞0, and driveDur(c) ∈ {0, … , ̄T } stores the total driving duration of crew c ∈ 𝒞.

Like the mixed integer programming model, the constraints of the constraint programming
model are also divided into a vehicle component and a crew component. The vehicle component,
depicted in Figure 3.9, models a PDPTW. Constraints (3.36) to (3.38) restrict the possible values
of the successor variables. Constraint (3.36) states that a vehicle can only move from its start
node to any pickup node or its end node. Constraint (3.37) states that a vehicle can move from a
pickup node to any pickup or delivery node, and Constraint (3.38) states that a vehicle can move
from a delivery node to any pickup, delivery or end node. Constraints (3.39) and (3.40) join
the end nodes to the start nodes. Using the giant tour modeling, the Circuit global constraint
from Constraint (3.41) performs subtour elimination by imposing a Hamiltonian cycle through
the succ(⋅) variables. Constraints (3.42) and (3.43) allow only the associated vehicle to visit the
start nodes and end nodes. Constraint (3.43) is needed to prevent vehicles from visiting the
end node of other vehicles, which is permitted by Constraint (3.38). Constraint (3.44) tracks
vehicles along their routes. Constraints (3.45) and (3.46) are the pickup and delivery constraints.
Constraints (3.47) and (3.48) order the arrival, service and departure times at each request.
Constraint (3.49) restricts each start and end node to one common arrival/service/departure
time. Constraint (3.50) enforces travel times. Constraints (3.51) to (3.53) bound the vehicle loads.
Constraint (3.54) is the load constraint. Constraints (3.55) and (3.56) state that a vehicle is used
if and only if it does not travel from its start node to its end node or if it visits any request. Since
they are equivalences, only one of these constraints is necessary but, in practice, stating the
two constraints achieves stronger propagation. Constraint (3.57) breaks vehicle symmetry in a
manner similar to Constraint (3.19).

The crew component, depicted in Figure 3.10, overlays the vehicle component with crew
decisions. Constraints (3.58) to (3.62) are the domain restrictions. Constraint (3.58) requires
crews to either leave the crew depot node for a vehicle start node or remain at the crew depot
node. Constraints (3.59) to (3.61) are similar to Constraints (3.36) to (3.38) with the exception
that the successor of a node is itself if it is not visited. Constraint (3.62) states that a crew either
moves from a vehicle end node to the crew depot node or the crew does not visit the end node.
The Subcircuit global constraint of Constraint (3.63) enforces connectivity and eliminates

3.5. The Constraint Programming Model 63

succ(s(v)) ∈ 𝒫 ∪ {e(v)} ∀v ∈ 𝒱, (3.36)

succ(i) ∈ 𝒫 ∪𝒟 ∀i ∈ 𝒫, (3.37)

succ(i) ∈ 𝒫 ∪𝒟 ∪ ℰ ∀i ∈ 𝒟, (3.38)

succ(e(v)) = s(v + 1) ∀v ∈ {1, … ,V − 1}, (3.39)

succ(e(V)) = s(1), (3.40)

Circuit(succ(⋅)), (3.41)

veh(s(v)) = v ∀v ∈ 𝒱, (3.42)

veh(e(v)) = v ∀v ∈ 𝒱, (3.43)

veh(succ(i)) = veh(i) ∀i ∈ ℛ ∪ 𝒮, (3.44)

veh(i) = veh(P + i) ∀i ∈ 𝒫, (3.45)

dep(i) + d(i, P + i) ≤ arr(P + i) ∀i ∈ 𝒫, (3.46)

arr(i) ≤ serv(i) ∀i ∈ ℛ, (3.47)

serv(i) + t(i) ≤ dep(i) ∀i ∈ ℛ, (3.48)

arr(i) = serv(i) = dep(i) ∀i ∈ 𝒮 ∪ ℰ, (3.49)

dep(i) + d(i, succ(i)) = arr(succ(i)) ∀i ∈ ℛ ∪ 𝒮, (3.50)

load(i) = 0 ∀i ∈ 𝒮 ∪ ℰ, (3.51)

q(i) ≤ load(i) ≤ Q ∀i ∈ 𝒫, (3.52)

0 ≤ load(i) ≤ Q + q(i) ∀i ∈ 𝒟, (3.53)

load(i) + q(succ(i)) = load(succ(i)) ∀i ∈ ℛ ∪ 𝒮, (3.54)

vehUsed(v) ↔ succ(s(v)) ≠ e(v) ∀v ∈ 𝒱, (3.55)

vehUsed(v) ↔ ⋁
i∈ℛ

veh(i) = v ∀v ∈ 𝒱, (3.56)

vehUsed(v) ≥ vehUsed(v + 1) ∀v ∈ {1, … ,V − 1}. (3.57)

Figure 3.9: The vehicle component of the constraint programming model.

64 Chapter 3. The Joint Vehicle and Crew Routing and Scheduling Problem

crewSucc(c, 0) ∈ 𝒮 ∪ {0} ∀c ∈ 𝒞, (3.58)

crewSucc(c, i) ∈ 𝒫 ∪ {i} ∀c ∈ 𝒞, i ∈ 𝒮, (3.59)

crewSucc(c, i) ∈ 𝒫 ∪𝒟 ∀c ∈ 𝒞, i ∈ 𝒫, (3.60)

crewSucc(c, i) ∈ 𝒫 ∪𝒟 ∪ ℰ ∀c ∈ 𝒞, i ∈ 𝒟, (3.61)

crewSucc(c, i) ∈ {0, i} ∀c ∈ 𝒞, i ∈ ℰ, (3.62)

Subcircuit(crewSucc(c, ⋅)) ∀c ∈ 𝒞, (3.63)

l(succ(i)) = l(i) ↔ driver(i) = 0 ∀i ∈ ℛ ∪ 𝒮, (3.64)

crewSucc(driver(i), i) = succ(i) ∀i ∈ ℛ ∪ 𝒮, (3.65)

l(crewSucc(c, i)) = l(i) ∨ crewSucc(c, i) = succ(i) ∀c ∈ 𝒞, i ∈ ℛ ∪ 𝒮, (3.66)

CrewShortcut(succ(⋅), crewSucc(⋅, ⋅), arr(⋅), dep(⋅),𝒞,ℛ, 𝒮,ℰ, l(⋅)), (3.67)

arr(i) ≤ crewTime(i) ≤ dep(i) ∀i ∈ 𝒩, (3.68)

crewTime(i) ≤ crewTime(crewSucc(c, i)) ∀c ∈ 𝒞, i ∈ ℛ ∪ 𝒮, (3.69)

driveStart(driver(i)) ≤ dep(i) ∀i ∈ ℛ ∪ 𝒮, (3.70)

driveEnd(driver(i)) ≥ arr(succ(i)) ∀i ∈ ℛ ∪ 𝒮, (3.71)

driveDur(c) = driveEnd(c) − driveStart(c) ∀c ∈ 𝒞, (3.72)

crewUsed(c) ↔ ⋁
i∈𝒩0

crewSucc(c, i) ≠ i ∀c ∈ 𝒞, (3.73)

crewUsed(c) ↔ ⋁
i∈ℛ∪𝒮

driver(i) = c ∀c ∈ 𝒞, (3.74)

crewUsed(c) ≥ crewUsed(c + 1) ∀c ∈ {1, … ,C − 1}, (3.75)

CrewBound(crewDist(c), crewSucc(c, ⋅), crewTime(⋅),ℛ, 𝒮,ℰ, d(⋅, ⋅)) ∀c ∈ 𝒞. (3.76)

Figure 3.10: The crew component of the constraint programming model.

3.5. The Constraint Programming Model 65

subtours (Francis and Stuckey 2014). It differs from the Circuit constraint seen in the vehicle
component by allowing some nodes to be excluded from the Hamiltonian cycle.

Constraint (3.64) states that vehicles have no driver when moving within a location. Con-
straint (3.65) requires drivers to move with their vehicles. Constraint (3.66) requires crews to
either move to another node at their current location or move with a vehicle (to a different
location). The CrewShortcut global constraint in Constraint (3.67) removes crew subsequence
symmetries within locations, and is detailed in Section 3.5.1. Constraint (3.68) allows crews to
be at a node only while a vehicle is present. Constraint (3.69) forces crews to move forward
in time only. Constraint (3.70) states that the driver on the arc (i, succ(i)) starts driving at or
before departing i. Similarly, Constraint (3.71) states that the driver on the arc (i, succ(i)) ends
driving at or after arriving at succ(i). Constraint (3.72) calculates the total driving duration
of each crew. Constraints (3.73) and (3.74) state that a crew is used if and only if it visits at
least one node or if it drives along any arc. Constraint (3.75) is a symmetry-breaking constraint.
Constraint (3.76) is a global optimization constraint, described in Section 3.5.2, that bounds crew
distances and checks whether crews can return to the depot.

Objective Function (3.77) minimizes a weighted sum of the vehicle and crew counts and the
total vehicle and crew travel distances.

minw1∑
v∈𝒱

vehUsed(v) +w2∑
c∈𝒞

crewUsed(c) +w3∑
i∈ℛ∪𝒮

d(i, succ(i)) +w4∑
c∈𝒞

crewDist(c). (3.77)

3.5.1 Breaking Crew Subpath Symmetries within Locations

The CrewShortcut global constraint of Constraint (3.67) removes symmetric subsequences of
requests within locations, which are previously explained in Section 3.3. Define pred(i) ∈ 𝒩 as
the vehicle predecessor of the node i ∈ 𝒩, and crewPred(c, i) ∈ 𝒩0 as the predecessor of i ∈ 𝒩0

for crew c ∈ 𝒞0. CrewShortcut implements the following two propagation rules:

l(pred(i)) = l(i) = l(succ(i)) ↔ ⋀
c∈𝒞

crewSucc(c, i) = i ∀i ∈ ℛ, (3.78)

l(i) = l(crewSucc(c, i)) ∧ crewSucc(c, i) ≠ i →

l(i) ≠ l(crewSucc(c, crewSucc(c, i))) ∧ l(i) ≠ l(crewPred(c, i)) ∀c ∈ 𝒞, i ∈ ℛ. (3.79)

Rule (3.78) states that if a vehicle visits a sequence of three requests at the same location, then
crews cannot visit the second request of the sequence. Rule (3.79) states that if a crew visits a
node i and then another node at the same location, then the crew cannot visit a third node at
the same location and the crew must reach i from a different location.

3.5.2 Feasibility and Bounding of Crew Routes

The constraint programming model presented so far has fewer variables than the mixed integer
programming model and prunes infeasible solutions effectively. However, removing infeasible
arcs by pruning values from the domains of successor variables may have little or no impact
on the lower bound of the objective value. This limitation of constraint programming can be

66 Chapter 3. The Joint Vehicle and Crew Routing and Scheduling Problem

S

1

2

3

4

E

S

1

2

3

4

E

Figure 3.11: Example of a partial crew route obtained at an early stage of the search. The S and
E nodes are the start node and end node respectively. Solid arrows represent crew assignments
and dotted arrows represent possible crew assignments.

addressed using global optimization constraints, which are previously introduced in Section 2.6.1.
This section presents a global optimization constraint that checks the feasibility of the crew
partial routes and computes lower bounds to the crew objectives.

The search procedure of the constraint programming model branches on the vehicle suc-
cessor variables before the crew successor variables. This means that, while searching for
vehicle routes, the domains of the crew successor variables are large, leading to weak lower
bounds to the crew distance terms in the objective function. For example, Figure 3.11 shows a
partial crew route found in an early stage of the search when the focus is on vehicle routes. The
crew is allocated to traverse the arcs (1, 2) and (3, 4), but it is not yet known if a path from the
start node S to the end node E via these two arcs exists, and how long this path is if it exists.

A global optimization constraint is used to determine whether each crew has a feasible
route and to compute lower bounds to the crew distance. Such a constraint needs to find, for
every crew, a shortest path from a start node to an end node that includes all arcs known to
be traversed by the crew. Since this problem is NP-hard (Dreyfus 1969, Ibaraki 1973, Laporte,
Mercure and Norbert 1984, Volgenant and Jonker 1987), the CrewBound constraint, presented
below, uses its linear relaxation.

Whenever a crewSucc(c, ⋅) variable is fixed, the CrewBound constraint solves the linear
program defined in Figure 3.12 for the crew c ∈ 𝒞. The inputs to this linear program include four
sets extracted from the current domains of the variables in the main constraint programming
model. Let the D(⋅) function denote the current domain of a variable, then the four input sets
are

• cSucc(i) = D(crewSucc(c, i)) for i ∈ ℛ ∪ 𝒮,
• cTime(i) = D(crewTime(i)) for i ∈ 𝒩,

• cDist = D(crewDist(c)), and
• ℬ = {(i, j)|i ∈ ℛ ∪ 𝒮, j ∈ cSucc(i), i ≠ j}, which represents the current set of arcs that can
be traversed by the crew.

The xi,j variable indicates whether the crew traverses arc (i, j) ∈ ℬ, and the ti variable stores
the arrival time to node i.

3.5. The Constraint Programming Model 67

min∑
(i,j)∈ℬ

d(i, j)xi,j (3.80)

subject to

min(cDist) ≤ ∑
(i,j)∈ℬ

d(i, j)xi,j ≤ max(cDist), (3.81)

∑
(i,j)∈ℬ∶i∈𝒮

xi,j = 1, (3.82)

∑
h∶(h,i)∈ℬ

xh,i = ∑
j∶(i,j)∈ℬ

xi,j ∀i ∈ ℛ, (3.83)

∑
(h,i)∈ℬ∶i∈ℰ

xh,i = 1, (3.84)

∑
j∶(i,j)∈ℬ

xi,j ≤ 1 ∀i ∈ ℛ ∪ 𝒮, (3.85)

ti + d(i, j) − tj ≤ M(1 − xi,j) ∀(i, j) ∈ ℬ, (3.86)

xi,j ∈ [0, 1] ∀(i, j) ∈ ℬ, (3.87)

ti ∈ [min(cTime(i)),max(cTime(i))] ∀i ∈ 𝒩. (3.88)

Figure 3.12: The linear relaxation of the shortest path problem in the CrewBound optimization
constraint.

Objective Function (3.80) minimizes the total distance. Constraint (3.81) bounds the objective
value using information from the current domains of the variables in the main constraint
programming model. Constraints (3.82) to (3.84) are the flow constraints, which ensure the
existence of a path from a start node to an end node. Constraint (3.85) is a redundant constraint
that strengthens the linear program. Constraint (3.86) is the time-based subtour elimination
constraint, where M is a big-M constant. When d(i, j) = 0, this constraint fails to perform
subtour elimination; however, the linear program remains a valid relaxation of the shortest
path problem. Constraints (3.87) and (3.88) restrict the domains of the xi,j and ti variables
respectively.

The CrewBound constraint performs three tasks. First, it checks feasibility, i.e., the exist-
ence of a route for the crew that satisfies all constraints. Second, it constrains the lower bound
of crewDist(c) to be greater than the objective value of the linear program. Third, it prunes the
search space using the reduced costs at optimality. For every arc (i, j) ∈ ℬ, it prunes j from the
domain of crewSucc(c, i) if

min(cDist) + ̄x i,j > max(cDist),

where ̄x i,j is the reduced cost of xi,j .

68 Chapter 3. The Joint Vehicle and Crew Routing and Scheduling Problem

Algorithm 3.1: Sketch of the procedure that assigns vehicle routes.

1 for all v ∈ 𝒱
2 i ← s(v)
3 while i ≠ e(v)
4 try all j ∈ D(succ(i)) ordered by min(l(i) ≠ l(j),min(D(ser(j))))
5 succ(i) ← j

6 i ← succ(i)

3.5.3 The Search Procedures

The search procedure first assigns vehicle routes and then crew routes. Once all routes are
assigned, it assigns values to the time variables.

Vehicle routes are assigned according to Algorithm 3.1. The procedure considers each
vehicle in turn (Line 1) and labels the successor variables from its start node (Line 2) to its end
node (Line 3). To choose successors, the algorithm assigns nodes to successor variables using a
heuristic that lexicographically prefers nodes at the same location and then nodes with earlier
service start times (Line 4). Line 5 makes the assignment, and Line 6 advances to the chosen
successor node. The try all instruction defines a branching decision.

Crew routes assigned using Algorithm 3.2. The intuition behind the algorithm is to start
with a node i that has no assigned driver, assign a driver c to this node, and then complete
the route of this crew. In assigning the route of crew c, preference is given to assigning the
crew to drive as much as possible. More precisely, the search procedure begins by ordering all
nodes i ∈ ℛ ∪ 𝒮 that have an unassigned driver(i) variable by earliest departure time (Line 2).
The search procedure then selects the first of these nodes and assigns it a driver (Line 4). Only
a single driver (here, the one with smallest index) must be considered at this point because
all crews are identical (Line 3). For this driving crew, the search procedure constructs a path
covering the vehicle routes from the node to the depot (Line 6). It simultaneously labels the
crew successor variables from the node to any vehicle end node (Line 8) and the driver variables
until the crew exceeds its maximum driving duration (Line 9). Note that the try instruction
in Line 9 tries to assign crew c as the driver at node i. If this is not possible, the instruction
has no effect. The value selection heuristic for crew successor variables favors the node that
is visited next by the current vehicle of the crew, provided that the crew can drive from this
node; otherwise, the successor is chosen randomly. Once the crew reaches an end node, it is
disallowed from driving at any other node (Lines 11 and 12). This process is repeated until all
driver(⋅) variables are fixed. The search procedure then completes the crew routes by labeling
the crew successor variables from the first drive node of each crew back to any vehicle start
node (Lines 13 to 17).

Algorithm 3.3 shows the procedure that assigns vehicle schedules and crew schedules. This
procedure is best explained using Figure 3.2. The search procedure selects a vehicle route and
divides it into segments consisting of requests at the same location. These segments correspond
to requests 1 to 3 and requests 4 to 6 in the example. The search procedure then labels the
departure time variable at the exit request in each segment (i.e., requests 3 and 6). It only needs

3.6. The Large Neighborhood Search 69

Algorithm 3.2: Sketch of the procedure that assigns drivers and crew routes.

1 initialize list startDrive of tuples
2 for all i ∈ ℛ ∪ 𝒮 such that |D(driver(i))| > 1 ordered by min(D(dep(i)))
3 c ← min(D(driver(i)))
4 driver(i) ← c
5 startDrive.append(c, i)
6 while i ∉ ℰ
7 try all j ∈ D(crewSucc(c, i)) ordered by max(c ∈ D(driver(i)) ∧ j ∈ D(succ(i)), rand())
8 crewSucc(c, i) ← j
9 try driver(i) ← c

10 i ← crewSucc(c, i)
11 for all i ∈ ℛ ∪ 𝒮 such that c ∈ D(driver(i)) ∧ |D(driver(i))| > 1
12 driver(i) ≠ c

13 for all (c, i) ∈ startDrive
14 while i ∉ 𝒮
15 try all h ∈ 𝒩 such that i ∈ D(crewSucc(c, h))
16 crewSucc(c, h) ← i

17 i ← h

to branch on the departure time variables at these requests because the arrival time at the entry
requests (i.e., requests 1 and 4) are specified by the travel time constraints, and all three time
variables at the intermediate nodes (i.e., requests 2 and 5) are bounded by the arrival time at
entry requests and the departure time at the exit requests. Once the arrival and departure time
of each segment is known, the search procedure simply fixes the time variables at intermediate
nodes to their earliest possible. This is always feasible since the travel time and service time
constraints already bound the time variables at intermediate requests during the construction
of the routes. Crew schedules are simply fixed to their earliest possible since they are tied to
the vehicle schedules.

Note that branching on the departure times is essential because of the constraint that limits
the maximum driving duration. This constraint is a simple subtraction and propagates extremely
weakly unless its variables are fixed.

3.6 The Large Neighborhood Search

A large neighborhood search is also applied to the mixed integer programming and constraint
programming models. Large neighborhood search iteratively finds a sequence of improving
solutions by destroying parts of a solution and reconstructing it using an underlying solution
method. In particular, large neighborhood search uses a neighborhood to fix a number of
variables to their values in the incumbent solution and then calls the underlying solver to
determine values for the remaining relaxed variables. The solver is given a limited run time
since large neighborhood search is an incomplete method and no proof of optimality is available.
The large neighborhood search is applied to both the mixed integer programming and constraint
programming models with the following four neighborhoods:

70 Chapter 3. The Joint Vehicle and Crew Routing and Scheduling Problem

Algorithm 3.3: Sketch of the procedure that assigns vehicle and crew schedules.

1 for all v ∈ 𝒱 ordered by min(D(dep(s(v))))
2 i ← s(v)
3 while i ∉ ℰ
4 while l(i) = l(succ(i))
5 dep(i) ← min(D(dep(i)))
6 ser(i) ← min(D(ser(i)))
7 i ← succ(i)
8 try all t ∈ D(dep(i))
9 dep(i) ← t

10 ser(i) ← min(D(ser(i)))
11 i ← succ(i)

12 for all c ∈ 𝒞
13 i ← crewSucc(c, 0)
14 while i ≠ 0
15 crewTime(i) ← min(D(crewTime(i)))
16 i ← crewSucc(c, i)

• Vehicle Route Neighborhood: This neighborhood fixes a number of vehicle routes
and destroys all other vehicle routes and all existing crew routes. This neighborhood
destroys large portions of an existing solution, and hence, has the potential to explore
diverse parts of the search space. However, the neighborhood is difficult to explore
exhaustively because of its size. Because of this, this neighborhood performs better early
in optimization and has difficulty improving the solutions near optimality.

• Request Neighborhood: This neighborhood relaxes several pickup-delivery pairs and
all crew routes. The relaxed requests are then inserted into existing routes. This neighbor-
hood complements the vehicle route neighborhood since it attempts to obtain incremental
improvement to an existing solution by destroying small portions of the solution. This
neighborhood performs better than the vehicle routing neighborhood later in the solution
process because it is significantly smaller and can be explored more exhaustively.

• Crew Route Neighborhood: This neighborhood fixes all vehicle routes and relaxes a
number of crew routes. It aims to improve the crew objectives using the same reasoning
as for the Vehicle Route Neighborhood.

• Crew Passenger Neighborhood: This neighborhood fixes all vehicle routes and the
driving segments of all crews, and relaxes the passenger segments before and after the
driving segment of each crew. This neighborhood attempts to obtain minor improvement
to an existing solution by optimizing the pre-driving and post-driving passenger segments
of crews. These two segments are only loosely coupled to the vehicles, whereas the
driving segment of each crew is tightly coupled to the vehicles. This means that there is
more opportunity to optimize these two segments.

3.7. Experimental Results 71

3.7 Experimental Results

This section describes the experiments and analyzes the results.

3.7.1 The Instances

The instances are generated to capture the essence of applications in humanitarian and military
logistics. These problems typically feature fewer locations than traditional vehicle routing
applications but comprise multiple requests at each location. First, five sets of seven locations
and five sets of eleven locations are generated on a 50 × 50 Euclidean grid. Next, 5, 10, 20, 30,
40 and 50 pickup-delivery pairs are generated and assigned to the locations. The instances are
then duplicated using three different cost functions:

• w1 = 1000, w2 = 1000, w3 = 1, w4 = 1,
• w1 = 1000, w2 = 5000, w3 = 1, w4 = 1, and
• w1 = 5000, w2 = 1000, w3 = 1, w4 = 1.

In total, there are 10 × 6 × 3 = 180 instances. Service durations vary between 1 and 20, and load
demands vary between 1 and 15. The time windows of requests are randomly chosen.

3.7.2 The Methods

Both the mixed integer programming and constraint programming models are solved in two
stages. First, the vehicle component is solved to produce an initial set of feasible vehicle routes.
Then the full model, consisting of the vehicle and crew components, is started using these
vehicle routes. If the vehicle routing stage is unable to find a feasible solution, the main model
is started with a solution consisting of one pickup-delivery pair per vehicle.

Additionally, the full model is solved with (1) the vehicle route variables fixed according to
the initial solution, and (2) the vehicle route variables fixed according to the initial solution and
the vehicle time variables fixed to their earliest possible. These two models are respectively
named Fixed and Semi-flexible. The original model with both variable vehicle routes and
schedules is named Flexible.

All three models are started using the same vehicle routes, enabling any improvement in
the objective value to be attributed to the joint vehicle and crew optimization rather than to
other causes, such as the branching decisions used to obtain an initial solution. Because the
vehicle routes in Fixed and Semi-flexible are fixed to the initial vehicle routing solution but
Semi-flexible also searches over vehicle schedules, any improvement in crew routing objectives
seen in Semi-flexible can be attributed to better vehicle scheduling. Similarly, the impact of
rerouting vehicles according to the crew objectives can be examined by comparing Flexible
against Semi-flexible since Semi-flexible has fixed vehicle routes but Flexible does not.

The mixed integer programming models and constraint programming models are respect-
ively implemented in Gurobi and Objective-CP (Van Hentenryck and Michel 2013). All six
models are solved using branch-and-bound and the large neighborhood search procedures
detailed in Section 3.6. The two search techniques are respectively named BB and LNS.

72 Chapter 3. The Joint Vehicle and Crew Routing and Scheduling Problem

MIP-BB CP-BB MIP-LNS CP-LNS

Fixed 118 180 151 180
Semi-flexible 121 180 144 180
Flexible 94 180 143 180

Table 3.3: Number of instances with feasible solutions for each method.

The following parameters are used for the large neighborhood search:

• The four neighborhoods are selected with equal probability. For the first stage of the
sequential methods, there is an equal probability of selecting any of the two vehicle
neighborhoods.

• For the vehicle route neighborhood, between two and five vehicle routes are destroyed. If
the current solution has fewer than the chosen number of vehicle routes to destroy, one
route will be retained and the rest destroyed.

• For the request neighborhood, between two and seven pickup-delivery pairs are destroyed
but at least one is retained.

• For the crew route neighborhood, between two and seven crew routes are destroyed but
at least one is retained.

• For the crew passenger neighborhood, the passenger segments of all crews are destroyed
but the driving segments are retained.

• For MIP-LNS, Gurobi is called to determine values for the relaxed variables until it reaches
a time limit of one minute.

• For CP-LNS, Objective-CP is used to fix values for the relaxed variables until it reaches a
failure limit of 800.

The vehicle routing initialization is solved for one hour and the main model is solved for
three hours on an Intel Xeon E5-2660 V3 CPU at 2.6 GHz.

3.7.3 Feasible Solutions

Table 3.3 shows the number of instances for which the methods find at least one feasible solution.
The CP-based methods find feasible solutions to all 180 instances but the MIP-based methods
face significant difficulty in even finding feasible solutions.

3.7.4 The Impacts of Rescheduling Vehicles

The advantages seen in Semi-flexible in comparison to Fixed can be attributed to the ability
to co-optimize vehicle schedules and crews. Table 3.4 compares the four Semi-flexible models
against the Fixed models. The results show that the four Semi-flexible approaches perform
substantially better than their Fixed counterparts, achieving overall cost reductons of between
4.40% and 12.82%. The difference is most apparant in MIP-LNS, which performs up to 50.32%
better than FixedMIP-LNS. However, it also performs up to 129.03% worse. Semi-flexible MIP-BB

3.7. Experimental Results 73

MIP-BB CP-BB MIP-LNS CP-LNS

Fixed Average −12.82% −9.64% −4.40% −9.52%
Minimum −45.36% −45.68% −50.32% −31.12%
Maximum 1.22% 0.00% 129.03% 0.00%
Standard deviation 10.96% 8.11% 22.38% 7.83%

Best Fixed Average 98.59% 12.19% 28.69% −9.28%
Minimum −31.02% −31.02% −31.02% −31.05%
Maximum 918.69% 754.83% 560.02% 0.06%
Standard deviation 173.77% 71.24% 95.37% 7.60%

Table 3.4: Comparison of the four Semi-flexible methods against their Fixed counterparts and
the best Fixed method of each instance.

performs up to 1.22% worse than Fixed MIP-BB, while Semi-flexible CP-BB and CP-LNS perform
no worse than their Fixed variants.

A comparison of the four Semi-flexible methods against the a posteriori best Fixed method
of each instance is also presented in the table. The results indicate that Semi-flexible MIP-BB
(98.59%), CP-BB (12.19%) and MIP-LNS (28.69%) all perform worse than the best Fixed method on
average. Only Semi-flexible CP-LNS improves on the best Fixed approach on average (9.28%). In
fact, CP-LNS only performs up to 0.06% worse than the best Fixed approach on difficult instances,
whereas the other three methods perform from five to over nine times worse. However, all four
Semi-flexible approaches can perform up to 31% better. The standard deviations of comparing
MIP-BB, CP-BB and MIP-LNS against the best Fixed approach is particularly large, indicating
that their performance is highly dependent on the instances. The standard deviation of CP-LNS
is much smaller, suggesting that this method is more consistent in its performance.

The excellent behavior of Semi-flexible CP-LNS indicates that there is significant value in
jointly optimizing vehicle schedules and crew routes in a two-stage approach consisting of an
initial vehicle routing phase and a vehicle scheduling and crew routing and scheduling step.

3.7.5 The Impacts of Rerouting Vehicles

The effects of rerouting vehicles according to crew objectives can be observed by comparing
Flexible to Semi-flexible. Table 3.5 provides statistics comparing the four Flexible models against
the Semi-flexible models. On average, Flexible MIP-BB (0.49%), CP-BB (0.30%) and CP-LNS
(1.61%) perform better than their Semi-flexible counterparts. However, allowing variable vehicle
routes is detrimental to Flexible MIP-LNS. It displays significant difficulty in finding good
feasible solutions, performing 3.67% worse than Semi-flexible MIP-LNS overall. Flexible MIP-BB,
CP-BB and MIP-LNS all can perform up to 22.52% better than their Semi-flexible variants, while
CP-LNS can reach 30.76% better. Due to the short time limit and the larger search space, all
four Flexible methods can perform worse than their Semi-flexible counterparts. In particular,
Flexible MIP-LNS can be up to 58.89% worse off than Semi-flexible MIP-LNS.

The trends seen in comparing Flexible against the best Semi-flexible model is similar to
comparing Semi-flexible against the best Fixed method in the previous subsection. On average,

74 Chapter 3. The Joint Vehicle and Crew Routing and Scheduling Problem

MIP-BB CP-BB MIP-LNS CP-LNS

Semi-flexible Average −0.49% −0.30% 3.67% −1.61%
Minimum −22.52% −22.52% −22.52% −30.76%
Maximum 5.73% 1.55% 58.89% 9.02%
Standard deviation 3.34% 2.14% 10.73% 4.80%

Best Semi-flexible Average 103.08% 24.45% 48.48% −1.45%
Minimum −22.52% −22.52% −22.52% −30.66%
Maximum 1054.08% 867.52% 739.96% 9.02%
Standard deviation 215.79% 83.86% 117.43% 4.72%

Table 3.5: Comparison of the four Flexible methods against their Semi-flexible counterparts and
the best Semi-flexible method of each instance.

only Flexible CP-LNS performs better than the best Semi-flexible model (1.45%), and the other
three approaches perform significantly worse (24.45% to 103.08%). Even on difficult instances,
Flexible CP-LNS only performs up to 9.02% worse than the best Semi-flexible model; the other
three models perform from seven to over ten times worse. The standard deviation is again
small for CP-LNS, indicating that its performance is much more consistent than the other three
methods.

It appears that the concepts of rerouting vehicles for crew optimization are only realized by
Flexible CP-LNS, which improves upon the best Semi-flexible method with cost reductions of
up to 30.66% and 1.45% on average. These results indicate that improvements can be found by
rerouting vehicles but are computationally demanding, warranting further investigation on the
consequences of vehicle rerouting for crew routing and scheduling.

3.7.6 The Impacts of Rerouting and Rescheduling Vehicles

The combined effects of both rerouting and rescheduling vehicles can be analyzed in a com-
parison between the Flexible and Fixed methods. Table 3.6 shows summary statistics of this
comparison. Note that there is some inconsistency with the MIP results in Tables 3.4 and 3.5 due
to the different instances for which feasible solutions are available. The results demonstrate that
Flexible MIP-BB and MIP-LNS are inferior to Semi-flexible MIP-BB and MIP-LNS on average.
Flexible MIP-BB and MIP-LNS find fewer feasible solutions and improve less on Fixed MIP-BB
and MIP-LNS. Contrastingly, Flexible CP-BB and CP-LNS perform 9.90% and 11.01% better
than Fixed CP-BB and CP-LNS, which are more than the 9.64% and 9.52% improvements found
by Semi-flexible CP-BB and CP-LNS. MIP-BB, CP-BB and CP-LNS achieve benefits of up to
45.36%, 45.68% and 47.04% at their best, and never perform worse than their Fixed counterparts.
Flexible MIP-LNS improves on its own Fixed variant the most (50.32%), probably because Fixed
MIP-LNS performed poorly. Flexible MIP-LNS is also the only method not dominating its Fixed
counterpart, finding solutions up to 131.06% worse.

A comparison of Flexible against the a posteriori best Fixed results is also almost identical
to the previous discussions. Flexible MIP-BB, CP-BB and MIP-LNS average 78.56%, 11.94% and
33.25% worse than the best Fixed result, and can exceed nine times worse. Only Flexible CP-LNS

3.7. Experimental Results 75

MIP-BB CP-BB MIP-LNS CP-LNS

Fixed Average −11.13% −9.90% −0.86% −11.01%
Minimum −45.36% −45.68% −50.32% −47.04%
Maximum 0.00% 0.00% 131.06% 0.00%
Standard deviation 10.89% 8.49% 26.09% 8.34%

Best Fixed Average 78.56% 11.94% 33.25% −10.77%
Minimum −36.82% −36.82% −36.82% −46.99%
Maximum 918.69% 754.83% 560.02% 0.00%
Standard deviation 182.18% 71.37% 97.38% 8.16%

Table 3.6: Comparison of the four Flexible methods against their Fixed counterparts and the
best Fixed method of each instance.

improves on its Fixed variant on average (10.77%) and never performs any worse.
These results indicate that given an appropriate formulation and search technique, it is

possible to find improved solutions by rerouting and rescheduling vehicles. Considering that
Flexible CP-LNS dominates the best Fixed and improves on Semi-flexible as discussed previously,
it is easy to conclude that Flexible CP-LNS is the best method of those evalulated.

3.7.7 Detailed Analysis

This section presents the main discoveries for each method. All solutions from MIP-BB, CP-BB,
MIP-LNS and CP-LNS are respectively reported in Tables 3.7 to 3.10 at the end of this chapter
on pages 81 to 104.

Analysis of MIP-BB A number of findings related to MIP-BB are listed below:

• Fixed is only able to find feasible solutions to 118 of the 180 instances despite being
initialized with feasible vehicle routes. Semi-flexible and Flexible respectively find feasible
solutions to 121 and 94 instances. MIP-BB performs particularly poorly on the instances
with 40 and 50 pickup-delivery pairs. Fixed, Semi-flexible and Flexible are only able to
find feasible solutions to 7, 10 and 9 of the 60 largest instances respectively.

• Semi-flexible does not dominate Fixed; Semi-flexible performs worse on two instances
(1.22% and 0.42%). On average, Semi-flexible performs 12.82% better than Fixed on the 106
instances for which they both find feasible solutions. For the cost functions w1 = 1000
and w2 = 1000, w1 = 1000 and w2 = 5000, and w1 = 5000 and w2 = 1000, Semi-flexible
respectively averages 14.48%, 17.48% and 6.76% better than Fixed on the 36, 34 and
36 instances with feasible solutions from both models. As discussed previously, these
improvements are likely a consequence of allowing variable vehicle schedules.

• There are 82 instances for which Semi-flexible reschedules the vehicles for an improved
overall cost and a reduction in the number of crews. For these instances, 7.52 fewer crews
are needed on average, resulting in cost savings of 16.55%.

• Flexible dominates Fixed. It finds savings of 11.13% better overall, at least 20% savings on
16 instances, and 45.36% savings on one instance. For the three cost functions, Flexible

76 Chapter 3. The Joint Vehicle and Crew Routing and Scheduling Problem

performs 12.46%, 15.41% and 5.94% better than Fixed on average on the 29, 25 and 28
instances for which both models find feasible solutions.

• There are 25 instances for which Flexible trades crew costs for vehicle costs in order to find
overall better solutions. On these instances, overall costs reduced by 12.97%, vehicle costs
increased by 4.20% and crew costs reduced by 19.18%. Two of these 25 instances require
one more vehicle but one fewer crew, resulting in 0.50% and 10.49% cost savings overall,
which comprises of an increase in vehicle costs of 44.93% and 48.01%, and a decrease in
crew costs of 13.98% and 14.13%.

• Flexible performs 0.49% better on average than Semi-flexible. There are 12 instances for
which Flexible performs worse than Semi-flexible, and 28 instances for which it performs
better. For the three cost functions, Flexible averages 0.49%, 0.70% and 0.26% better than
Semi-flexible on the 31, 31 and 30 instances for which both approaches find feasible
solutions.

• There are 80 instances for which all three variants find feasible solutions. On these
instances, Semi-flexible and Flexible perform 10.77% and 11.41% better than Fixed re-
spectively, and Flexible improves upon Semi-flexible by 0.72%. These results suggest that
Flexible MIP-BB is superior to Semi-flexible; although it is difficult to definitively argue
this case considering that Flexible only finds feasible solutions to 94 instances whereas
Semi-flexible finds feasible solutions to 121 instances.

Analysis of CP-BB Several findings focusing on CP-BB are discussed below:

• Fixed, Semi-flexible and Flexible find feasible solutions to all 180 instances.

• CP-BB Fixed, Semi-flexible and Flexible averages 10.81%, 8.72% and 8.62% better than
MIP-BB Fixed, Semi-flexible and Flexible on the 80 instances where the three variants of
MIP-BB find solutions. CP-BB Fixed performs better than MIP-BB Fixed on 20 instances
and worse on 15 instances. CP-BB Semi-flexible performs better than MIP-BB Semi-
flexible on 20 instances and worse on 15. CP-BB Flexible performs better than MIP-BB
Flexible on 21 instances and worse on 16 instances.

• Semi-flexible performs 9.64% better overall than Fixed. For the three cost functions, it
averages 10.39%, 12.96% and 5.59% better. These numbers are not as pronounced as
MIP-BB because Fixed CP-BB already performs better than Fixed MIP-BB.

• Semi-flexible dominates Fixed, which shows that CP-BB can improve crew optimization
by searching over vehicle schedules. On 144 instances, Semi-flexible finds solutions with
4.47 fewer crews on average and reductions of 12.03% in cost compared to Fixed.

• Flexible dominates Fixed and averages 9.90% better overall, and 10.70%, 13.28% and 5.71%
better for the three cost functions.

• Flexible performs almost identically to Semi-flexible, achieving 0.30% better solutions in
general. It performs better than Semi-flexible on 28 instances, achieving reductions of
14.20% in cost. It also performs worse on three instances, with increased costs of 0.54%
on average.

3.7. Experimental Results 77

• There are 24 instances on which Flexible finds improved solutions compared to Fixed
by increasing vehicle costs. Increasing vehicle costs by 0.25% allows crew costs to be
decreased by 21.20%, achieving an overall reduction of 14.65%. On the same instances,
relaxing the vehicle routes allows Flexible to improve upon Semi-flexible by decreasing
crew costs by 3.81%, resulting in an overall decrease of 2.26% in costs.

Analysis of MIP-LNS An analysis of MIP-LNS is presented below:

• Fixed, Semi-flexible and Flexible find feasible solutions to 151, 144 and 143 instances
respectively; that is, 33, 23 and 49 more than MIP-BB.

• Semi-flexible sees benefits of 4.40% compared to Fixed. It performs worse (23.18%) on five
instances and better (11.62%) on 115 instances. For the three cost functions, Semi-flexible
finds cost savings of 5.27%, 5.05% and 2.88%.

• Semi-flexible is able to reschedule the vehicles to reduce the total cost and the total number
of crews compared to Fixed on 99 instances. On these instances, 2.97 fewer crews are
required and 13.11% cost savings are available.

• Flexible improves upon Fixed by 0.86% overall. The cost reductions on 13 instances exceed
20%, and reaches 50.32% on one instance. For the three cost functions, it performs 2.59%
better, 1.24% worse and 1.31% better.

• Flexible performs 3.67% worse than Semi-flexible overall. The solutions are 2.77%, 6.29%
and 1.83% worse when separated into the three cost functions.

• Flexible reroutes vehicles to increase vehicle costs but decrease crew costs on 36 instances.
Vehicle costs are increased by 0.28% on average when compared to Fixed. In return, crew
costs are decreased by up to 39.97% but averages 18.20%. On these 36 instances, overall
costs are reduced by 13.05%.

• MIP-LNS Fixed, Semi-flexible and Flexible averages 11.06%, 5.94% and 4.84% better than
MIP-BB on the 80 instances that all six variants find feasible solutions, and 8.58%, 16.40%
and 21.23% worse than CP-BB on the 140 instances with feasible solutions.

Analysis of CP-LNS A number of key results are highlighted below:

• Fixed, Semi-flexible and Flexible find feasible solutions to all 180 instances.

• Semi-flexible dominates Fixed, performing 9.52% better on average, and 10.29%, 12.79%
and 5.49% better for the three cost functions.

• Semi-flexible reschedules the vehicles on 141 instances to find lower total costs, which
are reduced by 12.13%. On average, 2.98 fewer crews are necessary.

• Flexible dominates Fixed, improving upon Fixed by 11.01% overall, and 11.70%, 14.72%
and 6.62% for the three cost functions.

• There are 30 instances for which Flexible performs worse (1.84%) and 98 instances for
which it performs better (3.51%) than Semi-flexible. Generally, Flexible improves on
Semi-flexible by 1.61%, unlike the other three search methods, for which Flexible performs
nearly identically or worse than Semi-flexible.

78 Chapter 3. The Joint Vehicle and Crew Routing and Scheduling Problem

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

25000

50000

75000

100000

125000

150000

Time (Hours)

O
bj
ec

tiv
e
Va

lu
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−25%
−20%
−15%
−10%
−5%
0%
5%
10%
15%
20%
25%

Time (Hours)

Pe
rc
en

ta
ge

C
ha

ng
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

5

10

15

20

25

30

Time (Hours)

N
um

be
r
of

Ve
hi
cl
es

an
d
C
re
w
s

Figure 3.13: Plots of the objective value, the percentage change and the number of vehicles
and crews over time for Flexible CP-LNS on an instance with |ℒ| = 11, |𝒫| = 30, w1 = 1000 and
w2 = 5000. Lines colored blue represent vehicles, red represent crews and grey represent the
total objective.

3.8. Conclusion 79

• Flexible often finds solutions in which vehicle costs are higher than those from Fixed.
On 75 instances, it increases vehicle costs by 1.48% and decreases crew costs by 17.83%,
resulting in savings of 12.82% on average.

• Figure 3.13 shows three plots related to Flexible CP-LNS on an instance with |ℒ| = 11,
|𝒫| = 30, w1 = 1000 and w2 = 5000. Notice that the vehicle costs and crew costs do not
monotonically decrease. Furthermore, the plots show that the solver twice finds a solution
that uses one additional vehicle to decrease overall costs. The final solutions from Fixed
and Semi-flexible require 4 vehicles and 29 and 26 crews respectively. The final solution
of Flexible requires 5 vehicles but only 24 crews. This solution is 16.09% better than Fixed
and 6.76% better than Semi-flexible. Vehicle costs are increased by 22.81% but crew costs
are decreased by 17.27% compared to Fixed and 7.76% compared to Semi-flexible.

• On average, CP-LNS Fixed, Semi-flexible and Flexible respectively perform 12.35%, 11.37%
and 13.07% better than MIP-BB, 12.17%, 12.32% and 13.62% better than CP-BB and 11.93%,
13.41% and 17.41% better than MIP-LNS on the instances for which the six variants in
each comparison find feasible solutions.

3.8 Conclusion

This chapter presents the Joint Vehicle and Crew Routing and Scheduling Problem, which is
motivated by applications arising in humanitarian and military logistics. The problem routes
and schedules vehicles and crews to pick up and deliver requests. Because crews are able to
interchange vehicles, both vehicle routes and crew routes become highly interdependent in
space and time.

This chapter develops a high-level model of the problem, which is formulated as a mixed
integer programming model and a constraint programming model. The two models overlay
crew routing constraints over the Pickup and Delivery Problem with Time Windows. The
constraint programming model features a symmetry-breaking global constraint and a global
optimization constraint to detect infeasibility and to bound crew objectives. Both the mixed
integer programming and constraint programming models are solved using a regular branch-
and-bound search and a large neighborhood search. In order to compare the effects of rerouting
and rescheduling vehicles on crew optimization, both models are extended with constraints
that (1) fix the vehicle routes and (2) fix the vehicle routes and vehicle schedules. Comparing
the full model, called Flexible, against one with fixed vehicle routes, called Semi-flexible, allows
the impacts of rerouting vehicles for crew optimization to be quantified. Similarly, comparing
Semi-flexible to the model with fixed vehicle routes and schedules, named Fixed, allows the
benefits of rescheduling vehicles to be observed.

Experimental results indicate that jointly optimizing vehicle and crew routing and scheduling
achieves significant benefits, and that the constraint programming model coupled with large
neighborhood search finds the greatest reductions in costs compared to the other approaches. In
particular, it produces average improvements of 10.77% compared to the a posteriori best Fixed
sequential method and 1.45% compared to the a posteriori best partially sequential Semi-flexible

80 Chapter 3. The Joint Vehicle and Crew Routing and Scheduling Problem

method.
All models and search methods found solutions that trade crew costs for vehicle costs in

order to produce an overall improved solution. The ability to use fewer crews at the expense of
more vehicles is a key feature of integrated models and is highly difficult, if not impossible, to
replicate in sequential methods.

These results highlight the benefits of jointly optimizing vehicles and crew, and in particular,
suggest that many of the benefits of jointly optimizing vehicle and crew routing originate
in the ability to reschedule vehicles according to crew objectives. There are also benefits in
rerouting vehicles for crew optimization but, at this stage, they seemmuchmore computationally
demanding.

There are several interesting research avenues going forward. Given the strong performance
of the Semi-flexible methods, it would be interesting to study whether vehicle scheduling and
crew routing can be solved to optimality using combinations of constraint programming and
mathematical programming. Another direction for future research is to evaluate a three-stage
optimization process that runs Fixed, Semi-flexible and Flexible in sequence with each stage
initialized using the solution from the previous stage. Furthermore, another promising direction
for future research is to develop neighborhoods that span vehicle and crew routes and/or
schedules because the existing neighborhoods only consider vehicle routes or crew routes
independently. Finally, it will also be interesting to compare the existing routing models against
state-of-the-art scheduling models based on constraint programming, as suggested by a reviewer.

3.8.
C
onclusion

81

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

6 5 1, 000 1, 000 8, 312 (2, 078 + 6, 234) 7, 268 (2, 078 + 5, 190) −12.6% (0.0%, −16.7%) 7, 268 (2, 078 + 5, 190) −12.6% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
4, 166 (1, 047 + 3, 119) 4, 144 (1, 047 + 3, 097) −0.5% (0.0%, −0.7%) 4, 135 (1, 048 + 3, 087) −0.7% (0.1%, −1.0%) −0.2% (0.1%, −0.3%)
4, 098 (1, 035 + 3, 063) 3, 105 (1, 035 + 2, 070) −24.2% (0.0%, −32.4%) 3, 089 (1, 037 + 2, 052) −24.6% (0.2%, −33.0%) −0.5% (0.2%, −0.9%)
4, 410 (1, 151 + 3, 259) 3, 453 (1, 151 + 2, 302) −21.7% (0.0%, −29.4%) 3, 352 (1, 159 + 2, 193) −24.0% (0.7%, −32.7%) −2.9% (0.7%, −4.7%)
7, 432 (3, 202 + 4, 230) 6, 404 (3, 202 + 3, 202) −13.8% (0.0%, −24.3%) 6, 404 (3, 202 + 3, 202) −13.8% (0.0%, −24.3%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 32, 312 (2, 078 + 30, 234) 27, 268 (2, 078 + 25, 190) −15.6% (0.0%, −16.7%) 27, 268 (2, 078 + 25, 190) −15.6% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
16, 166 (1, 047 + 15, 119) 16, 144 (1, 047 + 15, 097) −0.1% (0.0%, −0.1%) 16, 135 (1, 048 + 15, 087) −0.2% (0.1%, −0.2%) −0.1% (0.1%, −0.1%)
16, 098 (1, 035 + 15, 063) 11, 105 (1, 035 + 10, 070) −31.0% (0.0%, −33.1%) 11, 089 (1, 037 + 10, 052) −31.1% (0.2%, −33.3%) −0.1% (0.2%, −0.2%)
16, 410 (1, 151 + 15, 259) 11, 453 (1, 151 + 10, 302) −30.2% (0.0%, −32.5%) 11, 352 (1, 159 + 10, 193) −30.8% (0.7%, −33.2%) −0.9% (0.7%, −1.1%)
23, 432 (3, 202 + 20, 230) 18, 404 (3, 202 + 15, 202) −21.5% (0.0%, −24.9%) 18, 404 (3, 202 + 15, 202) −21.5% (0.0%, −24.9%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 16, 312 (10, 078 + 6, 234) 15, 268 (10, 078 + 5, 190) −6.4% (0.0%, −16.7%) 15, 268 (10, 078 + 5, 190) −6.4% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
8, 166 (5, 047 + 3, 119) 8, 144 (5, 047 + 3, 097) −0.3% (0.0%, −0.7%) 8, 135 (5, 048 + 3, 087) −0.4% (0.0%, −1.0%) −0.1% (0.0%, −0.3%)
8, 098 (5, 035 + 3, 063) 7, 105 (5, 035 + 2, 070) −12.3% (0.0%, −32.4%) 7, 089 (5, 037 + 2, 052) −12.5% (0.0%, −33.0%) −0.2% (0.0%, −0.9%)
8, 410 (5, 151 + 3, 259) 7, 453 (5, 151 + 2, 302) −11.4% (0.0%, −29.4%) 7, 352 (5, 159 + 2, 193) −12.6% (0.2%, −32.7%) −1.4% (0.2%, −4.7%)
19, 432 (15, 202 + 4, 230) 18, 404 (15, 202 + 3, 202) −5.3% (0.0%, −24.3%) 18, 404 (15, 202 + 3, 202) −5.3% (0.0%, −24.3%) 0.0% (0.0%, 0.0%)

6 10 1, 000 1, 000 13, 462 (4, 160 + 9, 302) 13, 462 (4, 160 + 9, 302) 0.0% (0.0%, 0.0%) 13, 462 (4, 160 + 9, 302) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)
8, 194 (2, 064 + 6, 130) 8, 189 (2, 064 + 6, 125) −0.1% (0.0%, −0.1%) 8, 189 (2, 064 + 6, 125) −0.1% (0.0%, −0.1%) 0.0% (0.0%, 0.0%)
7, 191 (2, 071 + 5, 120) 6, 176 (2, 071 + 4, 105) −14.1% (0.0%, −19.8%) 6, 176 (2, 071 + 4, 105) −14.1% (0.0%, −19.8%) 0.0% (0.0%, 0.0%)
5, 671 (1, 204 + 4, 467) 4, 566 (1, 204 + 3, 362) −19.5% (0.0%, −24.7%) 4, 542 (1, 237 + 3, 305) −19.9% (2.7%, −26.0%) −0.5% (2.7%, −1.7%)
13, 776 (6, 380 + 7, 396) 12, 760 (6, 380 + 6, 380) −7.4% (0.0%, −13.7%) 12, 760 (6, 380 + 6, 380) −7.4% (0.0%, −13.7%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 49, 462 (4, 160 + 45, 302) 49, 462 (4, 160 + 45, 302) 0.0% (0.0%, 0.0%) 49, 455 (4, 162 + 45, 293) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)
32, 194 (2, 064 + 30, 130) 32, 189 (2, 064 + 30, 125) 0.0% (0.0%, 0.0%) 32, 189 (2, 064 + 30, 125) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)
27, 191 (2, 071 + 25, 120) 22, 176 (2, 071 + 20, 105) −18.4% (0.0%, −20.0%) 22, 176 (2, 071 + 20, 105) −18.4% (0.0%, −20.0%) 0.0% (0.0%, 0.0%)
21, 671 (1, 204 + 20, 467) 16, 566 (1, 204 + 15, 362) −23.6% (0.0%, −24.9%) 16, 542 (1, 237 + 15, 305) −23.7% (2.7%, −25.2%) −0.1% (2.7%, −0.4%)
41, 776 (6, 380 + 35, 396) 36, 760 (6, 380 + 30, 380) −12.0% (0.0%, −14.2%) 36, 760 (6, 380 + 30, 380) −12.0% (0.0%, −14.2%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 29, 462 (20, 160 + 9, 302) 29, 462 (20, 160 + 9, 302) 0.0% (0.0%, 0.0%) 29, 462 (20, 160 + 9, 302) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)
16, 194 (10, 064 + 6, 130) 16, 189 (10, 064 + 6, 125) 0.0% (0.0%, −0.1%) 16, 189 (10, 064 + 6, 125) 0.0% (0.0%, −0.1%) 0.0% (0.0%, 0.0%)
15, 191 (10, 071 + 5, 120) 14, 176 (10, 071 + 4, 105) −6.7% (0.0%, −19.8%) 14, 176 (10, 071 + 4, 105) −6.7% (0.0%, −19.8%) 0.0% (0.0%, 0.0%)
9, 689 (5, 196 + 4, 493) 8, 566 (5, 204 + 3, 362) −11.6% (0.2%, −25.2%) 8, 566 (5, 204 + 3, 362) −11.6% (0.2%, −25.2%) 0.0% (0.0%, 0.0%)
37, 776 (30, 380 + 7, 396) 36, 760 (30, 380 + 6, 380) −2.7% (0.0%, −13.7%) 36, 760 (30, 380 + 6, 380) −2.7% (0.0%, −13.7%) 0.0% (0.0%, 0.0%)

Table 3.7: Comparison of the solutions from MIP-BB. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

82
C
hapter

3.
T
he

JointVehicle
and

C
rew

Routing
and

Scheduling
Problem

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

6 20 1, 000 1, 000 40, 228 (11, 449 + 28, 779) 34, 127 (11, 449 + 22, 678) −15.2% (0.0%, −21.2%) – – –
60, 852 (20, 333 + 40, 519) 40, 666 (20, 333 + 20, 333) −33.2% (0.0%, −49.8%) 40, 666 (20, 333 + 20, 333) −33.2% (0.0%, −49.8%) 0.0% (0.0%, 0.0%)
57, 884 (20, 353 + 37, 531) 41, 716 (20, 353 + 21, 363) −27.9% (0.0%, −43.1%) – – –

– 42, 694 (21, 347 + 21, 347) – 42, 694 (21, 347 + 21, 347) – 0.0% (0.0%, 0.0%)
25, 604 (11, 780 + 13, 824) 23, 560 (11, 780 + 11, 780) −8.0% (0.0%, −14.8%) 23, 560 (11, 780 + 11, 780) −8.0% (0.0%, −14.8%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 152, 228 (11, 449 + 140, 779) 122, 120 (11, 449 + 110, 671) −19.8% (0.0%, −21.4%) – – –
220, 852 (20, 333 + 200, 519) 120, 666 (20, 333 + 100, 333) −45.4% (0.0%, −50.0%) 120, 666 (20, 333 + 100, 333) −45.4% (0.0%, −50.0%) 0.0% (0.0%, 0.0%)
205, 884 (20, 353 + 185, 531) 125, 721 (20, 353 + 105, 368) −38.9% (0.0%, −43.2%) – – –

– 122, 694 (21, 347 + 101, 347) – 122, 694 (21, 347 + 101, 347) – 0.0% (0.0%, 0.0%)
77, 604 (11, 780 + 65, 824) 67, 560 (11, 780 + 55, 780) −12.9% (0.0%, −15.3%) 67, 560 (11, 780 + 55, 780) −12.9% (0.0%, −15.3%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 84, 228 (55, 449 + 28, 779) 78, 127 (55, 449 + 22, 678) −7.2% (0.0%, −21.2%) – – –
140, 852 (100, 333 + 40, 519) 120, 666 (100, 333 + 20, 333) −14.3% (0.0%, −49.8%) 120, 666 (100, 333 + 20, 333) −14.3% (0.0%, −49.8%) 0.0% (0.0%, 0.0%)
137, 884 (100, 353 + 37, 531) 121, 716 (100, 353 + 21, 363) −11.7% (0.0%, −43.1%) – – –

– 122, 694 (101, 347 + 21, 347) – 122, 694 (101, 347 + 21, 347) – 0.0% (0.0%, 0.0%)
69, 604 (55, 780 + 13, 824) 67, 560 (55, 780 + 11, 780) −2.9% (0.0%, −14.8%) 67, 560 (55, 780 + 11, 780) −2.9% (0.0%, −14.8%) 0.0% (0.0%, 0.0%)

6 30 1, 000 1, 000 86, 296 (26, 835 + 59, 461) – – – – –
89, 323 (29, 481 + 59, 842) 58, 962 (29, 481 + 29, 481) −34.0% (0.0%, −50.7%) 60, 970 (29, 481 + 31, 489) −31.7% (0.0%, −47.4%) 3.4% (0.0%, 6.8%)
80, 312 (27, 515 + 52, 797) 59, 076 (27, 515 + 31, 561) −26.4% (0.0%, −40.2%) 60, 124 (27, 515 + 32, 609) −25.1% (0.0%, −38.2%) 1.8% (0.0%, 3.3%)

– 63, 914 (31, 957 + 31, 957) – 63, 914 (31, 957 + 31, 957) – 0.0% (0.0%, 0.0%)
44, 508 (21, 232 + 23, 276) 42, 464 (21, 232 + 21, 232) −4.6% (0.0%, −8.8%) 42, 464 (21, 232 + 21, 232) −4.6% (0.0%, −8.8%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 318, 296 (26, 835 + 291, 461) 263, 214 (26, 835 + 236, 379) −17.3% (0.0%, −18.9%) – – –
– 174, 962 (29, 481 + 145, 481) – 184, 988 (29, 481 + 155, 507) – 5.7% (0.0%, 6.9%)
– 183, 096 (27, 515 + 155, 581) – 193, 118 (27, 515 + 165, 603) – 5.5% (0.0%, 6.4%)
– 183, 914 (31, 957 + 151, 957) – 183, 914 (31, 957 + 151, 957) – 0.0% (0.0%, 0.0%)

132, 508 (21, 232 + 111, 276) 122, 464 (21, 232 + 101, 232) −7.6% (0.0%, −9.0%) 122, 464 (21, 232 + 101, 232) −7.6% (0.0%, −9.0%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 190, 308 (130, 835 + 59, 473) – – – – –
201, 239 (145, 481 + 55, 758) 174, 962 (145, 481 + 29, 481) −13.1% (0.0%, −47.1%) 176, 976 (145, 481 + 31, 495) −12.1% (0.0%, −43.5%) 1.2% (0.0%, 6.8%)
188, 308 (135, 515 + 52, 793) 168, 078 (135, 515 + 32, 563) −10.7% (0.0%, −38.3%) 169, 118 (135, 515 + 33, 603) −10.2% (0.0%, −36.3%) 0.6% (0.0%, 3.2%)

– 183, 914 (151, 957 + 31, 957) – 183, 914 (151, 957 + 31, 957) – 0.0% (0.0%, 0.0%)
124, 508 (101, 232 + 23, 276) 122, 464 (101, 232 + 21, 232) −1.6% (0.0%, −8.8%) 122, 464 (101, 232 + 21, 232) −1.6% (0.0%, −8.8%) 0.0% (0.0%, 0.0%)

Table 3.7: Comparison of the solutions from MIP-BB. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

3.8.
C
onclusion

83

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

6 40 1, 000 1, 000 – – – – – –
– 82, 304 (40, 650 + 41, 654) – – – –
– – – – – –
– 85, 282 (42, 641 + 42, 641) – 85, 282 (42, 641 + 42, 641) – 0.0% (0.0%, 0.0%)

84, 064 (42, 032 + 42, 032) 85, 092 (42, 032 + 43, 060) 1.2% (0.0%, 2.4%) 84, 064 (42, 032 + 42, 032) 0.0% (0.0%, 0.0%) −1.2% (0.0%, −2.4%)

1, 000 5, 000 – – – – – –
– 246, 304 (40, 650 + 205, 654) – – – –
– – – – – –
– 245, 282 (42, 641 + 202, 641) – 245, 282 (42, 641 + 202, 641) – 0.0% (0.0%, 0.0%)

244, 064 (42, 032 + 202, 032) 244, 064 (42, 032 + 202, 032) 0.0% (0.0%, 0.0%) 244, 064 (42, 032 + 202, 032) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 – – – – – –
– 243, 314 (200, 650 + 42, 664) – – – –
– – – – – –
– 245, 282 (202, 641 + 42, 641) – 245, 282 (202, 641 + 42, 641) – 0.0% (0.0%, 0.0%)

244, 064 (202, 032 + 42, 032) 245, 092 (202, 032 + 43, 060) 0.4% (0.0%, 2.4%) 244, 064 (202, 032 + 42, 032) 0.0% (0.0%, 0.0%) −0.4% (0.0%, −2.4%)

6 50 1, 000 1, 000 – – – – – –
– – – – – –
– – – – – –
– – – – – –

105, 036 (52, 518 + 52, 518) – – 105, 036 (52, 518 + 52, 518) 0.0% (0.0%, 0.0%) –

1, 000 5, 000 – – – – – –
– – – – – –
– – – – – –
– 306, 550 (53, 275 + 253, 275) – 311, 594 (53, 275 + 258, 319) – 1.6% (0.0%, 2.0%)

305, 036 (52, 518 + 252, 518) – – – – –

5, 000 1, 000 – – – – – –
– – – – – –
– – – – – –
– – – – – –

305, 036 (252, 518 + 52, 518) – – 305, 036 (252, 518 + 52, 518) 0.0% (0.0%, 0.0%) –

Table 3.7: Comparison of the solutions from MIP-BB. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

84
C
hapter

3.
T
he

JointVehicle
and

C
rew

Routing
and

Scheduling
Problem

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

10 5 1, 000 1, 000 4, 360 (1, 090 + 3, 270) 4, 308 (1, 090 + 3, 218) −1.2% (0.0%, −1.6%) 4, 291 (1, 093 + 3, 198) −1.6% (0.3%, −2.2%) −0.4% (0.3%, −0.6%)
7, 440 (1, 093 + 6, 347) 6, 405 (1, 093 + 5, 312) −13.9% (0.0%, −16.3%) 6, 380 (1, 096 + 5, 284) −14.2% (0.3%, −16.7%) −0.4% (0.3%, −0.5%)
7, 509 (1, 111 + 6, 398) 6, 438 (1, 111 + 5, 327) −14.3% (0.0%, −16.7%) 6, 438 (1, 111 + 5, 327) −14.3% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
7, 395 (2, 112 + 5, 283) 6, 336 (2, 112 + 4, 224) −14.3% (0.0%, −20.0%) 5, 307 (2, 130 + 3, 177) −28.2% (0.9%, −39.9%) −16.2% (0.9%, −24.8%)
6, 327 (2, 109 + 4, 218) 6, 327 (2, 109 + 4, 218) 0.0% (0.0%, 0.0%) 6, 327 (2, 109 + 4, 218) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 16, 360 (1, 090 + 15, 270) 16, 308 (1, 090 + 15, 218) −0.3% (0.0%, −0.3%) 16, 291 (1, 093 + 15, 198) −0.4% (0.3%, −0.5%) −0.1% (0.3%, −0.1%)
31, 440 (1, 093 + 30, 347) 26, 405 (1, 093 + 25, 312) −16.0% (0.0%, −16.6%) 26, 380 (1, 096 + 25, 284) −16.1% (0.3%, −16.7%) −0.1% (0.3%, −0.1%)
31, 509 (1, 111 + 30, 398) 26, 438 (1, 111 + 25, 327) −16.1% (0.0%, −16.7%) 26, 438 (1, 111 + 25, 327) −16.1% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
27, 395 (2, 112 + 25, 283) 22, 336 (2, 112 + 20, 224) −18.5% (0.0%, −20.0%) 17, 307 (2, 130 + 15, 177) −36.8% (0.9%, −40.0%) −22.5% (0.9%, −25.0%)
22, 327 (2, 109 + 20, 218) 22, 327 (2, 109 + 20, 218) 0.0% (0.0%, 0.0%) 22, 327 (2, 109 + 20, 218) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 8, 360 (5, 090 + 3, 270) 8, 308 (5, 090 + 3, 218) −0.6% (0.0%, −1.6%) 8, 291 (5, 093 + 3, 198) −0.8% (0.1%, −2.2%) −0.2% (0.1%, −0.6%)
11, 440 (5, 093 + 6, 347) 10, 405 (5, 093 + 5, 312) −9.0% (0.0%, −16.3%) 10, 380 (5, 096 + 5, 284) −9.3% (0.1%, −16.7%) −0.2% (0.1%, −0.5%)
11, 509 (5, 111 + 6, 398) 10, 438 (5, 111 + 5, 327) −9.3% (0.0%, −16.7%) 10, 438 (5, 111 + 5, 327) −9.3% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
15, 395 (10, 112 + 5, 283) 14, 336 (10, 112 + 4, 224) −6.9% (0.0%, −20.0%) 13, 307 (10, 130 + 3, 177) −13.6% (0.2%, −39.9%) −7.2% (0.2%, −24.8%)
14, 327 (10, 109 + 4, 218) 14, 327 (10, 109 + 4, 218) 0.0% (0.0%, 0.0%) 14, 327 (10, 109 + 4, 218) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

10 10 1, 000 1, 000 9, 529 (2, 173 + 7, 356) 7, 476 (2, 173 + 5, 303) −21.5% (0.0%, −27.9%) 7, 476 (2, 173 + 5, 303) −21.5% (0.0%, −27.9%) 0.0% (0.0%, 0.0%)
10, 907 (1, 166 + 9, 741) 10, 907 (1, 166 + 9, 741) 0.0% (0.0%, 0.0%) 10, 907 (1, 166 + 9, 741) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)
12, 744 (2, 178 + 10, 566) 11, 695 (2, 178 + 9, 517) −8.2% (0.0%, −9.9%) 11, 695 (2, 178 + 9, 517) −8.2% (0.0%, −9.9%) 0.0% (0.0%, 0.0%)
9, 656 (2, 210 + 7, 446) 9, 656 (2, 210 + 7, 446) 0.0% (0.0%, 0.0%) 9, 608 (3, 203 + 6, 405) −0.5% (44.9%, −14.0%) −0.5% (44.9%, −14.0%)
9, 644 (2, 227 + 7, 417) 8, 638 (2, 227 + 6, 411) −10.4% (0.0%, −13.6%) 8, 638 (2, 227 + 6, 411) −10.4% (0.0%, −13.6%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 37, 529 (2, 173 + 35, 356) 27, 476 (2, 173 + 25, 303) −26.8% (0.0%, −28.4%) 27, 483 (2, 173 + 25, 310) −26.8% (0.0%, −28.4%) 0.0% (0.0%, 0.0%)
46, 907 (1, 166 + 45, 741) 46, 907 (1, 166 + 45, 741) 0.0% (0.0%, 0.0%) 46, 875 (1, 180 + 45, 695) −0.1% (1.2%, −0.1%) −0.1% (1.2%, −0.1%)
52, 744 (2, 178 + 50, 566) 47, 695 (2, 178 + 45, 517) −9.6% (0.0%, −10.0%) 47, 695 (2, 178 + 45, 517) −9.6% (0.0%, −10.0%) 0.0% (0.0%, 0.0%)
37, 656 (2, 210 + 35, 446) 37, 656 (2, 210 + 35, 446) 0.0% (0.0%, 0.0%) 33, 707 (3, 271 + 30, 436) −10.5% (48.0%, −14.1%) −10.5% (48.0%, −14.1%)
37, 644 (2, 227 + 35, 417) 32, 638 (2, 227 + 30, 411) −13.3% (0.0%, −14.1%) 32, 638 (2, 227 + 30, 411) −13.3% (0.0%, −14.1%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 17, 529 (10, 173 + 7, 356) 15, 476 (10, 173 + 5, 303) −11.7% (0.0%, −27.9%) 15, 476 (10, 173 + 5, 303) −11.7% (0.0%, −27.9%) 0.0% (0.0%, 0.0%)
14, 907 (5, 166 + 9, 741) 14, 907 (5, 166 + 9, 741) 0.0% (0.0%, 0.0%) 14, 907 (5, 166 + 9, 741) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)
20, 744 (10, 178 + 10, 566) 19, 695 (10, 178 + 9, 517) −5.1% (0.0%, −9.9%) 19, 695 (10, 178 + 9, 517) −5.1% (0.0%, −9.9%) 0.0% (0.0%, 0.0%)
17, 656 (10, 210 + 7, 446) 17, 656 (10, 210 + 7, 446) 0.0% (0.0%, 0.0%) 17, 656 (10, 210 + 7, 446) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)
17, 644 (10, 227 + 7, 417) 16, 638 (10, 227 + 6, 411) −5.7% (0.0%, −13.6%) 16, 638 (10, 227 + 6, 411) −5.7% (0.0%, −13.6%) 0.0% (0.0%, 0.0%)

Table 3.7: Comparison of the solutions from MIP-BB. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

3.8.
C
onclusion

85

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

10 20 1, 000 1, 000 53, 545 (17, 577 + 35, 968) 39, 244 (17, 577 + 21, 667) −26.7% (0.0%, −39.8%) 39, 299 (17, 577 + 21, 722) −26.6% (0.0%, −39.6%) 0.1% (0.0%, 0.3%)
56, 573 (17, 546 + 39, 027) 43, 330 (17, 546 + 25, 784) −23.4% (0.0%, −33.9%) – – –
24, 363 (3, 386 + 20, 977) 22, 300 (3, 386 + 18, 914) −8.5% (0.0%, −9.8%) – – –
59, 451 (20, 956 + 38, 495) 45, 014 (20, 956 + 24, 058) −24.3% (0.0%, −37.5%) – – –
52, 139 (19, 877 + 32, 262) 42, 859 (19, 877 + 22, 982) −17.8% (0.0%, −28.8%) 43, 906 (19, 877 + 24, 029) −15.8% (0.0%, −25.5%) 2.4% (0.0%, 4.6%)

1, 000 5, 000 193, 545 (17, 577 + 175, 968) 123, 261 (17, 577 + 105, 684) −36.3% (0.0%, −39.9%) 123, 310 (17, 577 + 105, 733) −36.3% (0.0%, −39.9%) 0.0% (0.0%, 0.0%)
208, 573 (17, 546 + 191, 027) 148, 346 (17, 546 + 130, 800) −28.9% (0.0%, −31.5%) – – –
104, 446 (3, 377 + 101, 069) 94, 310 (3, 386 + 90, 924) −9.7% (0.3%, −10.0%) – – –
207, 451 (20, 956 + 186, 495) 137, 014 (20, 956 + 116, 058) −34.0% (0.0%, −37.8%) – – –
176, 139 (19, 877 + 156, 262) 130, 859 (19, 877 + 110, 982) −25.7% (0.0%, −29.0%) – – –

5, 000 1, 000 121, 545 (85, 577 + 35, 968) 107, 244 (85, 577 + 21, 667) −11.8% (0.0%, −39.8%) 107, 317 (85, 577 + 21, 740) −11.7% (0.0%, −39.6%) 0.1% (0.0%, 0.3%)
124, 573 (85, 546 + 39, 027) 111, 336 (85, 546 + 25, 790) −10.6% (0.0%, −33.9%) – – –
36, 363 (15, 386 + 20, 977) 34, 310 (15, 386 + 18, 924) −5.6% (0.0%, −9.8%) – – –
139, 451 (100, 956 + 38, 495) 125, 014 (100, 956 + 24, 058) −10.4% (0.0%, −37.5%) – – –
128, 139 (95, 877 + 32, 262) 118, 859 (95, 877 + 22, 982) −7.2% (0.0%, −28.8%) – – –

10 30 1, 000 1, 000 91, 507 (30, 947 + 60, 560) 64, 964 (30, 947 + 34, 017) −29.0% (0.0%, −43.8%) – – –
92, 505 (28, 897 + 63, 608) – – – – –
87, 372 (26, 850 + 60, 522) 70, 071 (26, 850 + 43, 221) −19.8% (0.0%, −28.6%) – – –
87, 455 (29, 309 + 58, 146) 64, 834 (29, 309 + 35, 525) −25.9% (0.0%, −38.9%) – – –
83, 306 (31, 344 + 51, 962) – – – – –

1, 000 5, 000 – – – – – –
340, 505 (28, 897 + 311, 608) – – – – –
323, 363 (26, 850 + 296, 513) 228, 041 (26, 850 + 201, 191) −29.5% (0.0%, −32.1%) – – –
311, 454 (29, 309 + 282, 145) 200, 829 (29, 309 + 171, 520) −35.5% (0.0%, −39.2%) – – –
283, 306 (31, 344 + 251, 962) – – – – –

5, 000 1, 000 211, 507 (150, 947 + 60, 560) 187, 002 (150, 947 + 36, 055) −11.6% (0.0%, −40.5%) – – –
204, 505 (140, 897 + 63, 608) – – – – –
191, 371 (130, 850 + 60, 521) 172, 037 (130, 850 + 41, 187) −10.1% (0.0%, −31.9%) – – –
199, 454 (141, 309 + 58, 145) 179, 883 (141, 309 + 38, 574) −9.8% (0.0%, −33.7%) – – –
203, 306 (151, 344 + 51, 962) – – – – –

Table 3.7: Comparison of the solutions from MIP-BB. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

86
C
hapter

3.
T
he

JointVehicle
and

C
rew

Routing
and

Scheduling
Problem

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

10 40 1, 000 1, 000 – – – – – –
– – – – – –
– – – – – –
– – – – – –
– – – – – –

1, 000 5, 000 – – – – – –
– – – – – –
– – – – – –
– – – – – –

414, 574 (41, 766 + 372, 808) – – – – –

5, 000 1, 000 – – – – – –
– – – – – –
– – – – – –
– – – – – –
– – – – – –

10 50 1, 000 1, 000 – – – – – –
– – – – – –
– – – – – –
– – – – – –
– – – – – –

1, 000 5, 000 – – – – – –
– – – – – –
– – – – – –
– – – – – –
– – – – – –

5, 000 1, 000 – – – – – –
– – – – – –
– – – – – –
– – – – – –
– – – – – –

Table 3.7: Comparison of the solutions from MIP-BB. Vehicle and crew objective values are shown inside parenthesis.

3.8.
C
onclusion

87

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

6 5 1, 000 1, 000 8, 312 (2, 078 + 6, 234) 7, 268 (2, 078 + 5, 190) −12.6% (0.0%, −16.7%) 7, 268 (2, 078 + 5, 190) −12.6% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
4, 166 (1, 047 + 3, 119) 4, 144 (1, 047 + 3, 097) −0.5% (0.0%, −0.7%) 4, 135 (1, 048 + 3, 087) −0.7% (0.1%, −1.0%) −0.2% (0.1%, −0.3%)
4, 098 (1, 035 + 3, 063) 3, 105 (1, 035 + 2, 070) −24.2% (0.0%, −32.4%) 3, 089 (1, 037 + 2, 052) −24.6% (0.2%, −33.0%) −0.5% (0.2%, −0.9%)
4, 410 (1, 151 + 3, 259) 3, 453 (1, 151 + 2, 302) −21.7% (0.0%, −29.4%) 3, 352 (1, 159 + 2, 193) −24.0% (0.7%, −32.7%) −2.9% (0.7%, −4.7%)
6, 404 (3, 202 + 3, 202) 6, 404 (3, 202 + 3, 202) 0.0% (0.0%, 0.0%) 6, 404 (3, 202 + 3, 202) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 32, 312 (2, 078 + 30, 234) 27, 268 (2, 078 + 25, 190) −15.6% (0.0%, −16.7%) 27, 268 (2, 078 + 25, 190) −15.6% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
16, 166 (1, 047 + 15, 119) 16, 144 (1, 047 + 15, 097) −0.1% (0.0%, −0.1%) 16, 135 (1, 048 + 15, 087) −0.2% (0.1%, −0.2%) −0.1% (0.1%, −0.1%)
16, 098 (1, 035 + 15, 063) 11, 105 (1, 035 + 10, 070) −31.0% (0.0%, −33.1%) 11, 089 (1, 037 + 10, 052) −31.1% (0.2%, −33.3%) −0.1% (0.2%, −0.2%)
16, 410 (1, 151 + 15, 259) 11, 453 (1, 151 + 10, 302) −30.2% (0.0%, −32.5%) 11, 352 (1, 159 + 10, 193) −30.8% (0.7%, −33.2%) −0.9% (0.7%, −1.1%)
18, 404 (3, 202 + 15, 202) 18, 404 (3, 202 + 15, 202) 0.0% (0.0%, 0.0%) 18, 404 (3, 202 + 15, 202) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 16, 312 (10, 078 + 6, 234) 15, 268 (10, 078 + 5, 190) −6.4% (0.0%, −16.7%) 15, 268 (10, 078 + 5, 190) −6.4% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
8, 166 (5, 047 + 3, 119) 8, 144 (5, 047 + 3, 097) −0.3% (0.0%, −0.7%) 8, 135 (5, 048 + 3, 087) −0.4% (0.0%, −1.0%) −0.1% (0.0%, −0.3%)
8, 098 (5, 035 + 3, 063) 7, 105 (5, 035 + 2, 070) −12.3% (0.0%, −32.4%) 7, 089 (5, 037 + 2, 052) −12.5% (0.0%, −33.0%) −0.2% (0.0%, −0.9%)
8, 410 (5, 151 + 3, 259) 7, 453 (5, 151 + 2, 302) −11.4% (0.0%, −29.4%) 7, 352 (5, 159 + 2, 193) −12.6% (0.2%, −32.7%) −1.4% (0.2%, −4.7%)
18, 404 (15, 202 + 3, 202) 18, 404 (15, 202 + 3, 202) 0.0% (0.0%, 0.0%) 18, 404 (15, 202 + 3, 202) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

6 10 1, 000 1, 000 13, 462 (4, 160 + 9, 302) 13, 462 (4, 160 + 9, 302) 0.0% (0.0%, 0.0%) 13, 462 (4, 160 + 9, 302) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)
8, 194 (2, 064 + 6, 130) 8, 189 (2, 064 + 6, 125) −0.1% (0.0%, −0.1%) 8, 189 (2, 064 + 6, 125) −0.1% (0.0%, −0.1%) 0.0% (0.0%, 0.0%)
7, 227 (2, 077 + 5, 150) 6, 216 (2, 077 + 4, 139) −14.0% (0.0%, −19.6%) 6, 207 (2, 078 + 4, 129) −14.1% (0.0%, −19.8%) −0.1% (0.0%, −0.2%)
5, 701 (1, 205 + 4, 496) 4, 604 (1, 205 + 3, 399) −19.2% (0.0%, −24.4%) 4, 596 (1, 208 + 3, 388) −19.4% (0.2%, −24.6%) −0.2% (0.2%, −0.3%)
13, 776 (6, 380 + 7, 396) 12, 760 (6, 380 + 6, 380) −7.4% (0.0%, −13.7%) 12, 760 (6, 380 + 6, 380) −7.4% (0.0%, −13.7%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 49, 462 (4, 160 + 45, 302) 49, 462 (4, 160 + 45, 302) 0.0% (0.0%, 0.0%) 49, 462 (4, 160 + 45, 302) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)
32, 194 (2, 064 + 30, 130) 32, 189 (2, 064 + 30, 125) 0.0% (0.0%, 0.0%) 32, 189 (2, 064 + 30, 125) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)
27, 227 (2, 077 + 25, 150) 22, 216 (2, 077 + 20, 139) −18.4% (0.0%, −19.9%) 22, 207 (2, 078 + 20, 129) −18.4% (0.0%, −20.0%) 0.0% (0.0%, 0.0%)
21, 701 (1, 205 + 20, 496) 16, 604 (1, 205 + 15, 399) −23.5% (0.0%, −24.9%) 16, 596 (1, 208 + 15, 388) −23.5% (0.2%, −24.9%) 0.0% (0.2%, −0.1%)
41, 776 (6, 380 + 35, 396) 36, 760 (6, 380 + 30, 380) −12.0% (0.0%, −14.2%) 36, 760 (6, 380 + 30, 380) −12.0% (0.0%, −14.2%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 29, 462 (20, 160 + 9, 302) 29, 462 (20, 160 + 9, 302) 0.0% (0.0%, 0.0%) 29, 462 (20, 160 + 9, 302) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)
16, 194 (10, 064 + 6, 130) 16, 189 (10, 064 + 6, 125) 0.0% (0.0%, −0.1%) 16, 189 (10, 064 + 6, 125) 0.0% (0.0%, −0.1%) 0.0% (0.0%, 0.0%)
15, 227 (10, 077 + 5, 150) 14, 216 (10, 077 + 4, 139) −6.6% (0.0%, −19.6%) 14, 207 (10, 078 + 4, 129) −6.7% (0.0%, −19.8%) −0.1% (0.0%, −0.2%)
9, 701 (5, 205 + 4, 496) 8, 604 (5, 205 + 3, 399) −11.3% (0.0%, −24.4%) 8, 596 (5, 208 + 3, 388) −11.4% (0.1%, −24.6%) −0.1% (0.1%, −0.3%)
37, 776 (30, 380 + 7, 396) 36, 760 (30, 380 + 6, 380) −2.7% (0.0%, −13.7%) 36, 760 (30, 380 + 6, 380) −2.7% (0.0%, −13.7%) 0.0% (0.0%, 0.0%)

Table 3.8: Comparison of the solutions from CP-BB. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

88
C
hapter

3.
T
he

JointVehicle
and

C
rew

Routing
and

Scheduling
Problem

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

6 20 1, 000 1, 000 35, 146 (10, 374 + 24, 772) 31, 037 (10, 374 + 20, 663) −11.7% (0.0%, −16.6%) 31, 037 (10, 374 + 20, 663) −11.7% (0.0%, −16.6%) 0.0% (0.0%, 0.0%)
19, 566 (5, 175 + 14, 391) 17, 494 (5, 175 + 12, 319) −10.6% (0.0%, −14.4%) 17, 494 (5, 175 + 12, 319) −10.6% (0.0%, −14.4%) 0.0% (0.0%, 0.0%)
17, 627 (4, 198 + 13, 429) 14, 502 (4, 198 + 10, 304) −17.7% (0.0%, −23.3%) 14, 502 (4, 198 + 10, 304) −17.7% (0.0%, −23.3%) 0.0% (0.0%, 0.0%)
8, 710 (2, 256 + 6, 454) 6, 670 (2, 256 + 4, 414) −23.4% (0.0%, −31.6%) 6, 618 (2, 256 + 4, 362) −24.0% (0.0%, −32.4%) −0.8% (0.0%, −1.2%)
28, 642 (13, 801 + 14, 841) 28, 642 (13, 801 + 14, 841) 0.0% (0.0%, 0.0%) 28, 642 (13, 801 + 14, 841) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 131, 146 (10, 374 + 120, 772) 111, 037 (10, 374 + 100, 663) −15.3% (0.0%, −16.7%) 111, 037 (10, 374 + 100, 663) −15.3% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
75, 566 (5, 175 + 70, 391) 65, 494 (5, 175 + 60, 319) −13.3% (0.0%, −14.3%) 65, 494 (5, 175 + 60, 319) −13.3% (0.0%, −14.3%) 0.0% (0.0%, 0.0%)
69, 627 (4, 198 + 65, 429) 54, 502 (4, 198 + 50, 304) −21.7% (0.0%, −23.1%) 54, 502 (4, 198 + 50, 304) −21.7% (0.0%, −23.1%) 0.0% (0.0%, 0.0%)
32, 710 (2, 256 + 30, 454) 22, 670 (2, 256 + 20, 414) −30.7% (0.0%, −33.0%) 22, 618 (2, 256 + 20, 362) −30.9% (0.0%, −33.1%) −0.2% (0.0%, −0.3%)
84, 642 (13, 801 + 70, 841) 84, 642 (13, 801 + 70, 841) 0.0% (0.0%, 0.0%) 84, 642 (13, 801 + 70, 841) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 75, 146 (50, 374 + 24, 772) 71, 037 (50, 374 + 20, 663) −5.5% (0.0%, −16.6%) 71, 037 (50, 374 + 20, 663) −5.5% (0.0%, −16.6%) 0.0% (0.0%, 0.0%)
39, 566 (25, 175 + 14, 391) 37, 494 (25, 175 + 12, 319) −5.2% (0.0%, −14.4%) 37, 494 (25, 175 + 12, 319) −5.2% (0.0%, −14.4%) 0.0% (0.0%, 0.0%)
33, 627 (20, 198 + 13, 429) 30, 502 (20, 198 + 10, 304) −9.3% (0.0%, −23.3%) 30, 502 (20, 198 + 10, 304) −9.3% (0.0%, −23.3%) 0.0% (0.0%, 0.0%)
16, 710 (10, 256 + 6, 454) 14, 670 (10, 256 + 4, 414) −12.2% (0.0%, −31.6%) 14, 618 (10, 256 + 4, 362) −12.5% (0.0%, −32.4%) −0.4% (0.0%, −1.2%)
80, 642 (65, 801 + 14, 841) 80, 642 (65, 801 + 14, 841) 0.0% (0.0%, 0.0%) 80, 642 (65, 801 + 14, 841) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

6 30 1, 000 1, 000 59, 003 (16, 627 + 42, 376) 53, 826 (16, 627 + 37, 199) −8.8% (0.0%, −12.2%) 53, 826 (16, 627 + 37, 199) −8.8% (0.0%, −12.2%) 0.0% (0.0%, 0.0%)
32, 802 (9, 252 + 23, 550) 28, 673 (9, 252 + 19, 421) −12.6% (0.0%, −17.5%) 28, 673 (9, 252 + 19, 421) −12.6% (0.0%, −17.5%) 0.0% (0.0%, 0.0%)
30, 025 (7, 280 + 22, 745) 23, 791 (7, 280 + 16, 511) −20.8% (0.0%, −27.4%) 23, 802 (7, 280 + 16, 522) −20.7% (0.0%, −27.4%) 0.0% (0.0%, 0.1%)
10, 216 (2, 388 + 7, 828) 8, 008 (2, 388 + 5, 620) −21.6% (0.0%, −28.2%) 8, 008 (2, 388 + 5, 620) −21.6% (0.0%, −28.2%) 0.0% (0.0%, 0.0%)
45, 460 (22, 210 + 23, 250) 45, 460 (22, 210 + 23, 250) 0.0% (0.0%, 0.0%) 45, 460 (22, 210 + 23, 250) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 223, 003 (16, 627 + 206, 376) 197, 826 (16, 627 + 181, 199) −11.3% (0.0%, −12.2%) 197, 826 (16, 627 + 181, 199) −11.3% (0.0%, −12.2%) 0.0% (0.0%, 0.0%)
124, 802 (9, 252 + 115, 550) 104, 673 (9, 252 + 95, 421) −16.1% (0.0%, −17.4%) 104, 673 (9, 252 + 95, 421) −16.1% (0.0%, −17.4%) 0.0% (0.0%, 0.0%)
118, 025 (7, 280 + 110, 745) 87, 802 (7, 280 + 80, 522) −25.6% (0.0%, −27.3%) 87, 791 (7, 280 + 80, 511) −25.6% (0.0%, −27.3%) 0.0% (0.0%, 0.0%)
38, 216 (2, 388 + 35, 828) 28, 008 (2, 388 + 25, 620) −26.7% (0.0%, −28.5%) 28, 008 (2, 388 + 25, 620) −26.7% (0.0%, −28.5%) 0.0% (0.0%, 0.0%)
133, 460 (22, 210 + 111, 250) 133, 460 (22, 210 + 111, 250) 0.0% (0.0%, 0.0%) 133, 460 (22, 210 + 111, 250) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 123, 003 (80, 627 + 42, 376) 117, 826 (80, 627 + 37, 199) −4.2% (0.0%, −12.2%) 117, 826 (80, 627 + 37, 199) −4.2% (0.0%, −12.2%) 0.0% (0.0%, 0.0%)
68, 802 (45, 252 + 23, 550) 64, 673 (45, 252 + 19, 421) −6.0% (0.0%, −17.5%) 65, 677 (45, 252 + 20, 425) −4.5% (0.0%, −13.3%) 1.6% (0.0%, 5.2%)
58, 025 (35, 280 + 22, 745) 51, 791 (35, 280 + 16, 511) −10.7% (0.0%, −27.4%) 51, 802 (35, 280 + 16, 522) −10.7% (0.0%, −27.4%) 0.0% (0.0%, 0.1%)
18, 216 (10, 388 + 7, 828) 16, 008 (10, 388 + 5, 620) −12.1% (0.0%, −28.2%) 16, 008 (10, 388 + 5, 620) −12.1% (0.0%, −28.2%) 0.0% (0.0%, 0.0%)
129, 460 (106, 210 + 23, 250) 129, 460 (106, 210 + 23, 250) 0.0% (0.0%, 0.0%) 129, 460 (106, 210 + 23, 250) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

Table 3.8: Comparison of the solutions from CP-BB. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

3.8.
C
onclusion

89

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

6 40 1, 000 1, 000 74, 525 (21, 828 + 52, 697) 69, 345 (21, 828 + 47, 517) −7.0% (0.0%, −9.8%) 69, 345 (21, 828 + 47, 517) −7.0% (0.0%, −9.8%) 0.0% (0.0%, 0.0%)
38, 938 (10, 300 + 28, 638) 32, 810 (10, 300 + 22, 510) −15.7% (0.0%, −21.4%) 32, 810 (10, 300 + 22, 510) −15.7% (0.0%, −21.4%) 0.0% (0.0%, 0.0%)
37, 197 (9, 362 + 27, 835) 31, 030 (9, 362 + 21, 668) −16.6% (0.0%, −22.2%) 31, 030 (9, 362 + 21, 668) −16.6% (0.0%, −22.2%) 0.0% (0.0%, 0.0%)
18, 454 (3, 715 + 14, 739) 15, 009 (3, 715 + 11, 294) −18.7% (0.0%, −23.4%) 15, 009 (3, 715 + 11, 294) −18.7% (0.0%, −23.4%) 0.0% (0.0%, 0.0%)
57, 166 (27, 549 + 29, 617) 57, 166 (27, 549 + 29, 617) 0.0% (0.0%, 0.0%) 57, 166 (27, 549 + 29, 617) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 278, 525 (21, 828 + 256, 697) 253, 345 (21, 828 + 231, 517) −9.0% (0.0%, −9.8%) 253, 345 (21, 828 + 231, 517) −9.0% (0.0%, −9.8%) 0.0% (0.0%, 0.0%)
150, 938 (10, 300 + 140, 638) 120, 810 (10, 300 + 110, 510) −20.0% (0.0%, −21.4%) 120, 810 (10, 300 + 110, 510) −20.0% (0.0%, −21.4%) 0.0% (0.0%, 0.0%)
145, 197 (9, 362 + 135, 835) 115, 030 (9, 362 + 105, 668) −20.8% (0.0%, −22.2%) 115, 030 (9, 362 + 105, 668) −20.8% (0.0%, −22.2%) 0.0% (0.0%, 0.0%)
70, 454 (3, 715 + 66, 739) 55, 009 (3, 715 + 51, 294) −21.9% (0.0%, −23.1%) 55, 009 (3, 715 + 51, 294) −21.9% (0.0%, −23.1%) 0.0% (0.0%, 0.0%)
169, 166 (27, 549 + 141, 617) 169, 166 (27, 549 + 141, 617) 0.0% (0.0%, 0.0%) 169, 166 (27, 549 + 141, 617) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 158, 525 (105, 828 + 52, 697) 153, 345 (105, 828 + 47, 517) −3.3% (0.0%, −9.8%) 153, 345 (105, 828 + 47, 517) −3.3% (0.0%, −9.8%) 0.0% (0.0%, 0.0%)
78, 938 (50, 300 + 28, 638) 72, 810 (50, 300 + 22, 510) −7.8% (0.0%, −21.4%) 72, 810 (50, 300 + 22, 510) −7.8% (0.0%, −21.4%) 0.0% (0.0%, 0.0%)
73, 197 (45, 362 + 27, 835) 67, 030 (45, 362 + 21, 668) −8.4% (0.0%, −22.2%) 67, 030 (45, 362 + 21, 668) −8.4% (0.0%, −22.2%) 0.0% (0.0%, 0.0%)
30, 454 (15, 715 + 14, 739) 27, 009 (15, 715 + 11, 294) −11.3% (0.0%, −23.4%) 27, 009 (15, 715 + 11, 294) −11.3% (0.0%, −23.4%) 0.0% (0.0%, 0.0%)
161, 166 (131, 549 + 29, 617) 161, 166 (131, 549 + 29, 617) 0.0% (0.0%, 0.0%) 161, 166 (131, 549 + 29, 617) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

6 50 1, 000 1, 000 98, 500 (27, 078 + 71, 422) 89, 262 (27, 078 + 62, 184) −9.4% (0.0%, −12.9%) 89, 262 (27, 078 + 62, 184) −9.4% (0.0%, −12.9%) 0.0% (0.0%, 0.0%)
50, 422 (13, 416 + 37, 006) 44, 164 (13, 416 + 30, 748) −12.4% (0.0%, −16.9%) 44, 164 (13, 416 + 30, 748) −12.4% (0.0%, −16.9%) 0.0% (0.0%, 0.0%)
48, 383 (12, 455 + 35, 928) 41, 230 (12, 455 + 28, 775) −14.8% (0.0%, −19.9%) 41, 230 (12, 455 + 28, 775) −14.8% (0.0%, −19.9%) 0.0% (0.0%, 0.0%)
160, 385 (53, 275 + 107, 110) 106, 550 (53, 275 + 53, 275) −33.6% (0.0%, −50.3%) 106, 550 (53, 275 + 53, 275) −33.6% (0.0%, −50.3%) 0.0% (0.0%, 0.0%)
77, 078 (36, 990 + 40, 088) 75, 008 (36, 990 + 38, 018) −2.7% (0.0%, −5.2%) 75, 008 (36, 990 + 38, 018) −2.7% (0.0%, −5.2%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 374, 500 (27, 078 + 347, 422) 329, 262 (27, 078 + 302, 184) −12.1% (0.0%, −13.0%) 329, 262 (27, 078 + 302, 184) −12.1% (0.0%, −13.0%) 0.0% (0.0%, 0.0%)
194, 422 (13, 416 + 181, 006) 164, 164 (13, 416 + 150, 748) −15.6% (0.0%, −16.7%) 164, 164 (13, 416 + 150, 748) −15.6% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
188, 383 (12, 455 + 175, 928) 153, 230 (12, 455 + 140, 775) −18.7% (0.0%, −20.0%) 153, 230 (12, 455 + 140, 775) −18.7% (0.0%, −20.0%) 0.0% (0.0%, 0.0%)
564, 385 (53, 275 + 511, 110) 306, 550 (53, 275 + 253, 275) −45.7% (0.0%, −50.4%) 306, 550 (53, 275 + 253, 275) −45.7% (0.0%, −50.4%) 0.0% (0.0%, 0.0%)
229, 078 (36, 990 + 192, 088) 219, 008 (36, 990 + 182, 018) −4.4% (0.0%, −5.2%) 219, 008 (36, 990 + 182, 018) −4.4% (0.0%, −5.2%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 202, 500 (131, 078 + 71, 422) 193, 262 (131, 078 + 62, 184) −4.6% (0.0%, −12.9%) 193, 262 (131, 078 + 62, 184) −4.6% (0.0%, −12.9%) 0.0% (0.0%, 0.0%)
102, 422 (65, 416 + 37, 006) 96, 164 (65, 416 + 30, 748) −6.1% (0.0%, −16.9%) 96, 164 (65, 416 + 30, 748) −6.1% (0.0%, −16.9%) 0.0% (0.0%, 0.0%)
96, 383 (60, 455 + 35, 928) 89, 230 (60, 455 + 28, 775) −7.4% (0.0%, −19.9%) 89, 230 (60, 455 + 28, 775) −7.4% (0.0%, −19.9%) 0.0% (0.0%, 0.0%)
360, 385 (253, 275 + 107, 110) 306, 550 (253, 275 + 53, 275) −14.9% (0.0%, −50.3%) 306, 550 (253, 275 + 53, 275) −14.9% (0.0%, −50.3%) 0.0% (0.0%, 0.0%)
217, 078 (176, 990 + 40, 088) 215, 008 (176, 990 + 38, 018) −1.0% (0.0%, −5.2%) 215, 008 (176, 990 + 38, 018) −1.0% (0.0%, −5.2%) 0.0% (0.0%, 0.0%)

Table 3.8: Comparison of the solutions from CP-BB. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

90
C
hapter

3.
T
he

JointVehicle
and

C
rew

Routing
and

Scheduling
Problem

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

10 5 1, 000 1, 000 4, 360 (1, 090 + 3, 270) 4, 308 (1, 090 + 3, 218) −1.2% (0.0%, −1.6%) 4, 291 (1, 093 + 3, 198) −1.6% (0.3%, −2.2%) −0.4% (0.3%, −0.6%)
7, 440 (1, 093 + 6, 347) 6, 405 (1, 093 + 5, 312) −13.9% (0.0%, −16.3%) 6, 380 (1, 096 + 5, 284) −14.2% (0.3%, −16.7%) −0.4% (0.3%, −0.5%)
7, 509 (1, 111 + 6, 398) 6, 438 (1, 111 + 5, 327) −14.3% (0.0%, −16.7%) 6, 438 (1, 111 + 5, 327) −14.3% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
7, 395 (2, 112 + 5, 283) 6, 336 (2, 112 + 4, 224) −14.3% (0.0%, −20.0%) 5, 307 (2, 130 + 3, 177) −28.2% (0.9%, −39.9%) −16.2% (0.9%, −24.8%)
6, 327 (2, 109 + 4, 218) 6, 327 (2, 109 + 4, 218) 0.0% (0.0%, 0.0%) 6, 327 (2, 109 + 4, 218) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 16, 360 (1, 090 + 15, 270) 16, 308 (1, 090 + 15, 218) −0.3% (0.0%, −0.3%) 16, 291 (1, 093 + 15, 198) −0.4% (0.3%, −0.5%) −0.1% (0.3%, −0.1%)
31, 440 (1, 093 + 30, 347) 26, 405 (1, 093 + 25, 312) −16.0% (0.0%, −16.6%) 26, 380 (1, 096 + 25, 284) −16.1% (0.3%, −16.7%) −0.1% (0.3%, −0.1%)
31, 509 (1, 111 + 30, 398) 26, 438 (1, 111 + 25, 327) −16.1% (0.0%, −16.7%) 26, 438 (1, 111 + 25, 327) −16.1% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
27, 395 (2, 112 + 25, 283) 22, 336 (2, 112 + 20, 224) −18.5% (0.0%, −20.0%) 17, 307 (2, 130 + 15, 177) −36.8% (0.9%, −40.0%) −22.5% (0.9%, −25.0%)
22, 327 (2, 109 + 20, 218) 22, 327 (2, 109 + 20, 218) 0.0% (0.0%, 0.0%) 22, 327 (2, 109 + 20, 218) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 8, 360 (5, 090 + 3, 270) 8, 308 (5, 090 + 3, 218) −0.6% (0.0%, −1.6%) 8, 291 (5, 093 + 3, 198) −0.8% (0.1%, −2.2%) −0.2% (0.1%, −0.6%)
11, 440 (5, 093 + 6, 347) 10, 405 (5, 093 + 5, 312) −9.0% (0.0%, −16.3%) 10, 380 (5, 096 + 5, 284) −9.3% (0.1%, −16.7%) −0.2% (0.1%, −0.5%)
11, 509 (5, 111 + 6, 398) 10, 438 (5, 111 + 5, 327) −9.3% (0.0%, −16.7%) 10, 438 (5, 111 + 5, 327) −9.3% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
15, 395 (10, 112 + 5, 283) 14, 336 (10, 112 + 4, 224) −6.9% (0.0%, −20.0%) 13, 307 (10, 130 + 3, 177) −13.6% (0.2%, −39.9%) −7.2% (0.2%, −24.8%)
14, 327 (10, 109 + 4, 218) 14, 327 (10, 109 + 4, 218) 0.0% (0.0%, 0.0%) 14, 327 (10, 109 + 4, 218) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

10 10 1, 000 1, 000 9, 529 (2, 173 + 7, 356) 7, 476 (2, 173 + 5, 303) −21.5% (0.0%, −27.9%) 7, 476 (2, 173 + 5, 303) −21.5% (0.0%, −27.9%) 0.0% (0.0%, 0.0%)
10, 923 (1, 166 + 9, 757) 10, 923 (1, 166 + 9, 757) 0.0% (0.0%, 0.0%) 10, 923 (1, 166 + 9, 757) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)
12, 744 (2, 178 + 10, 566) 11, 695 (2, 178 + 9, 517) −8.2% (0.0%, −9.9%) 11, 695 (2, 178 + 9, 517) −8.2% (0.0%, −9.9%) 0.0% (0.0%, 0.0%)
8, 655 (2, 210 + 6, 445) 8, 638 (2, 210 + 6, 428) −0.2% (0.0%, −0.3%) 8, 638 (2, 210 + 6, 428) −0.2% (0.0%, −0.3%) 0.0% (0.0%, 0.0%)
9, 644 (2, 227 + 7, 417) 8, 609 (2, 227 + 6, 382) −10.7% (0.0%, −14.0%) 8, 609 (2, 227 + 6, 382) −10.7% (0.0%, −14.0%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 37, 529 (2, 173 + 35, 356) 27, 476 (2, 173 + 25, 303) −26.8% (0.0%, −28.4%) 27, 476 (2, 173 + 25, 303) −26.8% (0.0%, −28.4%) 0.0% (0.0%, 0.0%)
46, 923 (1, 166 + 45, 757) 46, 923 (1, 166 + 45, 757) 0.0% (0.0%, 0.0%) 46, 923 (1, 166 + 45, 757) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)
52, 744 (2, 178 + 50, 566) 47, 695 (2, 178 + 45, 517) −9.6% (0.0%, −10.0%) 47, 695 (2, 178 + 45, 517) −9.6% (0.0%, −10.0%) 0.0% (0.0%, 0.0%)
32, 655 (2, 210 + 30, 445) 32, 638 (2, 210 + 30, 428) −0.1% (0.0%, −0.1%) 32, 638 (2, 210 + 30, 428) −0.1% (0.0%, −0.1%) 0.0% (0.0%, 0.0%)
37, 644 (2, 227 + 35, 417) 32, 609 (2, 227 + 30, 382) −13.4% (0.0%, −14.2%) 32, 609 (2, 227 + 30, 382) −13.4% (0.0%, −14.2%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 17, 529 (10, 173 + 7, 356) 15, 476 (10, 173 + 5, 303) −11.7% (0.0%, −27.9%) 15, 476 (10, 173 + 5, 303) −11.7% (0.0%, −27.9%) 0.0% (0.0%, 0.0%)
14, 923 (5, 166 + 9, 757) 14, 923 (5, 166 + 9, 757) 0.0% (0.0%, 0.0%) 14, 923 (5, 166 + 9, 757) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)
20, 744 (10, 178 + 10, 566) 19, 695 (10, 178 + 9, 517) −5.1% (0.0%, −9.9%) 19, 695 (10, 178 + 9, 517) −5.1% (0.0%, −9.9%) 0.0% (0.0%, 0.0%)
16, 655 (10, 210 + 6, 445) 16, 638 (10, 210 + 6, 428) −0.1% (0.0%, −0.3%) 16, 638 (10, 210 + 6, 428) −0.1% (0.0%, −0.3%) 0.0% (0.0%, 0.0%)
17, 644 (10, 227 + 7, 417) 16, 609 (10, 227 + 6, 382) −5.9% (0.0%, −14.0%) 16, 609 (10, 227 + 6, 382) −5.9% (0.0%, −14.0%) 0.0% (0.0%, 0.0%)

Table 3.8: Comparison of the solutions from CP-BB. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

3.8.
C
onclusion

91

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

10 20 1, 000 1, 000 15, 161 (3, 310 + 11, 851) 14, 088 (3, 310 + 10, 778) −7.1% (0.0%, −9.1%) 14, 088 (3, 310 + 10, 778) −7.1% (0.0%, −9.1%) 0.0% (0.0%, 0.0%)
18, 302 (2, 255 + 16, 047) 16, 167 (2, 255 + 13, 912) −11.7% (0.0%, −13.3%) 16, 167 (2, 255 + 13, 912) −11.7% (0.0%, −13.3%) 0.0% (0.0%, 0.0%)
22, 384 (3, 345 + 19, 039) 21, 355 (3, 345 + 18, 010) −4.6% (0.0%, −5.4%) 21, 355 (3, 345 + 18, 010) −4.6% (0.0%, −5.4%) 0.0% (0.0%, 0.0%)
20, 584 (4, 444 + 16, 140) 18, 465 (4, 444 + 14, 021) −10.3% (0.0%, −13.1%) 18, 465 (4, 444 + 14, 021) −10.3% (0.0%, −13.1%) 0.0% (0.0%, 0.0%)
21, 662 (5, 490 + 16, 172) 21, 614 (5, 490 + 16, 124) −0.2% (0.0%, −0.3%) 21, 614 (5, 490 + 16, 124) −0.2% (0.0%, −0.3%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 59, 161 (3, 310 + 55, 851) 54, 088 (3, 310 + 50, 778) −8.6% (0.0%, −9.1%) 54, 088 (3, 310 + 50, 778) −8.6% (0.0%, −9.1%) 0.0% (0.0%, 0.0%)
78, 302 (2, 255 + 76, 047) 68, 167 (2, 255 + 65, 912) −12.9% (0.0%, −13.3%) 68, 167 (2, 255 + 65, 912) −12.9% (0.0%, −13.3%) 0.0% (0.0%, 0.0%)
94, 384 (3, 345 + 91, 039) 89, 355 (3, 345 + 86, 010) −5.3% (0.0%, −5.5%) 89, 355 (3, 345 + 86, 010) −5.3% (0.0%, −5.5%) 0.0% (0.0%, 0.0%)
80, 584 (4, 444 + 76, 140) 70, 465 (4, 444 + 66, 021) −12.6% (0.0%, −13.3%) 70, 465 (4, 444 + 66, 021) −12.6% (0.0%, −13.3%) 0.0% (0.0%, 0.0%)
81, 662 (5, 490 + 76, 172) 81, 614 (5, 490 + 76, 124) −0.1% (0.0%, −0.1%) 81, 614 (5, 490 + 76, 124) −0.1% (0.0%, −0.1%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 27, 161 (15, 310 + 11, 851) 26, 088 (15, 310 + 10, 778) −4.0% (0.0%, −9.1%) 26, 088 (15, 310 + 10, 778) −4.0% (0.0%, −9.1%) 0.0% (0.0%, 0.0%)
26, 302 (10, 255 + 16, 047) 24, 167 (10, 255 + 13, 912) −8.1% (0.0%, −13.3%) 24, 167 (10, 255 + 13, 912) −8.1% (0.0%, −13.3%) 0.0% (0.0%, 0.0%)
34, 378 (15, 345 + 19, 033) 33, 355 (15, 345 + 18, 010) −3.0% (0.0%, −5.4%) 33, 355 (15, 345 + 18, 010) −3.0% (0.0%, −5.4%) 0.0% (0.0%, 0.0%)
36, 584 (20, 444 + 16, 140) 34, 465 (20, 444 + 14, 021) −5.8% (0.0%, −13.1%) 34, 465 (20, 444 + 14, 021) −5.8% (0.0%, −13.1%) 0.0% (0.0%, 0.0%)
41, 662 (25, 490 + 16, 172) 41, 614 (25, 490 + 16, 124) −0.1% (0.0%, −0.3%) 41, 614 (25, 490 + 16, 124) −0.1% (0.0%, −0.3%) 0.0% (0.0%, 0.0%)

10 30 1, 000 1, 000 33, 840 (7, 550 + 26, 290) 27, 598 (7, 550 + 20, 048) −18.4% (0.0%, −23.7%) 27, 598 (7, 550 + 20, 048) −18.4% (0.0%, −23.7%) 0.0% (0.0%, 0.0%)
36, 147 (5, 488 + 30, 659) 32, 997 (5, 488 + 27, 509) −8.7% (0.0%, −10.3%) 32, 997 (5, 488 + 27, 509) −8.7% (0.0%, −10.3%) 0.0% (0.0%, 0.0%)
38, 482 (5, 549 + 32, 933) 36, 512 (5, 549 + 30, 963) −5.1% (0.0%, −6.0%) 36, 512 (5, 549 + 30, 963) −5.1% (0.0%, −6.0%) 0.0% (0.0%, 0.0%)
30, 286 (6, 658 + 23, 628) 27, 057 (6, 658 + 20, 399) −10.7% (0.0%, −13.7%) 27, 057 (6, 658 + 20, 399) −10.7% (0.0%, −13.7%) 0.0% (0.0%, 0.0%)
22, 486 (5, 504 + 16, 982) 21, 465 (5, 504 + 15, 961) −4.5% (0.0%, −6.0%) 21, 465 (5, 504 + 15, 961) −4.5% (0.0%, −6.0%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 133, 840 (7, 550 + 126, 290) 103, 598 (7, 550 + 96, 048) −22.6% (0.0%, −23.9%) 103, 598 (7, 550 + 96, 048) −22.6% (0.0%, −23.9%) 0.0% (0.0%, 0.0%)
152, 147 (5, 488 + 146, 659) 136, 997 (5, 488 + 131, 509) −10.0% (0.0%, −10.3%) 136, 997 (5, 488 + 131, 509) −10.0% (0.0%, −10.3%) 0.0% (0.0%, 0.0%)
162, 482 (5, 549 + 156, 933) 152, 512 (5, 549 + 146, 963) −6.1% (0.0%, −6.4%) 152, 512 (5, 549 + 146, 963) −6.1% (0.0%, −6.4%) 0.0% (0.0%, 0.0%)
118, 286 (6, 658 + 111, 628) 103, 057 (6, 658 + 96, 399) −12.9% (0.0%, −13.6%) 103, 057 (6, 658 + 96, 399) −12.9% (0.0%, −13.6%) 0.0% (0.0%, 0.0%)
86, 486 (5, 504 + 80, 982) 81, 465 (5, 504 + 75, 961) −5.8% (0.0%, −6.2%) 81, 465 (5, 504 + 75, 961) −5.8% (0.0%, −6.2%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 61, 840 (35, 550 + 26, 290) 55, 598 (35, 550 + 20, 048) −10.1% (0.0%, −23.7%) 55, 598 (35, 550 + 20, 048) −10.1% (0.0%, −23.7%) 0.0% (0.0%, 0.0%)
56, 147 (25, 488 + 30, 659) 52, 997 (25, 488 + 27, 509) −5.6% (0.0%, −10.3%) 52, 997 (25, 488 + 27, 509) −5.6% (0.0%, −10.3%) 0.0% (0.0%, 0.0%)
58, 482 (25, 549 + 32, 933) 56, 512 (25, 549 + 30, 963) −3.4% (0.0%, −6.0%) 56, 512 (25, 549 + 30, 963) −3.4% (0.0%, −6.0%) 0.0% (0.0%, 0.0%)
54, 286 (30, 658 + 23, 628) 51, 057 (30, 658 + 20, 399) −5.9% (0.0%, −13.7%) 51, 057 (30, 658 + 20, 399) −5.9% (0.0%, −13.7%) 0.0% (0.0%, 0.0%)
42, 486 (25, 504 + 16, 982) 41, 465 (25, 504 + 15, 961) −2.4% (0.0%, −6.0%) 41, 465 (25, 504 + 15, 961) −2.4% (0.0%, −6.0%) 0.0% (0.0%, 0.0%)

Table 3.8: Comparison of the solutions from CP-BB. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

92
C
hapter

3.
T
he

JointVehicle
and

C
rew

Routing
and

Scheduling
Problem

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

10 40 1, 000 1, 000 52, 853 (11, 765 + 41, 088) 43, 349 (11, 765 + 31, 584) −18.0% (0.0%, −23.1%) 43, 349 (11, 765 + 31, 584) −18.0% (0.0%, −23.1%) 0.0% (0.0%, 0.0%)
46, 823 (7, 660 + 39, 163) 45, 764 (7, 660 + 38, 104) −2.3% (0.0%, −2.7%) 45, 764 (7, 660 + 38, 104) −2.3% (0.0%, −2.7%) 0.0% (0.0%, 0.0%)
48, 067 (6, 697 + 41, 370) 42, 906 (6, 697 + 36, 209) −10.7% (0.0%, −12.5%) 42, 906 (6, 697 + 36, 209) −10.7% (0.0%, −12.5%) 0.0% (0.0%, 0.0%)
46, 011 (10, 905 + 35, 106) 40, 660 (10, 905 + 29, 755) −11.6% (0.0%, −15.2%) 40, 660 (10, 905 + 29, 755) −11.6% (0.0%, −15.2%) 0.0% (0.0%, 0.0%)
33, 405 (7, 755 + 25, 650) 30, 269 (7, 755 + 22, 514) −9.4% (0.0%, −12.2%) 30, 269 (7, 755 + 22, 514) −9.4% (0.0%, −12.2%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 208, 853 (11, 765 + 197, 088) 163, 349 (11, 765 + 151, 584) −21.8% (0.0%, −23.1%) 163, 349 (11, 765 + 151, 584) −21.8% (0.0%, −23.1%) 0.0% (0.0%, 0.0%)
194, 823 (7, 660 + 187, 163) 189, 764 (7, 660 + 182, 104) −2.6% (0.0%, −2.7%) 189, 764 (7, 660 + 182, 104) −2.6% (0.0%, −2.7%) 0.0% (0.0%, 0.0%)
204, 067 (6, 697 + 197, 370) 178, 906 (6, 697 + 172, 209) −12.3% (0.0%, −12.7%) 178, 906 (6, 697 + 172, 209) −12.3% (0.0%, −12.7%) 0.0% (0.0%, 0.0%)
178, 011 (10, 905 + 167, 106) 152, 660 (10, 905 + 141, 755) −14.2% (0.0%, −15.2%) 152, 660 (10, 905 + 141, 755) −14.2% (0.0%, −15.2%) 0.0% (0.0%, 0.0%)
129, 405 (7, 755 + 121, 650) 114, 269 (7, 755 + 106, 514) −11.7% (0.0%, −12.4%) 114, 269 (7, 755 + 106, 514) −11.7% (0.0%, −12.4%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 96, 853 (55, 765 + 41, 088) 87, 349 (55, 765 + 31, 584) −9.8% (0.0%, −23.1%) 87, 349 (55, 765 + 31, 584) −9.8% (0.0%, −23.1%) 0.0% (0.0%, 0.0%)
74, 823 (35, 660 + 39, 163) 73, 764 (35, 660 + 38, 104) −1.4% (0.0%, −2.7%) 73, 764 (35, 660 + 38, 104) −1.4% (0.0%, −2.7%) 0.0% (0.0%, 0.0%)
72, 067 (30, 697 + 41, 370) 66, 906 (30, 697 + 36, 209) −7.2% (0.0%, −12.5%) 66, 906 (30, 697 + 36, 209) −7.2% (0.0%, −12.5%) 0.0% (0.0%, 0.0%)
86, 011 (50, 905 + 35, 106) 80, 660 (50, 905 + 29, 755) −6.2% (0.0%, −15.2%) 80, 660 (50, 905 + 29, 755) −6.2% (0.0%, −15.2%) 0.0% (0.0%, 0.0%)
61, 418 (35, 755 + 25, 663) 58, 269 (35, 755 + 22, 514) −5.1% (0.0%, −12.3%) 58, 269 (35, 755 + 22, 514) −5.1% (0.0%, −12.3%) 0.0% (0.0%, 0.0%)

10 50 1, 000 1, 000 72, 725 (18, 078 + 54, 647) 63, 221 (18, 078 + 45, 143) −13.1% (0.0%, −17.4%) 63, 221 (18, 078 + 45, 143) −13.1% (0.0%, −17.4%) 0.0% (0.0%, 0.0%)
67, 107 (10, 831 + 56, 276) 59, 744 (10, 831 + 48, 913) −11.0% (0.0%, −13.1%) 59, 744 (10, 831 + 48, 913) −11.0% (0.0%, −13.1%) 0.0% (0.0%, 0.0%)
61, 639 (8, 844 + 52, 795) 57, 523 (8, 844 + 48, 679) −6.7% (0.0%, −7.8%) 57, 523 (8, 844 + 48, 679) −6.7% (0.0%, −7.8%) 0.0% (0.0%, 0.0%)
52, 691 (12, 128 + 40, 563) 46, 366 (12, 128 + 34, 238) −12.0% (0.0%, −15.6%) 46, 366 (12, 128 + 34, 238) −12.0% (0.0%, −15.6%) 0.0% (0.0%, 0.0%)
43, 265 (9, 987 + 33, 278) 40, 961 (9, 987 + 30, 974) −5.3% (0.0%, −6.9%) 40, 961 (9, 987 + 30, 974) −5.3% (0.0%, −6.9%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 280, 725 (18, 078 + 262, 647) 235, 221 (18, 078 + 217, 143) −16.2% (0.0%, −17.3%) 235, 221 (18, 078 + 217, 143) −16.2% (0.0%, −17.3%) 0.0% (0.0%, 0.0%)
279, 107 (10, 831 + 268, 276) 243, 744 (10, 831 + 232, 913) −12.7% (0.0%, −13.2%) 243, 744 (10, 831 + 232, 913) −12.7% (0.0%, −13.2%) 0.0% (0.0%, 0.0%)
261, 639 (8, 844 + 252, 795) 241, 523 (8, 844 + 232, 679) −7.7% (0.0%, −8.0%) 241, 523 (8, 844 + 232, 679) −7.7% (0.0%, −8.0%) 0.0% (0.0%, 0.0%)
204, 691 (12, 128 + 192, 563) 174, 366 (12, 128 + 162, 238) −14.8% (0.0%, −15.7%) 174, 366 (12, 128 + 162, 238) −14.8% (0.0%, −15.7%) 0.0% (0.0%, 0.0%)
167, 265 (9, 987 + 157, 278) 156, 961 (9, 987 + 146, 974) −6.2% (0.0%, −6.6%) 156, 961 (9, 987 + 146, 974) −6.2% (0.0%, −6.6%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 140, 725 (86, 078 + 54, 647) 131, 221 (86, 078 + 45, 143) −6.8% (0.0%, −17.4%) 131, 221 (86, 078 + 45, 143) −6.8% (0.0%, −17.4%) 0.0% (0.0%, 0.0%)
107, 107 (50, 831 + 56, 276) 99, 744 (50, 831 + 48, 913) −6.9% (0.0%, −13.1%) 99, 744 (50, 831 + 48, 913) −6.9% (0.0%, −13.1%) 0.0% (0.0%, 0.0%)
93, 639 (40, 844 + 52, 795) 89, 523 (40, 844 + 48, 679) −4.4% (0.0%, −7.8%) 89, 523 (40, 844 + 48, 679) −4.4% (0.0%, −7.8%) 0.0% (0.0%, 0.0%)
96, 691 (56, 128 + 40, 563) 90, 366 (56, 128 + 34, 238) −6.5% (0.0%, −15.6%) 90, 366 (56, 128 + 34, 238) −6.5% (0.0%, −15.6%) 0.0% (0.0%, 0.0%)
79, 265 (45, 987 + 33, 278) 76, 961 (45, 987 + 30, 974) −2.9% (0.0%, −6.9%) 76, 961 (45, 987 + 30, 974) −2.9% (0.0%, −6.9%) 0.0% (0.0%, 0.0%)

Table 3.8: Comparison of the solutions from CP-BB. Vehicle and crew objective values are shown inside parenthesis.

3.8.
C
onclusion

93

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

6 5 1, 000 1, 000 8, 312 (2, 078 + 6, 234) 7, 268 (2, 078 + 5, 190) −12.6% (0.0%, −16.7%) 7, 268 (2, 078 + 5, 190) −12.6% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
4, 166 (1, 047 + 3, 119) 4, 144 (1, 047 + 3, 097) −0.5% (0.0%, −0.7%) 4, 135 (1, 048 + 3, 087) −0.7% (0.1%, −1.0%) −0.2% (0.1%, −0.3%)
4, 098 (1, 035 + 3, 063) 3, 105 (1, 035 + 2, 070) −24.2% (0.0%, −32.4%) 3, 089 (1, 037 + 2, 052) −24.6% (0.2%, −33.0%) −0.5% (0.2%, −0.9%)
4, 410 (1, 151 + 3, 259) 3, 453 (1, 151 + 2, 302) −21.7% (0.0%, −29.4%) 3, 352 (1, 159 + 2, 193) −24.0% (0.7%, −32.7%) −2.9% (0.7%, −4.7%)
6, 404 (3, 202 + 3, 202) 6, 404 (3, 202 + 3, 202) 0.0% (0.0%, 0.0%) 6, 404 (3, 202 + 3, 202) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 32, 312 (2, 078 + 30, 234) 27, 268 (2, 078 + 25, 190) −15.6% (0.0%, −16.7%) 27, 268 (2, 078 + 25, 190) −15.6% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
16, 166 (1, 047 + 15, 119) 16, 144 (1, 047 + 15, 097) −0.1% (0.0%, −0.1%) 16, 135 (1, 048 + 15, 087) −0.2% (0.1%, −0.2%) −0.1% (0.1%, −0.1%)
16, 098 (1, 035 + 15, 063) 11, 105 (1, 035 + 10, 070) −31.0% (0.0%, −33.1%) 11, 089 (1, 037 + 10, 052) −31.1% (0.2%, −33.3%) −0.1% (0.2%, −0.2%)
16, 410 (1, 151 + 15, 259) 11, 453 (1, 151 + 10, 302) −30.2% (0.0%, −32.5%) 11, 352 (1, 159 + 10, 193) −30.8% (0.7%, −33.2%) −0.9% (0.7%, −1.1%)
18, 404 (3, 202 + 15, 202) 18, 404 (3, 202 + 15, 202) 0.0% (0.0%, 0.0%) 18, 404 (3, 202 + 15, 202) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 16, 312 (10, 078 + 6, 234) 15, 268 (10, 078 + 5, 190) −6.4% (0.0%, −16.7%) 15, 268 (10, 078 + 5, 190) −6.4% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
8, 166 (5, 047 + 3, 119) 8, 144 (5, 047 + 3, 097) −0.3% (0.0%, −0.7%) 8, 135 (5, 048 + 3, 087) −0.4% (0.0%, −1.0%) −0.1% (0.0%, −0.3%)
8, 098 (5, 035 + 3, 063) 7, 105 (5, 035 + 2, 070) −12.3% (0.0%, −32.4%) 7, 089 (5, 037 + 2, 052) −12.5% (0.0%, −33.0%) −0.2% (0.0%, −0.9%)
8, 410 (5, 151 + 3, 259) 7, 453 (5, 151 + 2, 302) −11.4% (0.0%, −29.4%) 7, 352 (5, 159 + 2, 193) −12.6% (0.2%, −32.7%) −1.4% (0.2%, −4.7%)
18, 404 (15, 202 + 3, 202) 18, 404 (15, 202 + 3, 202) 0.0% (0.0%, 0.0%) 18, 404 (15, 202 + 3, 202) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

6 10 1, 000 1, 000 13, 462 (4, 160 + 9, 302) 13, 462 (4, 160 + 9, 302) 0.0% (0.0%, 0.0%) 13, 462 (4, 160 + 9, 302) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)
8, 194 (2, 064 + 6, 130) 8, 189 (2, 064 + 6, 125) −0.1% (0.0%, −0.1%) 7, 200 (2, 068 + 5, 132) −12.1% (0.2%, −16.3%) −12.1% (0.2%, −16.2%)
7, 191 (2, 071 + 5, 120) 6, 176 (2, 071 + 4, 105) −14.1% (0.0%, −19.8%) 6, 175 (2, 075 + 4, 100) −14.1% (0.2%, −19.9%) 0.0% (0.2%, −0.1%)
5, 689 (1, 196 + 4, 493) 4, 590 (1, 196 + 3, 394) −19.3% (0.0%, −24.5%) 4, 568 (1, 205 + 3, 363) −19.7% (0.8%, −25.2%) −0.5% (0.8%, −0.9%)
13, 776 (6, 380 + 7, 396) 12, 760 (6, 380 + 6, 380) −7.4% (0.0%, −13.7%) 12, 760 (6, 380 + 6, 380) −7.4% (0.0%, −13.7%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 49, 462 (4, 160 + 45, 302) 49, 462 (4, 160 + 45, 302) 0.0% (0.0%, 0.0%) 49, 462 (4, 160 + 45, 302) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)
32, 194 (2, 064 + 30, 130) 32, 189 (2, 064 + 30, 125) 0.0% (0.0%, 0.0%) 27, 200 (2, 068 + 25, 132) −15.5% (0.2%, −16.6%) −15.5% (0.2%, −16.6%)
27, 191 (2, 071 + 25, 120) 22, 176 (2, 071 + 20, 105) −18.4% (0.0%, −20.0%) 22, 176 (2, 071 + 20, 105) −18.4% (0.0%, −20.0%) 0.0% (0.0%, 0.0%)
21, 689 (1, 196 + 20, 493) 16, 590 (1, 196 + 15, 394) −23.5% (0.0%, −24.9%) 16, 568 (1, 205 + 15, 363) −23.6% (0.8%, −25.0%) −0.1% (0.8%, −0.2%)
41, 776 (6, 380 + 35, 396) 36, 760 (6, 380 + 30, 380) −12.0% (0.0%, −14.2%) 36, 760 (6, 380 + 30, 380) −12.0% (0.0%, −14.2%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 29, 462 (20, 160 + 9, 302) 29, 462 (20, 160 + 9, 302) 0.0% (0.0%, 0.0%) 29, 462 (20, 160 + 9, 302) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)
16, 194 (10, 064 + 6, 130) 16, 189 (10, 064 + 6, 125) 0.0% (0.0%, −0.1%) 15, 200 (10, 068 + 5, 132) −6.1% (0.0%, −16.3%) −6.1% (0.0%, −16.2%)
15, 191 (10, 071 + 5, 120) 14, 176 (10, 071 + 4, 105) −6.7% (0.0%, −19.8%) 14, 176 (10, 071 + 4, 105) −6.7% (0.0%, −19.8%) 0.0% (0.0%, 0.0%)
9, 689 (5, 196 + 4, 493) 8, 590 (5, 196 + 3, 394) −11.3% (0.0%, −24.5%) 8, 566 (5, 204 + 3, 362) −11.6% (0.2%, −25.2%) −0.3% (0.2%, −0.9%)
37, 776 (30, 380 + 7, 396) 36, 760 (30, 380 + 6, 380) −2.7% (0.0%, −13.7%) 36, 760 (30, 380 + 6, 380) −2.7% (0.0%, −13.7%) 0.0% (0.0%, 0.0%)

Table 3.9: Comparison of the solutions from MIP-LNS. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

94
C
hapter

3.
T
he

JointVehicle
and

C
rew

Routing
and

Scheduling
Problem

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

6 20 1, 000 1, 000 31, 975 (9, 364 + 22, 611) 28, 933 (9, 364 + 19, 569) −9.5% (0.0%, −13.5%) 29, 971 (9, 364 + 20, 607) −6.3% (0.0%, −8.9%) 3.6% (0.0%, 5.3%)
18, 358 (5, 144 + 13, 214) 14, 336 (5, 144 + 9, 192) −21.9% (0.0%, −30.4%) 15, 332 (5, 144 + 10, 188) −16.5% (0.0%, −22.9%) 6.9% (0.0%, 10.8%)
16, 362 (4, 136 + 12, 226) 14, 338 (4, 136 + 10, 202) −12.4% (0.0%, −16.6%) 15, 360 (4, 136 + 11, 224) −6.1% (0.0%, −8.2%) 7.1% (0.0%, 10.0%)
16, 215 (4, 419 + 11, 796) 9, 917 (4, 419 + 5, 498) −38.8% (0.0%, −53.4%) 9, 917 (4, 419 + 5, 498) −38.8% (0.0%, −53.4%) 0.0% (0.0%, 0.0%)
24, 576 (11, 780 + 12, 796) 23, 560 (11, 780 + 11, 780) −4.1% (0.0%, −7.9%) 23, 560 (11, 780 + 11, 780) −4.1% (0.0%, −7.9%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 119, 969 (9, 364 + 110, 605) 104, 927 (9, 364 + 95, 563) −12.5% (0.0%, −13.6%) 124, 994 (9, 364 + 115, 630) 4.2% (0.0%, 4.5%) 19.1% (0.0%, 21.0%)
70, 358 (5, 144 + 65, 214) 50, 336 (5, 144 + 45, 192) −28.5% (0.0%, −30.7%) 55, 332 (5, 144 + 50, 188) −21.4% (0.0%, −23.0%) 9.9% (0.0%, 11.1%)
64, 362 (4, 136 + 60, 226) 54, 338 (4, 136 + 50, 202) −15.6% (0.0%, −16.6%) 54, 339 (4, 136 + 50, 203) −15.6% (0.0%, −16.6%) 0.0% (0.0%, 0.0%)
60, 215 (4, 419 + 55, 796) 29, 917 (4, 419 + 25, 498) −50.3% (0.0%, −54.3%) 29, 917 (4, 419 + 25, 498) −50.3% (0.0%, −54.3%) 0.0% (0.0%, 0.0%)
72, 576 (11, 780 + 60, 796) 67, 560 (11, 780 + 55, 780) −6.9% (0.0%, −8.3%) 67, 560 (11, 780 + 55, 780) −6.9% (0.0%, −8.3%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 67, 977 (45, 364 + 22, 613) 64, 935 (45, 364 + 19, 571) −4.5% (0.0%, −13.5%) 67, 978 (45, 364 + 22, 614) 0.0% (0.0%, 0.0%) 4.7% (0.0%, 15.5%)
38, 358 (25, 144 + 13, 214) 34, 336 (25, 144 + 9, 192) −10.5% (0.0%, −30.4%) 35, 338 (25, 144 + 10, 194) −7.9% (0.0%, −22.9%) 2.9% (0.0%, 10.9%)
32, 362 (20, 136 + 12, 226) 30, 338 (20, 136 + 10, 202) −6.3% (0.0%, −16.6%) 30, 339 (20, 136 + 10, 203) −6.3% (0.0%, −16.5%) 0.0% (0.0%, 0.0%)
32, 215 (20, 419 + 11, 796) 25, 917 (20, 419 + 5, 498) −19.5% (0.0%, −53.4%) 26, 951 (20, 419 + 6, 532) −16.3% (0.0%, −44.6%) 4.0% (0.0%, 18.8%)
68, 576 (55, 780 + 12, 796) 67, 560 (55, 780 + 11, 780) −1.5% (0.0%, −7.9%) 67, 560 (55, 780 + 11, 780) −1.5% (0.0%, −7.9%) 0.0% (0.0%, 0.0%)

6 30 1, 000 1, 000 50, 532 (14, 553 + 35, 979) 50, 558 (14, 553 + 36, 005) 0.1% (0.0%, 0.1%) 55, 602 (14, 553 + 41, 049) 10.0% (0.0%, 14.1%) 10.0% (0.0%, 14.0%)
32, 574 (9, 227 + 23, 347) 24, 508 (9, 227 + 15, 281) −24.8% (0.0%, −34.5%) 28, 551 (9, 227 + 19, 324) −12.4% (0.0%, −17.2%) 16.5% (0.0%, 26.5%)
27, 687 (7, 270 + 20, 417) 23, 615 (7, 270 + 16, 345) −14.7% (0.0%, −19.9%) 25, 637 (7, 270 + 18, 367) −7.4% (0.0%, −10.0%) 8.6% (0.0%, 12.4%)
17, 439 (4, 565 + 12, 874) 12, 245 (4, 565 + 7, 680) −29.8% (0.0%, −40.3%) 14, 389 (4, 565 + 9, 824) −17.5% (0.0%, −23.7%) 17.5% (0.0%, 27.9%)
43, 380 (20, 157 + 23, 223) 60, 770 (20, 157 + 40, 613) 40.1% (0.0%, 74.9%) 71, 975 (20, 157 + 51, 818) 65.9% (0.0%, 123.1%) 18.4% (0.0%, 27.6%)

1, 000 5, 000 185, 519 (14, 553 + 170, 966) 170, 470 (14, 553 + 155, 917) −8.1% (0.0%, −8.8%) 175, 488 (14, 553 + 160, 935) −5.4% (0.0%, −5.9%) 2.9% (0.0%, 3.2%)
124, 574 (9, 227 + 115, 347) 84, 509 (9, 227 + 75, 282) −32.2% (0.0%, −34.7%) 124, 563 (9, 227 + 115, 336) 0.0% (0.0%, 0.0%) 47.4% (0.0%, 53.2%)
107, 725 (7, 270 + 100, 455) 87, 622 (7, 270 + 80, 352) −18.7% (0.0%, −20.0%) 87, 644 (7, 270 + 80, 374) −18.6% (0.0%, −20.0%) 0.0% (0.0%, 0.0%)
65, 439 (4, 565 + 60, 874) 40, 232 (4, 565 + 35, 667) −38.5% (0.0%, −41.4%) 40, 257 (4, 565 + 35, 692) −38.5% (0.0%, −41.4%) 0.1% (0.0%, 0.1%)
126, 358 (20, 157 + 106, 201) 206, 676 (20, 157 + 186, 519) 63.6% (0.0%, 75.6%) 291, 960 (20, 157 + 271, 803) 131.1% (0.0%, 155.9%) 41.3% (0.0%, 45.7%)

5, 000 1, 000 106, 548 (70, 553 + 35, 995) 105, 524 (70, 553 + 34, 971) −1.0% (0.0%, −2.8%) 114, 648 (70, 553 + 44, 095) 7.6% (0.0%, 22.5%) 8.6% (0.0%, 26.1%)
68, 571 (45, 227 + 23, 344) 60, 508 (45, 227 + 15, 281) −11.8% (0.0%, −34.5%) 62, 569 (45, 227 + 17, 342) −8.8% (0.0%, −25.7%) 3.4% (0.0%, 13.5%)
56, 677 (35, 270 + 21, 407) 51, 613 (35, 270 + 16, 343) −8.9% (0.0%, −23.7%) 56, 665 (35, 270 + 21, 395) 0.0% (0.0%, −0.1%) 9.8% (0.0%, 30.9%)
33, 439 (20, 565 + 12, 874) 28, 244 (20, 565 + 7, 679) −15.5% (0.0%, −40.4%) 29, 314 (20, 565 + 8, 749) −12.3% (0.0%, −32.0%) 3.8% (0.0%, 13.9%)
117, 330 (96, 157 + 21, 173) 136, 725 (96, 157 + 40, 568) 16.5% (0.0%, 91.6%) 145, 963 (96, 157 + 49, 806) 24.4% (0.0%, 135.2%) 6.8% (0.0%, 22.8%)

Table 3.9: Comparison of the solutions from MIP-LNS. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

3.8.
C
onclusion

95

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

6 40 1, 000 1, 000 – – – – – –
57, 886 (12, 315 + 45, 571) 55, 850 (12, 315 + 43, 535) −3.5% (0.0%, −4.5%) 58, 239 (12, 315 + 45, 924) 0.6% (0.0%, 0.8%) 4.3% (0.0%, 5.5%)

– – – – – –
47, 557 (9, 184 + 38, 373) 72, 620 (9, 184 + 63, 436) 52.7% (0.0%, 65.3%) 72, 620 (9, 184 + 63, 436) 52.7% (0.0%, 65.3%) 0.0% (0.0%, 0.0%)
51, 948 (25, 459 + 26, 489) 118, 976 (25, 459 + 93, 517) 129.0% (0.0%, 253.0%) 118, 976 (25, 459 + 93, 517) 129.0% (0.0%, 253.0%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 – – – – – –
217, 881 (12, 313 + 205, 568) 233, 184 (12, 315 + 220, 869) 7.0% (0.0%, 7.4%) 247, 890 (12, 315 + 235, 575) 13.8% (0.0%, 14.6%) 6.3% (0.0%, 6.7%)
185, 994 (10, 378 + 175, 616) 251, 024 (10, 378 + 240, 646) 35.0% (0.0%, 37.0%) 306, 049 (10, 378 + 295, 671) 64.5% (0.0%, 68.4%) 21.9% (0.0%, 22.9%)
151, 207 (9, 184 + 142, 023) 304, 620 (9, 184 + 295, 436) 101.5% (0.0%, 108.0%) 304, 620 (9, 184 + 295, 436) 101.5% (0.0%, 108.0%) 0.0% (0.0%, 0.0%)
322, 492 (25, 459 + 297, 033) 474, 976 (25, 459 + 449, 517) 47.3% (0.0%, 51.3%) 474, 976 (25, 459 + 449, 517) 47.3% (0.0%, 51.3%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 – – – – – –
103, 880 (60, 315 + 43, 565) 99, 846 (60, 315 + 39, 531) −3.9% (0.0%, −9.3%) 107, 863 (60, 315 + 47, 548) 3.8% (0.0%, 9.1%) 8.0% (0.0%, 20.3%)
85, 995 (50, 378 + 35, 617) – – – – –
76, 454 (41, 184 + 35, 270) 104, 620 (41, 184 + 63, 436) 36.8% (0.0%, 79.9%) 104, 620 (41, 184 + 63, 436) 36.8% (0.0%, 79.9%) 0.0% (0.0%, 0.0%)
147, 946 (121, 459 + 26, 487) 214, 976 (121, 459 + 93, 517) 45.3% (0.0%, 253.1%) 214, 976 (121, 459 + 93, 517) 45.3% (0.0%, 253.1%) 0.0% (0.0%, 0.0%)

6 50 1, 000 1, 000 – – – – – –
105, 181 (19, 493 + 85, 688) – – – – –

– – – – – –
– 115, 784 (20, 878 + 94, 906) – 115, 784 (20, 878 + 94, 906) – 0.0% (0.0%, 0.0%)

152, 153 (34, 889 + 117, 264) 130, 081 (34, 889 + 95, 192) −14.5% (0.0%, −18.8%) 130, 081 (34, 889 + 95, 192) −14.5% (0.0%, −18.8%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 – – – – – –
441, 181 (19, 493 + 421, 688) – – – – –

– – – – – –
– 467, 822 (20, 878 + 446, 944) – 467, 822 (20, 878 + 446, 944) – 0.0% (0.0%, 0.0%)

282, 718 (34, 868 + 247, 850) 494, 081 (34, 889 + 459, 192) 74.8% (0.1%, 85.3%) 494, 081 (34, 889 + 459, 192) 74.8% (0.1%, 85.3%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 – – – – – –
181, 181 (95, 493 + 85, 688) – – – – –

– – – – – –
– 191, 784 (96, 878 + 94, 906) – 191, 784 (96, 878 + 94, 906) – 0.0% (0.0%, 0.0%)

284, 153 (166, 889 + 117, 264) 262, 081 (166, 889 + 95, 192) −7.8% (0.0%, −18.8%) 262, 081 (166, 889 + 95, 192) −7.8% (0.0%, −18.8%) 0.0% (0.0%, 0.0%)

Table 3.9: Comparison of the solutions from MIP-LNS. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

96
C
hapter

3.
T
he

JointVehicle
and

C
rew

Routing
and

Scheduling
Problem

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

10 5 1, 000 1, 000 4, 360 (1, 090 + 3, 270) 4, 308 (1, 090 + 3, 218) −1.2% (0.0%, −1.6%) 4, 291 (1, 093 + 3, 198) −1.6% (0.3%, −2.2%) −0.4% (0.3%, −0.6%)
7, 440 (1, 093 + 6, 347) 6, 405 (1, 093 + 5, 312) −13.9% (0.0%, −16.3%) 6, 380 (1, 096 + 5, 284) −14.2% (0.3%, −16.7%) −0.4% (0.3%, −0.5%)
7, 509 (1, 111 + 6, 398) 6, 438 (1, 111 + 5, 327) −14.3% (0.0%, −16.7%) 6, 438 (1, 111 + 5, 327) −14.3% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
7, 395 (2, 112 + 5, 283) 6, 336 (2, 112 + 4, 224) −14.3% (0.0%, −20.0%) 5, 307 (2, 130 + 3, 177) −28.2% (0.9%, −39.9%) −16.2% (0.9%, −24.8%)
6, 327 (2, 109 + 4, 218) 6, 327 (2, 109 + 4, 218) 0.0% (0.0%, 0.0%) 6, 327 (2, 109 + 4, 218) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 16, 360 (1, 090 + 15, 270) 16, 308 (1, 090 + 15, 218) −0.3% (0.0%, −0.3%) 16, 291 (1, 093 + 15, 198) −0.4% (0.3%, −0.5%) −0.1% (0.3%, −0.1%)
31, 440 (1, 093 + 30, 347) 26, 405 (1, 093 + 25, 312) −16.0% (0.0%, −16.6%) 26, 380 (1, 096 + 25, 284) −16.1% (0.3%, −16.7%) −0.1% (0.3%, −0.1%)
31, 509 (1, 111 + 30, 398) 26, 438 (1, 111 + 25, 327) −16.1% (0.0%, −16.7%) 26, 438 (1, 111 + 25, 327) −16.1% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
27, 395 (2, 112 + 25, 283) 22, 336 (2, 112 + 20, 224) −18.5% (0.0%, −20.0%) 17, 307 (2, 130 + 15, 177) −36.8% (0.9%, −40.0%) −22.5% (0.9%, −25.0%)
22, 327 (2, 109 + 20, 218) 22, 327 (2, 109 + 20, 218) 0.0% (0.0%, 0.0%) 22, 327 (2, 109 + 20, 218) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 8, 360 (5, 090 + 3, 270) 8, 308 (5, 090 + 3, 218) −0.6% (0.0%, −1.6%) 8, 291 (5, 093 + 3, 198) −0.8% (0.1%, −2.2%) −0.2% (0.1%, −0.6%)
11, 440 (5, 093 + 6, 347) 10, 405 (5, 093 + 5, 312) −9.0% (0.0%, −16.3%) 10, 380 (5, 096 + 5, 284) −9.3% (0.1%, −16.7%) −0.2% (0.1%, −0.5%)
11, 509 (5, 111 + 6, 398) 10, 438 (5, 111 + 5, 327) −9.3% (0.0%, −16.7%) 10, 438 (5, 111 + 5, 327) −9.3% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
15, 395 (10, 112 + 5, 283) 14, 336 (10, 112 + 4, 224) −6.9% (0.0%, −20.0%) 13, 307 (10, 130 + 3, 177) −13.6% (0.2%, −39.9%) −7.2% (0.2%, −24.8%)
14, 327 (10, 109 + 4, 218) 14, 327 (10, 109 + 4, 218) 0.0% (0.0%, 0.0%) 14, 327 (10, 109 + 4, 218) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

10 10 1, 000 1, 000 9, 529 (2, 173 + 7, 356) 7, 476 (2, 173 + 5, 303) −21.5% (0.0%, −27.9%) 7, 476 (2, 173 + 5, 303) −21.5% (0.0%, −27.9%) 0.0% (0.0%, 0.0%)
10, 907 (1, 166 + 9, 741) 10, 907 (1, 166 + 9, 741) 0.0% (0.0%, 0.0%) 9, 886 (1, 174 + 8, 712) −9.4% (0.7%, −10.6%) −9.4% (0.7%, −10.6%)
12, 744 (2, 178 + 10, 566) 11, 695 (2, 178 + 9, 517) −8.2% (0.0%, −9.9%) 11, 659 (2, 181 + 9, 478) −8.5% (0.1%, −10.3%) −0.3% (0.1%, −0.4%)
8, 655 (2, 210 + 6, 445) 8, 638 (2, 210 + 6, 428) −0.2% (0.0%, −0.3%) 8, 638 (2, 210 + 6, 428) −0.2% (0.0%, −0.3%) 0.0% (0.0%, 0.0%)
9, 684 (2, 227 + 7, 457) 8, 600 (2, 227 + 6, 373) −11.2% (0.0%, −14.5%) 8, 591 (2, 230 + 6, 361) −11.3% (0.1%, −14.7%) −0.1% (0.1%, −0.2%)

1, 000 5, 000 37, 529 (2, 173 + 35, 356) 27, 476 (2, 173 + 25, 303) −26.8% (0.0%, −28.4%) 27, 476 (2, 173 + 25, 303) −26.8% (0.0%, −28.4%) 0.0% (0.0%, 0.0%)
46, 907 (1, 166 + 45, 741) 46, 907 (1, 166 + 45, 741) 0.0% (0.0%, 0.0%) 41, 886 (1, 174 + 40, 712) −10.7% (0.7%, −11.0%) −10.7% (0.7%, −11.0%)
52, 744 (2, 178 + 50, 566) 47, 695 (2, 178 + 45, 517) −9.6% (0.0%, −10.0%) 47, 659 (2, 181 + 45, 478) −9.6% (0.1%, −10.1%) −0.1% (0.1%, −0.1%)
32, 655 (2, 210 + 30, 445) 32, 638 (2, 210 + 30, 428) −0.1% (0.0%, −0.1%) 32, 638 (2, 210 + 30, 428) −0.1% (0.0%, −0.1%) 0.0% (0.0%, 0.0%)
37, 684 (2, 227 + 35, 457) 32, 600 (2, 227 + 30, 373) −13.5% (0.0%, −14.3%) 32, 591 (2, 230 + 30, 361) −13.5% (0.1%, −14.4%) 0.0% (0.1%, 0.0%)

5, 000 1, 000 17, 529 (10, 173 + 7, 356) 15, 476 (10, 173 + 5, 303) −11.7% (0.0%, −27.9%) 15, 476 (10, 173 + 5, 303) −11.7% (0.0%, −27.9%) 0.0% (0.0%, 0.0%)
14, 907 (5, 166 + 9, 741) 14, 907 (5, 166 + 9, 741) 0.0% (0.0%, 0.0%) 13, 886 (5, 174 + 8, 712) −6.8% (0.2%, −10.6%) −6.8% (0.2%, −10.6%)
20, 744 (10, 178 + 10, 566) 19, 695 (10, 178 + 9, 517) −5.1% (0.0%, −9.9%) 19, 659 (10, 181 + 9, 478) −5.2% (0.0%, −10.3%) −0.2% (0.0%, −0.4%)
16, 655 (10, 210 + 6, 445) 16, 638 (10, 210 + 6, 428) −0.1% (0.0%, −0.3%) 16, 638 (10, 210 + 6, 428) −0.1% (0.0%, −0.3%) 0.0% (0.0%, 0.0%)
17, 684 (10, 227 + 7, 457) 16, 600 (10, 227 + 6, 373) −6.1% (0.0%, −14.5%) 16, 591 (10, 230 + 6, 361) −6.2% (0.0%, −14.7%) −0.1% (0.0%, −0.2%)

Table 3.9: Comparison of the solutions from MIP-LNS. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

3.8.
C
onclusion

97

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

10 20 1, 000 1, 000 17, 931 (4, 316 + 13, 615) 15, 851 (4, 316 + 11, 535) −11.6% (0.0%, −15.3%) 17, 897 (4, 316 + 13, 581) −0.2% (0.0%, −0.2%) 12.9% (0.0%, 17.7%)
15, 979 (2, 225 + 13, 754) 14, 914 (2, 225 + 12, 689) −6.7% (0.0%, −7.7%) 14, 914 (2, 225 + 12, 689) −6.7% (0.0%, −7.7%) 0.0% (0.0%, 0.0%)
22, 234 (3, 338 + 18, 896) 20, 176 (3, 338 + 16, 838) −9.3% (0.0%, −10.9%) 20, 174 (3, 338 + 16, 836) −9.3% (0.0%, −10.9%) 0.0% (0.0%, 0.0%)
15, 081 (3, 351 + 11, 730) 14, 039 (3, 351 + 10, 688) −6.9% (0.0%, −8.9%) 13, 062 (3, 351 + 9, 711) −13.4% (0.0%, −17.2%) −7.0% (0.0%, −9.1%)
17, 042 (4, 367 + 12, 675) 16, 012 (4, 367 + 11, 645) −6.0% (0.0%, −8.1%) 18, 083 (4, 367 + 13, 716) 6.1% (0.0%, 8.2%) 12.9% (0.0%, 17.8%)

1, 000 5, 000 69, 931 (4, 316 + 65, 615) 59, 851 (4, 316 + 55, 535) −14.4% (0.0%, −15.4%) 64, 904 (4, 316 + 60, 588) −7.2% (0.0%, −7.7%) 8.4% (0.0%, 9.1%)
67, 979 (2, 225 + 65, 754) 62, 914 (2, 225 + 60, 689) −7.5% (0.0%, −7.7%) 62, 914 (2, 225 + 60, 689) −7.5% (0.0%, −7.7%) 0.0% (0.0%, 0.0%)
94, 234 (3, 338 + 90, 896) 84, 174 (3, 338 + 80, 836) −10.7% (0.0%, −11.1%) 84, 194 (3, 338 + 80, 856) −10.7% (0.0%, −11.0%) 0.0% (0.0%, 0.0%)
59, 081 (3, 351 + 55, 730) 54, 039 (3, 351 + 50, 688) −8.5% (0.0%, −9.0%) 49, 050 (3, 358 + 45, 692) −17.0% (0.2%, −18.0%) −9.2% (0.2%, −9.9%)
65, 042 (4, 367 + 60, 675) 60, 012 (4, 367 + 55, 645) −7.7% (0.0%, −8.3%) 70, 073 (4, 367 + 65, 706) 7.7% (0.0%, 8.3%) 16.8% (0.0%, 18.1%)

5, 000 1, 000 33, 931 (20, 316 + 13, 615) 31, 854 (20, 316 + 11, 538) −6.1% (0.0%, −15.3%) 33, 925 (20, 316 + 13, 609) 0.0% (0.0%, 0.0%) 6.5% (0.0%, 17.9%)
23, 979 (10, 225 + 13, 754) 22, 914 (10, 225 + 12, 689) −4.4% (0.0%, −7.7%) 22, 914 (10, 225 + 12, 689) −4.4% (0.0%, −7.7%) 0.0% (0.0%, 0.0%)
34, 234 (15, 338 + 18, 896) 32, 176 (15, 338 + 16, 838) −6.0% (0.0%, −10.9%) 32, 176 (15, 338 + 16, 838) −6.0% (0.0%, −10.9%) 0.0% (0.0%, 0.0%)
26, 072 (15, 351 + 10, 721) 26, 039 (15, 351 + 10, 688) −0.1% (0.0%, −0.3%) 25, 062 (15, 351 + 9, 711) −3.9% (0.0%, −9.4%) −3.8% (0.0%, −9.1%)
33, 042 (20, 367 + 12, 675) 32, 012 (20, 367 + 11, 645) −3.1% (0.0%, −8.1%) 32, 034 (20, 367 + 11, 667) −3.1% (0.0%, −8.0%) 0.1% (0.0%, 0.2%)

10 30 1, 000 1, 000 33, 428 (7, 493 + 25, 935) 28, 352 (7, 493 + 20, 859) −15.2% (0.0%, −19.6%) 29, 362 (7, 493 + 21, 869) −12.2% (0.0%, −15.7%) 3.6% (0.0%, 4.8%)
35, 880 (5, 513 + 30, 367) 32, 725 (5, 513 + 27, 212) −8.8% (0.0%, −10.4%) 36, 894 (5, 513 + 31, 381) 2.8% (0.0%, 3.3%) 12.7% (0.0%, 15.3%)
36, 817 (5, 513 + 31, 304) 33, 716 (5, 513 + 28, 203) −8.4% (0.0%, −9.9%) 35, 754 (5, 513 + 30, 241) −2.9% (0.0%, −3.4%) 6.0% (0.0%, 7.2%)
31, 607 (8, 588 + 23, 019) 26, 430 (8, 588 + 17, 842) −16.4% (0.0%, −22.5%) 29, 571 (8, 588 + 20, 983) −6.4% (0.0%, −8.8%) 11.9% (0.0%, 17.6%)
30, 780 (7, 636 + 23, 144) 26, 625 (7, 636 + 18, 989) −13.5% (0.0%, −18.0%) 27, 714 (7, 636 + 20, 078) −10.0% (0.0%, −13.2%) 4.1% (0.0%, 5.7%)

1, 000 5, 000 123, 485 (7, 487 + 115, 998) 118, 365 (7, 493 + 110, 872) −4.1% (0.1%, −4.4%) 163, 512 (7, 493 + 156, 019) 32.4% (0.1%, 34.5%) 38.1% (0.0%, 40.7%)
146, 557 (5, 436 + 141, 121) 131, 713 (5, 513 + 126, 200) −10.1% (1.4%, −10.6%) 156, 865 (5, 513 + 151, 352) 7.0% (1.4%, 7.2%) 19.1% (0.0%, 19.9%)
151, 810 (5, 513 + 146, 297) 136, 718 (5, 513 + 131, 205) −9.9% (0.0%, −10.3%) 156, 811 (5, 513 + 151, 298) 3.3% (0.0%, 3.4%) 14.7% (0.0%, 15.3%)
114, 636 (8, 588 + 106, 048) 94, 475 (8, 588 + 85, 887) −17.6% (0.0%, −19.0%) 134, 591 (8, 588 + 126, 003) 17.4% (0.0%, 18.8%) 42.5% (0.0%, 46.7%)
113, 765 (7, 636 + 106, 129) 93, 636 (7, 636 + 86, 000) −17.7% (0.0%, −19.0%) 148, 781 (7, 636 + 141, 145) 30.8% (0.0%, 33.0%) 58.9% (0.0%, 64.1%)

5, 000 1, 000 60, 419 (35, 493 + 24, 926) 57, 355 (35, 493 + 21, 862) −5.1% (0.0%, −12.3%) 58, 386 (35, 493 + 22, 893) −3.4% (0.0%, −8.2%) 1.8% (0.0%, 4.7%)
55, 880 (25, 513 + 30, 367) 51, 698 (25, 513 + 26, 185) −7.5% (0.0%, −13.8%) 55, 843 (25, 513 + 30, 330) −0.1% (0.0%, −0.1%) 8.0% (0.0%, 15.8%)
56, 826 (25, 513 + 31, 313) 54, 731 (25, 513 + 29, 218) −3.7% (0.0%, −6.7%) 54, 732 (25, 513 + 29, 219) −3.7% (0.0%, −6.7%) 0.0% (0.0%, 0.0%)
62, 649 (40, 588 + 22, 061) 57, 427 (40, 588 + 16, 839) −8.3% (0.0%, −23.7%) 67, 535 (40, 588 + 26, 947) 7.8% (0.0%, 22.1%) 17.6% (0.0%, 60.0%)
57, 767 (35, 636 + 22, 131) 54, 655 (35, 636 + 19, 019) −5.4% (0.0%, −14.1%) 57, 760 (35, 636 + 22, 124) 0.0% (0.0%, 0.0%) 5.7% (0.0%, 16.3%)

Table 3.9: Comparison of the solutions from MIP-LNS. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

98
C
hapter

3.
T
he

JointVehicle
and

C
rew

Routing
and

Scheduling
Problem

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

10 40 1, 000 1, 000 61, 134 (12, 729 + 48, 405) – – – – –
56, 382 (8, 706 + 47, 676) 48, 177 (8, 706 + 39, 471) −14.6% (0.0%, −17.2%) 49, 191 (8, 706 + 40, 485) −12.8% (0.0%, −15.1%) 2.1% (0.0%, 2.6%)
55, 377 (8, 661 + 46, 716) – – – – –
45, 318 (11, 861 + 33, 457) – – – – –
42, 334 (10, 843 + 31, 491) 47, 330 (10, 843 + 36, 487) 11.8% (0.0%, 15.9%) 57, 332 (10, 843 + 46, 489) 35.4% (0.0%, 47.6%) 21.1% (0.0%, 27.4%)

1, 000 5, 000 249, 146 (12, 729 + 236, 417) – – – – –
230, 287 (8, 695 + 221, 592) 205, 212 (8, 706 + 196, 506) −10.9% (0.1%, −11.3%) 205, 241 (8, 706 + 196, 535) −10.9% (0.1%, −11.3%) 0.0% (0.0%, 0.0%)
220, 132 (8, 642 + 211, 490) 225, 304 (8, 661 + 216, 643) 2.3% (0.2%, 2.4%) 270, 546 (8, 661 + 261, 885) 22.9% (0.2%, 23.8%) 20.1% (0.0%, 20.9%)
188, 895 (12, 042 + 176, 853) – – – – –
172, 342 (10, 843 + 161, 499) 152, 149 (10, 843 + 141, 306) −11.7% (0.0%, −12.5%) 152, 140 (10, 843 + 141, 297) −11.7% (0.0%, −12.5%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 110, 125 (60, 729 + 49, 396) – – – – –
89, 392 (40, 706 + 48, 686) 80, 168 (40, 706 + 39, 462) −10.3% (0.0%, −18.9%) 80, 181 (40, 706 + 39, 475) −10.3% (0.0%, −18.9%) 0.0% (0.0%, 0.0%)

– – – – – –
89, 359 (55, 861 + 33, 498) 97, 242 (55, 861 + 41, 381) 8.8% (0.0%, 23.5%) 117, 407 (55, 861 + 61, 546) 31.4% (0.0%, 83.7%) 20.7% (0.0%, 48.7%)
82, 326 (50, 843 + 31, 483) 89, 255 (50, 843 + 38, 412) 8.4% (0.0%, 22.0%) – – –

10 50 1, 000 1, 000 – – – – – –
– – – – – –
– – – – – –
– – – – – –
– – – – – –

1, 000 5, 000 – – – – – –
– – – – – –
– – – – – –
– – – – – –
– – – – – –

5, 000 1, 000 – – – – – –
– – – – – –
– – – – – –
– – – – – –
– – – – – –

Table 3.9: Comparison of the solutions from MIP-LNS. Vehicle and crew objective values are shown inside parenthesis.

3.8.
C
onclusion

99

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

6 5 1, 000 1, 000 8, 312 (2, 078 + 6, 234) 7, 268 (2, 078 + 5, 190) −12.6% (0.0%, −16.7%) 7, 268 (2, 078 + 5, 190) −12.6% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
4, 166 (1, 047 + 3, 119) 4, 144 (1, 047 + 3, 097) −0.5% (0.0%, −0.7%) 4, 135 (1, 048 + 3, 087) −0.7% (0.1%, −1.0%) −0.2% (0.1%, −0.3%)
4, 113 (1, 035 + 3, 078) 3, 099 (1, 035 + 2, 064) −24.7% (0.0%, −32.9%) 3, 089 (1, 037 + 2, 052) −24.9% (0.2%, −33.3%) −0.3% (0.2%, −0.6%)
4, 410 (1, 151 + 3, 259) 3, 453 (1, 151 + 2, 302) −21.7% (0.0%, −29.4%) 3, 352 (1, 159 + 2, 193) −24.0% (0.7%, −32.7%) −2.9% (0.7%, −4.7%)
6, 404 (3, 202 + 3, 202) 6, 404 (3, 202 + 3, 202) 0.0% (0.0%, 0.0%) 6, 404 (3, 202 + 3, 202) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 32, 312 (2, 078 + 30, 234) 27, 268 (2, 078 + 25, 190) −15.6% (0.0%, −16.7%) 27, 268 (2, 078 + 25, 190) −15.6% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
16, 166 (1, 047 + 15, 119) 16, 144 (1, 047 + 15, 097) −0.1% (0.0%, −0.1%) 16, 135 (1, 048 + 15, 087) −0.2% (0.1%, −0.2%) −0.1% (0.1%, −0.1%)
16, 113 (1, 035 + 15, 078) 11, 099 (1, 035 + 10, 064) −31.1% (0.0%, −33.3%) 11, 089 (1, 037 + 10, 052) −31.2% (0.2%, −33.3%) −0.1% (0.2%, −0.1%)
16, 410 (1, 151 + 15, 259) 11, 453 (1, 151 + 10, 302) −30.2% (0.0%, −32.5%) 11, 352 (1, 159 + 10, 193) −30.8% (0.7%, −33.2%) −0.9% (0.7%, −1.1%)
18, 404 (3, 202 + 15, 202) 18, 404 (3, 202 + 15, 202) 0.0% (0.0%, 0.0%) 18, 404 (3, 202 + 15, 202) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 16, 312 (10, 078 + 6, 234) 15, 268 (10, 078 + 5, 190) −6.4% (0.0%, −16.7%) 15, 268 (10, 078 + 5, 190) −6.4% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
8, 166 (5, 047 + 3, 119) 8, 144 (5, 047 + 3, 097) −0.3% (0.0%, −0.7%) 8, 135 (5, 048 + 3, 087) −0.4% (0.0%, −1.0%) −0.1% (0.0%, −0.3%)
8, 113 (5, 035 + 3, 078) 7, 099 (5, 035 + 2, 064) −12.5% (0.0%, −32.9%) 7, 089 (5, 037 + 2, 052) −12.6% (0.0%, −33.3%) −0.1% (0.0%, −0.6%)
8, 410 (5, 151 + 3, 259) 7, 453 (5, 151 + 2, 302) −11.4% (0.0%, −29.4%) 7, 352 (5, 159 + 2, 193) −12.6% (0.2%, −32.7%) −1.4% (0.2%, −4.7%)
18, 404 (15, 202 + 3, 202) 18, 404 (15, 202 + 3, 202) 0.0% (0.0%, 0.0%) 18, 404 (15, 202 + 3, 202) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

6 10 1, 000 1, 000 13, 462 (4, 160 + 9, 302) 13, 462 (4, 160 + 9, 302) 0.0% (0.0%, 0.0%) 13, 455 (4, 162 + 9, 293) −0.1% (0.0%, −0.1%) −0.1% (0.0%, −0.1%)
8, 194 (2, 064 + 6, 130) 8, 189 (2, 064 + 6, 125) −0.1% (0.0%, −0.1%) 7, 182 (2, 073 + 5, 109) −12.4% (0.4%, −16.7%) −12.3% (0.4%, −16.6%)
8, 230 (2, 071 + 6, 159) 6, 213 (2, 071 + 4, 142) −24.5% (0.0%, −32.7%) 6, 171 (2, 073 + 4, 098) −25.0% (0.1%, −33.5%) −0.7% (0.1%, −1.1%)
5, 689 (1, 196 + 4, 493) 4, 590 (1, 196 + 3, 394) −19.3% (0.0%, −24.5%) 3, 487 (1, 204 + 2, 283) −38.7% (0.7%, −49.2%) −24.0% (0.7%, −32.7%)
13, 776 (6, 380 + 7, 396) 12, 760 (6, 380 + 6, 380) −7.4% (0.0%, −13.7%) 12, 760 (6, 380 + 6, 380) −7.4% (0.0%, −13.7%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 49, 462 (4, 160 + 45, 302) 49, 462 (4, 160 + 45, 302) 0.0% (0.0%, 0.0%) 49, 455 (4, 162 + 45, 293) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)
32, 194 (2, 064 + 30, 130) 32, 189 (2, 064 + 30, 125) 0.0% (0.0%, 0.0%) 27, 196 (2, 075 + 25, 121) −15.5% (0.5%, −16.6%) −15.5% (0.5%, −16.6%)
32, 230 (2, 071 + 30, 159) 22, 213 (2, 071 + 20, 142) −31.1% (0.0%, −33.2%) 22, 171 (2, 073 + 20, 098) −31.2% (0.1%, −33.4%) −0.2% (0.1%, −0.2%)
21, 689 (1, 196 + 20, 493) 16, 590 (1, 196 + 15, 394) −23.5% (0.0%, −24.9%) 11, 487 (1, 204 + 10, 283) −47.0% (0.7%, −49.8%) −30.8% (0.7%, −33.2%)
41, 776 (6, 380 + 35, 396) 36, 760 (6, 380 + 30, 380) −12.0% (0.0%, −14.2%) 36, 760 (6, 380 + 30, 380) −12.0% (0.0%, −14.2%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 29, 462 (20, 160 + 9, 302) 29, 462 (20, 160 + 9, 302) 0.0% (0.0%, 0.0%) 29, 455 (20, 162 + 9, 293) 0.0% (0.0%, −0.1%) 0.0% (0.0%, −0.1%)
16, 194 (10, 064 + 6, 130) 16, 189 (10, 064 + 6, 125) 0.0% (0.0%, −0.1%) 15, 182 (10, 073 + 5, 109) −6.2% (0.1%, −16.7%) −6.2% (0.1%, −16.6%)
16, 230 (10, 071 + 6, 159) 14, 213 (10, 071 + 4, 142) −12.4% (0.0%, −32.7%) 14, 171 (10, 073 + 4, 098) −12.7% (0.0%, −33.5%) −0.3% (0.0%, −1.1%)
9, 689 (5, 196 + 4, 493) 8, 590 (5, 196 + 3, 394) −11.3% (0.0%, −24.5%) 7, 487 (5, 204 + 2, 283) −22.7% (0.2%, −49.2%) −12.8% (0.2%, −32.7%)
37, 776 (30, 380 + 7, 396) 36, 760 (30, 380 + 6, 380) −2.7% (0.0%, −13.7%) 36, 760 (30, 380 + 6, 380) −2.7% (0.0%, −13.7%) 0.0% (0.0%, 0.0%)

Table 3.10: Comparison of the solutions from CP-LNS. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

100
C
hapter

3.
T
he

JointVehicle
and

C
rew

Routing
and

Scheduling
Problem

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

6 20 1, 000 1, 000 31, 980 (9, 364 + 22, 616) 28, 933 (9, 364 + 19, 569) −9.5% (0.0%, −13.5%) 28, 933 (9, 364 + 19, 569) −9.5% (0.0%, −13.5%) 0.0% (0.0%, 0.0%)
16, 338 (4, 127 + 12, 211) 13, 307 (4, 127 + 9, 180) −18.6% (0.0%, −24.8%) 13, 307 (4, 127 + 9, 180) −18.6% (0.0%, −24.8%) 0.0% (0.0%, 0.0%)
13, 341 (3, 131 + 10, 210) 11, 319 (3, 131 + 8, 188) −15.2% (0.0%, −19.8%) 11, 319 (3, 131 + 8, 188) −15.2% (0.0%, −19.8%) 0.0% (0.0%, 0.0%)
8, 609 (2, 210 + 6, 399) 6, 525 (2, 210 + 4, 315) −24.2% (0.0%, −32.6%) 6, 504 (2, 210 + 4, 294) −24.5% (0.0%, −32.9%) −0.3% (0.0%, −0.5%)
24, 576 (11, 780 + 12, 796) 23, 560 (11, 780 + 11, 780) −4.1% (0.0%, −7.9%) 23, 560 (11, 780 + 11, 780) −4.1% (0.0%, −7.9%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 119, 975 (9, 364 + 110, 611) 104, 933 (9, 364 + 95, 569) −12.5% (0.0%, −13.6%) 104, 933 (9, 364 + 95, 569) −12.5% (0.0%, −13.6%) 0.0% (0.0%, 0.0%)
64, 338 (4, 127 + 60, 211) 49, 307 (4, 127 + 45, 180) −23.4% (0.0%, −25.0%) 49, 307 (4, 127 + 45, 180) −23.4% (0.0%, −25.0%) 0.0% (0.0%, 0.0%)
53, 347 (3, 131 + 50, 216) 43, 319 (3, 131 + 40, 188) −18.8% (0.0%, −20.0%) 43, 319 (3, 131 + 40, 188) −18.8% (0.0%, −20.0%) 0.0% (0.0%, 0.0%)
32, 609 (2, 210 + 30, 399) 22, 525 (2, 210 + 20, 315) −30.9% (0.0%, −33.2%) 22, 510 (2, 213 + 20, 297) −31.0% (0.1%, −33.2%) −0.1% (0.1%, −0.1%)
72, 576 (11, 780 + 60, 796) 67, 560 (11, 780 + 55, 780) −6.9% (0.0%, −8.3%) 67, 560 (11, 780 + 55, 780) −6.9% (0.0%, −8.3%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 67, 975 (45, 364 + 22, 611) 64, 933 (45, 364 + 19, 569) −4.5% (0.0%, −13.5%) 64, 933 (45, 364 + 19, 569) −4.5% (0.0%, −13.5%) 0.0% (0.0%, 0.0%)
32, 338 (20, 127 + 12, 211) 29, 307 (20, 127 + 9, 180) −9.4% (0.0%, −24.8%) 29, 307 (20, 127 + 9, 180) −9.4% (0.0%, −24.8%) 0.0% (0.0%, 0.0%)
25, 347 (15, 131 + 10, 216) 23, 319 (15, 131 + 8, 188) −8.0% (0.0%, −19.9%) 23, 308 (15, 131 + 8, 177) −8.0% (0.0%, −20.0%) 0.0% (0.0%, −0.1%)
16, 609 (10, 210 + 6, 399) 14, 525 (10, 210 + 4, 315) −12.5% (0.0%, −32.6%) 14, 513 (10, 210 + 4, 303) −12.6% (0.0%, −32.8%) −0.1% (0.0%, −0.3%)
68, 576 (55, 780 + 12, 796) 67, 560 (55, 780 + 11, 780) −1.5% (0.0%, −7.9%) 67, 560 (55, 780 + 11, 780) −1.5% (0.0%, −7.9%) 0.0% (0.0%, 0.0%)

6 30 1, 000 1, 000 48, 500 (14, 553 + 33, 947) 44, 432 (14, 553 + 29, 879) −8.4% (0.0%, −12.0%) 44, 436 (14, 553 + 29, 883) −8.4% (0.0%, −12.0%) 0.0% (0.0%, 0.0%)
23, 458 (6, 178 + 17, 280) 19, 426 (6, 178 + 13, 248) −17.2% (0.0%, −23.3%) 19, 424 (6, 178 + 13, 246) −17.2% (0.0%, −23.3%) 0.0% (0.0%, 0.0%)
19, 457 (5, 183 + 14, 274) 17, 431 (5, 183 + 12, 248) −10.4% (0.0%, −14.2%) 17, 441 (5, 183 + 12, 258) −10.4% (0.0%, −14.1%) 0.1% (0.0%, 0.1%)
10, 054 (2, 370 + 7, 684) 7, 936 (2, 370 + 5, 566) −21.1% (0.0%, −27.6%) 7, 918 (2, 370 + 5, 548) −21.2% (0.0%, −27.8%) −0.2% (0.0%, −0.3%)
41, 330 (20, 157 + 21, 173) 40, 314 (20, 157 + 20, 157) −2.5% (0.0%, −4.8%) 40, 314 (20, 157 + 20, 157) −2.5% (0.0%, −4.8%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 180, 506 (14, 553 + 165, 953) 160, 428 (14, 553 + 145, 875) −11.1% (0.0%, −12.1%) 160, 428 (14, 553 + 145, 875) −11.1% (0.0%, −12.1%) 0.0% (0.0%, 0.0%)
91, 458 (6, 178 + 85, 280) 71, 428 (6, 178 + 65, 250) −21.9% (0.0%, −23.5%) 67, 436 (7, 189 + 60, 247) −26.3% (16.4%, −29.4%) −5.6% (16.4%, −7.7%)
75, 457 (5, 183 + 70, 274) 65, 432 (5, 183 + 60, 249) −13.3% (0.0%, −14.3%) 65, 444 (5, 183 + 60, 261) −13.3% (0.0%, −14.2%) 0.0% (0.0%, 0.0%)
38, 054 (2, 370 + 35, 684) 27, 936 (2, 370 + 25, 566) −26.6% (0.0%, −28.4%) 27, 918 (2, 370 + 25, 548) −26.6% (0.0%, −28.4%) −0.1% (0.0%, −0.1%)
121, 330 (20, 157 + 101, 173) 116, 314 (20, 157 + 96, 157) −4.1% (0.0%, −5.0%) 116, 314 (20, 157 + 96, 157) −4.1% (0.0%, −5.0%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 104, 506 (70, 553 + 33, 953) 100, 436 (70, 553 + 29, 883) −3.9% (0.0%, −12.0%) 100, 436 (70, 553 + 29, 883) −3.9% (0.0%, −12.0%) 0.0% (0.0%, 0.0%)
47, 458 (30, 178 + 17, 280) 43, 428 (30, 178 + 13, 250) −8.5% (0.0%, −23.3%) 43, 428 (30, 178 + 13, 250) −8.5% (0.0%, −23.3%) 0.0% (0.0%, 0.0%)
39, 457 (25, 183 + 14, 274) 37, 429 (25, 183 + 12, 246) −5.1% (0.0%, −14.2%) 36, 464 (25, 185 + 11, 279) −7.6% (0.0%, −21.0%) −2.6% (0.0%, −7.9%)
18, 054 (10, 370 + 7, 684) 15, 936 (10, 370 + 5, 566) −11.7% (0.0%, −27.6%) 15, 914 (10, 379 + 5, 535) −11.9% (0.1%, −28.0%) −0.1% (0.1%, −0.6%)
117, 330 (96, 157 + 21, 173) 116, 314 (96, 157 + 20, 157) −0.9% (0.0%, −4.8%) 116, 314 (96, 157 + 20, 157) −0.9% (0.0%, −4.8%) 0.0% (0.0%, 0.0%)

Table 3.10: Comparison of the solutions from CP-LNS. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

3.8.
C
onclusion

101

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

6 40 1, 000 1, 000 64, 140 (18, 791 + 45, 349) 62, 119 (18, 791 + 43, 328) −3.2% (0.0%, −4.5%) 62, 106 (18, 791 + 43, 315) −3.2% (0.0%, −4.5%) 0.0% (0.0%, 0.0%)
30, 619 (8, 227 + 22, 392) 25, 558 (8, 227 + 17, 331) −16.5% (0.0%, −22.6%) 25, 552 (8, 227 + 17, 325) −16.5% (0.0%, −22.6%) 0.0% (0.0%, 0.0%)
26, 611 (7, 242 + 19, 369) 22, 580 (7, 242 + 15, 338) −15.1% (0.0%, −20.8%) 21, 583 (7, 244 + 14, 339) −18.9% (0.0%, −26.0%) −4.4% (0.0%, −6.5%)
14, 396 (3, 507 + 10, 889) 12, 250 (3, 507 + 8, 743) −14.9% (0.0%, −19.7%) 12, 250 (3, 507 + 8, 743) −14.9% (0.0%, −19.7%) 0.0% (0.0%, 0.0%)
51, 922 (25, 446 + 26, 476) 51, 920 (25, 446 + 26, 474) 0.0% (0.0%, 0.0%) 50, 892 (25, 446 + 25, 446) −2.0% (0.0%, −3.9%) −2.0% (0.0%, −3.9%)

1, 000 5, 000 240, 140 (18, 791 + 221, 349) 225, 084 (18, 791 + 206, 293) −6.3% (0.0%, −6.8%) 230, 110 (18, 791 + 211, 319) −4.2% (0.0%, −4.5%) 2.2% (0.0%, 2.4%)
118, 609 (8, 227 + 110, 382) 93, 558 (8, 227 + 85, 331) −21.1% (0.0%, −22.7%) 93, 558 (8, 227 + 85, 331) −21.1% (0.0%, −22.7%) 0.0% (0.0%, 0.0%)
102, 611 (7, 242 + 95, 369) 82, 581 (7, 242 + 75, 339) −19.5% (0.0%, −21.0%) 82, 588 (7, 245 + 75, 343) −19.5% (0.0%, −21.0%) 0.0% (0.0%, 0.0%)
54, 396 (3, 507 + 50, 889) 44, 250 (3, 507 + 40, 743) −18.7% (0.0%, −19.9%) 39, 439 (3, 622 + 35, 817) −27.5% (3.3%, −29.6%) −10.9% (3.3%, −12.1%)
156, 936 (25, 446 + 131, 490) 156, 936 (25, 446 + 131, 490) 0.0% (0.0%, 0.0%) 151, 908 (25, 446 + 126, 462) −3.2% (0.0%, −3.8%) −3.2% (0.0%, −3.8%)

5, 000 1, 000 136, 140 (90, 791 + 45, 349) 134, 102 (90, 791 + 43, 311) −1.5% (0.0%, −4.5%) 134, 102 (90, 791 + 43, 311) −1.5% (0.0%, −4.5%) 0.0% (0.0%, 0.0%)
62, 609 (40, 227 + 22, 382) 56, 554 (40, 227 + 16, 327) −9.7% (0.0%, −27.1%) 57, 566 (40, 227 + 17, 339) −8.1% (0.0%, −22.5%) 1.8% (0.0%, 6.2%)
54, 611 (35, 242 + 19, 369) 49, 581 (35, 242 + 14, 339) −9.2% (0.0%, −26.0%) 50, 591 (35, 242 + 15, 349) −7.4% (0.0%, −20.8%) 2.0% (0.0%, 7.0%)
26, 357 (15, 507 + 10, 850) 24, 253 (15, 507 + 8, 746) −8.0% (0.0%, −19.4%) 24, 250 (15, 507 + 8, 743) −8.0% (0.0%, −19.4%) 0.0% (0.0%, 0.0%)
148, 936 (121, 446 + 27, 490) 147, 920 (121, 446 + 26, 474) −0.7% (0.0%, −3.7%) 146, 892 (121, 446 + 25, 446) −1.4% (0.0%, −7.4%) −0.7% (0.0%, −3.9%)

6 50 1, 000 1, 000 87, 764 (24, 988 + 62, 776) 79, 618 (24, 988 + 54, 630) −9.3% (0.0%, −13.0%) 79, 628 (24, 988 + 54, 640) −9.3% (0.0%, −13.0%) 0.0% (0.0%, 0.0%)
38, 782 (10, 291 + 28, 491) 30, 697 (10, 291 + 20, 406) −20.8% (0.0%, −28.4%) 31, 713 (10, 291 + 21, 422) −18.2% (0.0%, −24.8%) 3.3% (0.0%, 5.0%)
36, 803 (9, 310 + 27, 493) 29, 743 (9, 310 + 20, 433) −19.2% (0.0%, −25.7%) 29, 728 (9, 313 + 20, 415) −19.2% (0.0%, −25.7%) −0.1% (0.0%, −0.1%)
18, 878 (4, 719 + 14, 159) 15, 722 (4, 719 + 11, 003) −16.7% (0.0%, −22.3%) 16, 785 (4, 719 + 12, 066) −11.1% (0.0%, −14.8%) 6.8% (0.0%, 9.7%)
70, 770 (33, 847 + 36, 923) 69, 740 (33, 847 + 35, 893) −1.5% (0.0%, −2.8%) 68, 724 (33, 847 + 34, 877) −2.9% (0.0%, −5.5%) −1.5% (0.0%, −2.8%)

1, 000 5, 000 331, 772 (24, 988 + 306, 784) 291, 618 (24, 988 + 266, 630) −12.1% (0.0%, −13.1%) 291, 614 (24, 988 + 266, 626) −12.1% (0.0%, −13.1%) 0.0% (0.0%, 0.0%)
145, 782 (10, 291 + 135, 491) 110, 695 (10, 291 + 100, 404) −24.1% (0.0%, −25.9%) 115, 750 (10, 291 + 105, 459) −20.6% (0.0%, −22.2%) 4.6% (0.0%, 5.0%)
139, 804 (9, 310 + 130, 494) 109, 743 (9, 310 + 100, 433) −21.5% (0.0%, −23.0%) 109, 743 (9, 310 + 100, 433) −21.5% (0.0%, −23.0%) 0.0% (0.0%, 0.0%)
70, 880 (4, 719 + 66, 161) 55, 696 (4, 719 + 50, 977) −21.4% (0.0%, −23.0%) 60, 718 (4, 719 + 55, 999) −14.3% (0.0%, −15.4%) 9.0% (0.0%, 9.9%)
210, 795 (33, 847 + 176, 948) 210, 778 (33, 847 + 176, 931) 0.0% (0.0%, 0.0%) 205, 752 (33, 847 + 171, 905) −2.4% (0.0%, −2.8%) −2.4% (0.0%, −2.8%)

5, 000 1, 000 183, 769 (120, 988 + 62, 781) 176, 630 (120, 988 + 55, 642) −3.9% (0.0%, −11.4%) 175, 752 (120, 988 + 54, 764) −4.4% (0.0%, −12.8%) −0.5% (0.0%, −1.6%)
77, 778 (50, 291 + 27, 487) 71, 711 (50, 291 + 21, 420) −7.8% (0.0%, −22.1%) 70, 697 (50, 291 + 20, 406) −9.1% (0.0%, −25.8%) −1.4% (0.0%, −4.7%)
71, 814 (45, 310 + 26, 504) 65, 752 (45, 310 + 20, 442) −8.4% (0.0%, −22.9%) 65, 747 (45, 310 + 20, 437) −8.4% (0.0%, −22.9%) 0.0% (0.0%, 0.0%)
35, 861 (20, 719 + 15, 142) 31, 684 (20, 719 + 10, 965) −11.6% (0.0%, −27.6%) 31, 817 (20, 719 + 11, 098) −11.3% (0.0%, −26.7%) 0.4% (0.0%, 1.2%)
198, 782 (161, 847 + 36, 935) 198, 780 (161, 847 + 36, 933) 0.0% (0.0%, 0.0%) 197, 744 (161, 847 + 35, 897) −0.5% (0.0%, −2.8%) −0.5% (0.0%, −2.8%)

Table 3.10: Comparison of the solutions from CP-LNS. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

102
C
hapter

3.
T
he

JointVehicle
and

C
rew

Routing
and

Scheduling
Problem

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

10 5 1, 000 1, 000 4, 360 (1, 090 + 3, 270) 4, 308 (1, 090 + 3, 218) −1.2% (0.0%, −1.6%) 4, 291 (1, 093 + 3, 198) −1.6% (0.3%, −2.2%) −0.4% (0.3%, −0.6%)
7, 440 (1, 093 + 6, 347) 6, 405 (1, 093 + 5, 312) −13.9% (0.0%, −16.3%) 6, 380 (1, 096 + 5, 284) −14.2% (0.3%, −16.7%) −0.4% (0.3%, −0.5%)
7, 509 (1, 111 + 6, 398) 6, 438 (1, 111 + 5, 327) −14.3% (0.0%, −16.7%) 6, 438 (1, 111 + 5, 327) −14.3% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
7, 395 (2, 112 + 5, 283) 6, 336 (2, 112 + 4, 224) −14.3% (0.0%, −20.0%) 5, 307 (2, 130 + 3, 177) −28.2% (0.9%, −39.9%) −16.2% (0.9%, −24.8%)
6, 327 (2, 109 + 4, 218) 6, 327 (2, 109 + 4, 218) 0.0% (0.0%, 0.0%) 6, 327 (2, 109 + 4, 218) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 16, 360 (1, 090 + 15, 270) 16, 308 (1, 090 + 15, 218) −0.3% (0.0%, −0.3%) 16, 291 (1, 093 + 15, 198) −0.4% (0.3%, −0.5%) −0.1% (0.3%, −0.1%)
31, 440 (1, 093 + 30, 347) 26, 405 (1, 093 + 25, 312) −16.0% (0.0%, −16.6%) 26, 380 (1, 096 + 25, 284) −16.1% (0.3%, −16.7%) −0.1% (0.3%, −0.1%)
31, 509 (1, 111 + 30, 398) 26, 438 (1, 111 + 25, 327) −16.1% (0.0%, −16.7%) 26, 438 (1, 111 + 25, 327) −16.1% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
27, 395 (2, 112 + 25, 283) 22, 336 (2, 112 + 20, 224) −18.5% (0.0%, −20.0%) 17, 307 (2, 130 + 15, 177) −36.8% (0.9%, −40.0%) −22.5% (0.9%, −25.0%)
22, 327 (2, 109 + 20, 218) 22, 327 (2, 109 + 20, 218) 0.0% (0.0%, 0.0%) 22, 327 (2, 109 + 20, 218) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 8, 360 (5, 090 + 3, 270) 8, 308 (5, 090 + 3, 218) −0.6% (0.0%, −1.6%) 8, 291 (5, 093 + 3, 198) −0.8% (0.1%, −2.2%) −0.2% (0.1%, −0.6%)
11, 440 (5, 093 + 6, 347) 10, 405 (5, 093 + 5, 312) −9.0% (0.0%, −16.3%) 10, 380 (5, 096 + 5, 284) −9.3% (0.1%, −16.7%) −0.2% (0.1%, −0.5%)
11, 509 (5, 111 + 6, 398) 10, 438 (5, 111 + 5, 327) −9.3% (0.0%, −16.7%) 10, 438 (5, 111 + 5, 327) −9.3% (0.0%, −16.7%) 0.0% (0.0%, 0.0%)
15, 395 (10, 112 + 5, 283) 14, 336 (10, 112 + 4, 224) −6.9% (0.0%, −20.0%) 13, 307 (10, 130 + 3, 177) −13.6% (0.2%, −39.9%) −7.2% (0.2%, −24.8%)
14, 327 (10, 109 + 4, 218) 14, 327 (10, 109 + 4, 218) 0.0% (0.0%, 0.0%) 14, 327 (10, 109 + 4, 218) 0.0% (0.0%, 0.0%) 0.0% (0.0%, 0.0%)

10 10 1, 000 1, 000 9, 529 (2, 173 + 7, 356) 7, 476 (2, 173 + 5, 303) −21.5% (0.0%, −27.9%) 7, 476 (2, 173 + 5, 303) −21.5% (0.0%, −27.9%) 0.0% (0.0%, 0.0%)
10, 913 (1, 166 + 9, 747) 10, 913 (1, 166 + 9, 747) 0.0% (0.0%, 0.0%) 9, 859 (1, 172 + 8, 687) −9.7% (0.5%, −10.9%) −9.7% (0.5%, −10.9%)
12, 744 (2, 178 + 10, 566) 11, 695 (2, 178 + 9, 517) −8.2% (0.0%, −9.9%) 11, 659 (2, 181 + 9, 478) −8.5% (0.1%, −10.3%) −0.3% (0.1%, −0.4%)
8, 655 (2, 210 + 6, 445) 8, 638 (2, 210 + 6, 428) −0.2% (0.0%, −0.3%) 8, 638 (2, 210 + 6, 428) −0.2% (0.0%, −0.3%) 0.0% (0.0%, 0.0%)
9, 744 (2, 227 + 7, 517) 8, 609 (2, 227 + 6, 382) −11.6% (0.0%, −15.1%) 8, 609 (2, 227 + 6, 382) −11.6% (0.0%, −15.1%) 0.0% (0.0%, 0.0%)

1, 000 5, 000 37, 529 (2, 173 + 35, 356) 27, 476 (2, 173 + 25, 303) −26.8% (0.0%, −28.4%) 27, 476 (2, 173 + 25, 303) −26.8% (0.0%, −28.4%) 0.0% (0.0%, 0.0%)
46, 913 (1, 166 + 45, 747) 46, 913 (1, 166 + 45, 747) 0.0% (0.0%, 0.0%) 41, 883 (1, 175 + 40, 708) −10.7% (0.8%, −11.0%) −10.7% (0.8%, −11.0%)
52, 744 (2, 178 + 50, 566) 47, 695 (2, 178 + 45, 517) −9.6% (0.0%, −10.0%) 47, 659 (2, 181 + 45, 478) −9.6% (0.1%, −10.1%) −0.1% (0.1%, −0.1%)
32, 655 (2, 210 + 30, 445) 32, 638 (2, 210 + 30, 428) −0.1% (0.0%, −0.1%) 32, 638 (2, 210 + 30, 428) −0.1% (0.0%, −0.1%) 0.0% (0.0%, 0.0%)
37, 744 (2, 227 + 35, 517) 32, 609 (2, 227 + 30, 382) −13.6% (0.0%, −14.5%) 32, 609 (2, 227 + 30, 382) −13.6% (0.0%, −14.5%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 17, 529 (10, 173 + 7, 356) 15, 476 (10, 173 + 5, 303) −11.7% (0.0%, −27.9%) 15, 476 (10, 173 + 5, 303) −11.7% (0.0%, −27.9%) 0.0% (0.0%, 0.0%)
14, 913 (5, 166 + 9, 747) 14, 913 (5, 166 + 9, 747) 0.0% (0.0%, 0.0%) 13, 859 (5, 172 + 8, 687) −7.1% (0.1%, −10.9%) −7.1% (0.1%, −10.9%)
20, 744 (10, 178 + 10, 566) 19, 695 (10, 178 + 9, 517) −5.1% (0.0%, −9.9%) 19, 659 (10, 181 + 9, 478) −5.2% (0.0%, −10.3%) −0.2% (0.0%, −0.4%)
16, 655 (10, 210 + 6, 445) 16, 638 (10, 210 + 6, 428) −0.1% (0.0%, −0.3%) 16, 638 (10, 210 + 6, 428) −0.1% (0.0%, −0.3%) 0.0% (0.0%, 0.0%)
17, 744 (10, 227 + 7, 517) 16, 609 (10, 227 + 6, 382) −6.4% (0.0%, −15.1%) 16, 609 (10, 227 + 6, 382) −6.4% (0.0%, −15.1%) 0.0% (0.0%, 0.0%)

Table 3.10: Comparison of the solutions from CP-LNS. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

3.8.
C
onclusion

103

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

10 20 1, 000 1, 000 14, 866 (3, 271 + 11, 595) 13, 835 (3, 271 + 10, 564) −6.9% (0.0%, −8.9%) 12, 933 (3, 312 + 9, 621) −13.0% (1.3%, −17.0%) −6.5% (1.3%, −8.9%)
15, 956 (2, 221 + 13, 735) 15, 956 (2, 221 + 13, 735) 0.0% (0.0%, 0.0%) 14, 946 (2, 229 + 12, 717) −6.3% (0.4%, −7.4%) −6.3% (0.4%, −7.4%)
23, 281 (3, 338 + 19, 943) 20, 176 (3, 338 + 16, 838) −13.3% (0.0%, −15.6%) 20, 176 (3, 338 + 16, 838) −13.3% (0.0%, −15.6%) 0.0% (0.0%, 0.0%)
13, 984 (3, 331 + 10, 653) 13, 952 (3, 331 + 10, 621) −0.2% (0.0%, −0.3%) 12, 950 (3, 346 + 9, 604) −7.4% (0.5%, −9.8%) −7.2% (0.5%, −9.6%)
16, 125 (3, 390 + 12, 735) 16, 125 (3, 390 + 12, 735) 0.0% (0.0%, 0.0%) 15, 053 (3, 392 + 11, 661) −6.6% (0.1%, −8.4%) −6.6% (0.1%, −8.4%)

1, 000 5, 000 58, 866 (3, 271 + 55, 595) 53, 835 (3, 271 + 50, 564) −8.5% (0.0%, −9.0%) 48, 944 (3, 280 + 45, 664) −16.9% (0.3%, −17.9%) −9.1% (0.3%, −9.7%)
67, 956 (2, 221 + 65, 735) 67, 956 (2, 221 + 65, 735) 0.0% (0.0%, 0.0%) 62, 946 (2, 229 + 60, 717) −7.4% (0.4%, −7.6%) −7.4% (0.4%, −7.6%)
99, 281 (3, 338 + 95, 943) 84, 174 (3, 338 + 80, 836) −15.2% (0.0%, −15.7%) 84, 174 (3, 338 + 80, 836) −15.2% (0.0%, −15.7%) 0.0% (0.0%, 0.0%)
53, 984 (3, 331 + 50, 653) 53, 953 (3, 331 + 50, 622) −0.1% (0.0%, −0.1%) 44, 881 (4, 357 + 40, 524) −16.9% (30.8%, −20.0%) −16.8% (30.8%, −19.9%)
64, 125 (3, 390 + 60, 735) 64, 125 (3, 390 + 60, 735) 0.0% (0.0%, 0.0%) 59, 076 (3, 392 + 55, 684) −7.9% (0.1%, −8.3%) −7.9% (0.1%, −8.3%)

5, 000 1, 000 26, 866 (15, 271 + 11, 595) 25, 835 (15, 271 + 10, 564) −3.8% (0.0%, −8.9%) 24, 944 (15, 280 + 9, 664) −7.2% (0.1%, −16.7%) −3.4% (0.1%, −8.5%)
23, 956 (10, 221 + 13, 735) 23, 956 (10, 221 + 13, 735) 0.0% (0.0%, 0.0%) 22, 946 (10, 229 + 12, 717) −4.2% (0.1%, −7.4%) −4.2% (0.1%, −7.4%)
35, 281 (15, 338 + 19, 943) 32, 174 (15, 338 + 16, 836) −8.8% (0.0%, −15.6%) 32, 174 (15, 338 + 16, 836) −8.8% (0.0%, −15.6%) 0.0% (0.0%, 0.0%)
25, 984 (15, 331 + 10, 653) 25, 953 (15, 331 + 10, 622) −0.1% (0.0%, −0.3%) 24, 950 (15, 346 + 9, 604) −4.0% (0.1%, −9.8%) −3.9% (0.1%, −9.6%)
28, 125 (15, 390 + 12, 735) 28, 125 (15, 390 + 12, 735) 0.0% (0.0%, 0.0%) 27, 053 (15, 392 + 11, 661) −3.8% (0.0%, −8.4%) −3.8% (0.0%, −8.4%)

10 30 1, 000 1, 000 27, 174 (6, 408 + 20, 766) 24, 114 (6, 408 + 17, 706) −11.3% (0.0%, −14.7%) 24, 113 (6, 418 + 17, 695) −11.3% (0.2%, −14.8%) 0.0% (0.2%, −0.1%)
28, 405 (4, 368 + 24, 037) 25, 261 (4, 368 + 20, 893) −11.1% (0.0%, −13.1%) 25, 255 (4, 377 + 20, 878) −11.1% (0.2%, −13.1%) 0.0% (0.2%, −0.1%)
34, 791 (4, 446 + 30, 345) 31, 695 (4, 446 + 27, 249) −8.9% (0.0%, −10.2%) 30, 497 (5, 464 + 25, 033) −12.3% (22.9%, −17.5%) −3.8% (22.9%, −8.1%)
22, 383 (5, 501 + 16, 882) 20, 252 (5, 501 + 14, 751) −9.5% (0.0%, −12.6%) 20, 258 (5, 501 + 14, 757) −9.5% (0.0%, −12.6%) 0.0% (0.0%, 0.0%)
18, 292 (4, 432 + 13, 860) 17, 249 (4, 432 + 12, 817) −5.7% (0.0%, −7.5%) 17, 244 (4, 438 + 12, 806) −5.7% (0.1%, −7.6%) 0.0% (0.1%, −0.1%)

1, 000 5, 000 107, 176 (6, 408 + 100, 768) 92, 114 (6, 408 + 85, 706) −14.1% (0.0%, −14.9%) 92, 114 (6, 408 + 85, 706) −14.1% (0.0%, −14.9%) 0.0% (0.0%, 0.0%)
120, 405 (4, 368 + 116, 037) 105, 261 (4, 368 + 100, 893) −12.6% (0.0%, −13.1%) 105, 255 (4, 377 + 100, 878) −12.6% (0.2%, −13.1%) 0.0% (0.2%, 0.0%)
150, 789 (4, 446 + 146, 343) 135, 695 (4, 446 + 131, 249) −10.0% (0.0%, −10.3%) 126, 523 (5, 460 + 121, 063) −16.1% (22.8%, −17.3%) −6.8% (22.8%, −7.8%)
86, 379 (5, 501 + 80, 878) 76, 258 (5, 501 + 70, 757) −11.7% (0.0%, −12.5%) 76, 256 (5, 501 + 70, 755) −11.7% (0.0%, −12.5%) 0.0% (0.0%, 0.0%)
70, 289 (4, 432 + 65, 857) 65, 249 (4, 432 + 60, 817) −7.2% (0.0%, −7.7%) 65, 249 (4, 432 + 60, 817) −7.2% (0.0%, −7.7%) 0.0% (0.0%, 0.0%)

5, 000 1, 000 51, 176 (30, 408 + 20, 768) 48, 114 (30, 408 + 17, 706) −6.0% (0.0%, −14.7%) 48, 113 (30, 418 + 17, 695) −6.0% (0.0%, −14.8%) 0.0% (0.0%, −0.1%)
44, 405 (20, 368 + 24, 037) 41, 261 (20, 368 + 20, 893) −7.1% (0.0%, −13.1%) 40, 417 (20, 379 + 20, 038) −9.0% (0.1%, −16.6%) −2.0% (0.1%, −4.1%)
50, 789 (20, 446 + 30, 343) 47, 695 (20, 446 + 27, 249) −6.1% (0.0%, −10.2%) 45, 767 (20, 457 + 25, 310) −9.9% (0.1%, −16.6%) −4.0% (0.1%, −7.1%)
42, 383 (25, 501 + 16, 882) 40, 252 (25, 501 + 14, 751) −5.0% (0.0%, −12.6%) 40, 250 (25, 501 + 14, 749) −5.0% (0.0%, −12.6%) 0.0% (0.0%, 0.0%)
34, 289 (20, 432 + 13, 857) 33, 249 (20, 432 + 12, 817) −3.0% (0.0%, −7.5%) 33, 244 (20, 438 + 12, 806) −3.0% (0.0%, −7.6%) 0.0% (0.0%, −0.1%)

Table 3.10: Comparison of the solutions from CP-LNS. Vehicle and crew objective values are shown inside parenthesis. (Continued on next page)

104
C
hapter

3.
T
he

JointVehicle
and

C
rew

Routing
and

Scheduling
Problem

Fixed Semi-flexible Flexible

|ℒ| |𝒫| w1 w2 Objective Value Objective Value Change (Fixed) Objective Value Change (Fixed) Change (Semi-flexible)

10 40 1, 000 1, 000 41, 714 (9, 621 + 32, 093) 37, 672 (9, 621 + 28, 051) −9.7% (0.0%, −12.6%) 36, 676 (9, 621 + 27, 055) −12.1% (0.0%, −15.7%) −2.6% (0.0%, −3.6%)
41, 895 (6, 559 + 35, 336) 37, 759 (6, 559 + 31, 200) −9.9% (0.0%, −11.7%) 37, 752 (6, 559 + 31, 193) −9.9% (0.0%, −11.7%) 0.0% (0.0%, 0.0%)
44, 083 (6, 580 + 37, 503) 40, 980 (6, 580 + 34, 400) −7.0% (0.0%, −8.3%) 39, 995 (6, 584 + 33, 411) −9.3% (0.1%, −10.9%) −2.4% (0.1%, −2.9%)
30, 953 (7, 693 + 23, 260) 26, 784 (7, 693 + 19, 091) −13.5% (0.0%, −17.9%) 26, 830 (7, 693 + 19, 137) −13.3% (0.0%, −17.7%) 0.2% (0.0%, 0.2%)
24, 608 (6, 574 + 18, 034) 23, 567 (6, 574 + 16, 993) −4.2% (0.0%, −5.8%) 24, 585 (6, 574 + 18, 011) −0.1% (0.0%, −0.1%) 4.3% (0.0%, 6.0%)

1, 000 5, 000 165, 706 (9, 621 + 156, 085) 140, 659 (9, 621 + 131, 038) −15.1% (0.0%, −16.0%) 140, 683 (9, 621 + 131, 062) −15.1% (0.0%, −16.0%) 0.0% (0.0%, 0.0%)
177, 894 (6, 559 + 171, 335) 152, 748 (6, 559 + 146, 189) −14.1% (0.0%, −14.7%) 157, 754 (6, 564 + 151, 190) −11.3% (0.1%, −11.8%) 3.3% (0.1%, 3.4%)
188, 070 (6, 580 + 181, 490) 172, 980 (6, 580 + 166, 400) −8.0% (0.0%, −8.3%) 172, 980 (6, 580 + 166, 400) −8.0% (0.0%, −8.3%) 0.0% (0.0%, 0.0%)
118, 959 (7, 693 + 111, 266) 98, 784 (7, 693 + 91, 091) −17.0% (0.0%, −18.1%) 103, 853 (7, 693 + 96, 160) −12.7% (0.0%, −13.6%) 5.1% (0.0%, 5.6%)
92, 610 (6, 574 + 86, 036) 92, 585 (6, 574 + 86, 011) 0.0% (0.0%, 0.0%) 87, 613 (6, 589 + 81, 024) −5.4% (0.2%, −5.8%) −5.4% (0.2%, −5.8%)

5, 000 1, 000 77, 714 (45, 621 + 32, 093) 72, 692 (45, 621 + 27, 071) −6.5% (0.0%, −15.6%) 72, 680 (45, 627 + 27, 053) −6.5% (0.0%, −15.7%) 0.0% (0.0%, −0.1%)
65, 891 (30, 559 + 35, 332) 61, 759 (30, 559 + 31, 200) −6.3% (0.0%, −11.7%) 60, 803 (30, 558 + 30, 245) −7.7% (0.0%, −14.4%) −1.5% (0.0%, −3.1%)
68, 076 (30, 580 + 37, 496) 64, 980 (30, 580 + 34, 400) −4.5% (0.0%, −8.3%) 64, 023 (30, 584 + 33, 439) −6.0% (0.0%, −10.8%) −1.5% (0.0%, −2.8%)
58, 959 (35, 693 + 23, 266) 55, 826 (35, 693 + 20, 133) −5.3% (0.0%, −13.5%) 54, 822 (35, 693 + 19, 129) −7.0% (0.0%, −17.8%) −1.8% (0.0%, −5.0%)
48, 608 (30, 574 + 18, 034) 48, 575 (30, 574 + 18, 001) −0.1% (0.0%, −0.2%) 44, 723 (25, 623 + 19, 100) −8.0% (−16.2%, 5.9%) −7.9% (−16.2%, 6.1%)

10 50 1, 000 1, 000 62, 486 (14, 879 + 47, 607) 52, 382 (14, 879 + 37, 503) −16.2% (0.0%, −21.2%) 53, 355 (14, 879 + 38, 476) −14.6% (0.0%, −19.2%) 1.9% (0.0%, 2.6%)
52, 261 (8, 678 + 43, 583) 48, 205 (8, 678 + 39, 527) −7.8% (0.0%, −9.3%) 48, 157 (8, 678 + 39, 479) −7.9% (0.0%, −9.4%) −0.1% (0.0%, −0.1%)
50, 215 (7, 669 + 42, 546) 44, 118 (7, 669 + 36, 449) −12.1% (0.0%, −14.3%) 44, 202 (7, 671 + 36, 531) −12.0% (0.0%, −14.1%) 0.2% (0.0%, 0.2%)
42, 339 (10, 880 + 31, 459) 37, 183 (10, 880 + 26, 303) −12.2% (0.0%, −16.4%) 37, 183 (10, 880 + 26, 303) −12.2% (0.0%, −16.4%) 0.0% (0.0%, 0.0%)
37, 087 (8, 740 + 28, 347) 31, 971 (8, 740 + 23, 231) −13.8% (0.0%, −18.0%) 32, 999 (8, 758 + 24, 241) −11.0% (0.2%, −14.5%) 3.2% (0.2%, 4.3%)

1, 000 5, 000 246, 492 (14, 879 + 231, 613) 196, 272 (14, 879 + 181, 393) −20.4% (0.0%, −21.7%) 201, 413 (14, 879 + 186, 534) −18.3% (0.0%, −19.5%) 2.6% (0.0%, 2.8%)
220, 275 (8, 678 + 211, 597) 200, 151 (8, 678 + 191, 473) −9.1% (0.0%, −9.5%) 200, 246 (8, 678 + 191, 568) −9.1% (0.0%, −9.5%) 0.0% (0.0%, 0.0%)
214, 249 (7, 669 + 206, 580) 179, 334 (7, 669 + 171, 665) −16.3% (0.0%, −16.9%) 184, 406 (7, 669 + 176, 737) −13.9% (0.0%, −14.4%) 2.8% (0.0%, 3.0%)
162, 318 (10, 880 + 151, 438) 137, 175 (10, 880 + 126, 295) −15.5% (0.0%, −16.6%) 137, 170 (10, 880 + 126, 290) −15.5% (0.0%, −16.6%) 0.0% (0.0%, 0.0%)
145, 072 (8, 740 + 136, 332) 124, 942 (8, 740 + 116, 202) −13.9% (0.0%, −14.8%) 124, 900 (8, 745 + 116, 155) −13.9% (0.1%, −14.8%) 0.0% (0.1%, 0.0%)

5, 000 1, 000 118, 504 (70, 879 + 47, 625) 108, 316 (70, 879 + 37, 437) −8.6% (0.0%, −21.4%) 109, 322 (70, 879 + 38, 443) −7.7% (0.0%, −19.3%) 0.9% (0.0%, 2.7%)
84, 275 (40, 678 + 43, 597) 80, 144 (40, 678 + 39, 466) −4.9% (0.0%, −9.5%) 80, 200 (40, 680 + 39, 520) −4.8% (0.0%, −9.4%) 0.1% (0.0%, 0.1%)
78, 215 (35, 669 + 42, 546) 72, 126 (35, 669 + 36, 457) −7.8% (0.0%, −14.3%) 72, 232 (35, 669 + 36, 563) −7.6% (0.0%, −14.1%) 0.1% (0.0%, 0.3%)
82, 341 (50, 880 + 31, 461) 77, 159 (50, 880 + 26, 279) −6.3% (0.0%, −16.5%) 77, 209 (50, 880 + 26, 329) −6.2% (0.0%, −16.3%) 0.1% (0.0%, 0.2%)
69, 081 (40, 740 + 28, 341) 64, 950 (40, 740 + 24, 210) −6.0% (0.0%, −14.6%) 64, 963 (40, 740 + 24, 223) −6.0% (0.0%, −14.5%) 0.0% (0.0%, 0.1%)

Table 3.10: Comparison of the solutions from CP-LNS. Vehicle and crew objective values are shown inside parenthesis.

Chapter 4

The Vehicle Routing Problem with
Location Congestion

Many real-world vehicle routing problems feature constraints that are seldom considered in
academic variants. This chapter explores a rich variant named the Vehicle Routing Problem
with Pickup and Delivery, Time Windows and Location Congestion (VRPPDTWLC or VRPLC
for short). The VRPLC is motivated by applications in humanitarian and military logistics,
where Air Force bases have limited parking spots, fuel reserve and landing and takeoff times
for airplane operations. At the modeling level, the VRPLC is based on the Pickup and Delivery
Problem and Time Windows (PDPTW) but extends it with one cumulative resource constraint
at every location to limit the number of vehicles present and/or in service at any given time.
Examples of resources can include parking bays for the first case and loading equipment for
the second case. If all resources at a location are in use, incoming vehicles cannot proceed but
must wait until a resource becomes available. In other words, the vehicles must be scheduled
around the availability of the resources. The scheduling element leads to temporal dependencies
between vehicles, which are not present in conventional vehicle routing problems. In particular,
a delay on one route may entail a delay on another route if both routes visit a common location.
Furthermore, the delay on the second route may cause it to become infeasible because of a time
window violation, for example.

This chapter studies a mixed integer programming (MIP) model, a constraint programming
(CP) model, a branch-and-price-and-check (BPC) model and a two-stage (TS) sequential model
for the VRPLC. The sequential method divides the problem into a routing stage that ignores
the scheduling constraints, followed by a scheduling stage that schedules the vehicles over
the routes from the first stage. The BPC approach, inspired by a branch-and-cut-and-price
model of the PDPTW, combines a branch-and-price algorithm that solves the PDPTW and
a constraint programming subproblem that lifts the PDPTW to the VRPLC by checking the
PDPTW solutions against the location resource constraints. If these constraints are violated, a
combinatorial Benders cut (also known as a nogood) is added to the master problem to prohibit

As described in the Preface, the main findings of this chapter are published in the paper titled “A branch-and-
price-and-check model for the vehicle routing problem with location congestion”.

105

106 Chapter 4. The Vehicle Routing Problem with Location Congestion

this PDPTW solution.

The four models are evaluated on instances with up to 300 requests (150 pickup-delivery
pairs) and both types of resources. Results indicate that the BPC algorithm scales better than
both the mixed integer programming and the constraint programming models by finding feasible
solutions to the largest instances and optimal solutions to instances with up to 160 requests (80
pickup-delivery requests). Neither the mixed integer programming model nor the constraint
programming model find feasible solutions to the large instances. The sequential method
finds feasible solutions to some of the large instances but fails on the instances for which the
scheduling constraints are binding, indicating that the routing and scheduling aspects must be
considered simultaneously.

The remainder of this chapter is structured as follows. Section 4.1 reviews prior work on
relevant problems. Section 4.2 describes the VRPLC. Sections 4.3 and 4.4 respectively present
the mixed integer programming model and the constraint programming model. Section 4.5
discusses the BPC approach. Section 4.6 reports experimental results, and Section 4.7 concludes
this chapter.

4.1 Literature Review

The BPC model is based on the branch-and-cut-and-price model of the PDPTW by Røpke and
Cordeau (2009), which is previously discussed in Section 2.8.1. The remainder of this section
reviews task scheduling problems, which are somewhat related to routing problems, and several
vehicle routing problems with scheduling constraints.

In task scheduling problems, a number of tasks must be processed by various machines
and the objective may involve minimizing makespan or tardiness. An example of a scheduling
problem is the Resource-Constrained Project Scheduling Problem, which requires tasks of
fixed duration to be scheduled on a number of machines such that precedence constraints and
resource capacities are respected. Many benchmark instances of these problems are closed
using constraint programming (Schutt et al. 2010).

Beck, Prosser and Selensky (2002, 2003) showed that some scheduling problems can be
translated into routing problems and vice versa. However, few problems exhibit both routing
and scheduling constraints simultaneously. The VRPLC is one such example: it overlays either
a regular Resource-Constrained Project Scheduling Problem or a variable-duration version on
top of the PDPTW. In the VRPLC, vehicles must coordinate their schedules in order to satisfy
resource capacities at locations. Hence, the VRPLC is classified as a rich vehicle routing problem
with synchronization (Drexl 2012). In the VRPLC, synchronization refers to the interaction
between vehicles, and in particular, the transfer of information about the schedule of one vehicle
to another.

Only a limited number of vehicle routing problems have appeared in the literature with
resource scheduling constraints at locations. Hempsch and Irnich (2008) modeled resource
constraints at destination depot locations by redefining individual routes as segments within a
single long route.

4.2. The High-Level Description 107

Log Truck Scheduling Problems (LTSPs) are a family of forestry applications generalized
from the PDPTW. El Hachemi, Gendreau and Rousseau (2013) modeled an LTSP that features
location resource synchronizations similar to those in the VRPLC. Pickup and delivery requests
are located at sites, each of which has a single log-loader that is required to load and unload a
vehicle. A vehicle arriving at a site with an occupied log-loader must wait until the log-loader is
free to service a request. Similar to the VRPLC, this LTSP optimizes the vehicle routes and the
schedules of the log-loaders. The problem is solved using scheduling constraints in a constraint
programming model.

4.2 The High-Level Description

This section describes the VRPLC. The VRPLC is based on the PDPTW, which is introduced in
Section 2.7. The VRPLC augments the PDPTW with two major additions: the explicit modeling
of locations and their resources.

In traditional vehicle routing problems, such as the PDPTW, requests and locations are
synonymous: each request is assumed to be at its own location, even if it overlaps another
location. In the VRPLC, requests are grouped by location, and the locations cannot overlap.
Distance costs and travel times are defined between locations. Moreover, every location features
a number of cumulative resources with a fixed capacity that cannot be exceeded at any given
time. Whenever all resources are in use, incoming vehicles cannot proceed until a resource
becomes available for use. Two types of resources are considered: a service resource is used
while a request is in service, and a presence resource is used by a vehicle from the moment it
arrives at a location until it departs from the location. Service resources are fully encompassed
by presence resources, since the start of a visit is necessarily before the start of service, and the
end of a visit after the end of service. This chapter only considers the case where all locations
have only service resources or only presence resources. However, the formulation naturally
generalizes to multiple copies of these types of resources.

Contrary to traditional vehicle routing problems, delaying a route in the VRPLC may affect
the feasibility of other routes since a delayed vehicle can postpone the availability of a resource
required by another vehicle. The delay incurred by the second vehicle can cause a time window
violation on its route. Figure 4.1 shows an example of a time window violation. Temporal
interactions between vehicles require reasoning about the timing and scheduling of the vehicle
visits and make the VRPLC more challenging to solve than their more conventional counterparts.

4.3 The Mixed Integer Programming Model

This section presents the mixed integer programming model of the VRPLC. The model is based
on a regular three-index formulation of the PDPTW, but includes additional time variables to
record the arrival and departure times at locations, and the location resource constraints.

Table 4.1 lists the data and decision variables of the mixed integer programming model. The
problem is solved over a time interval 𝒯 = [0, T], where T > 0. The problem contains V vehicles,

108 Chapter 4. The Vehicle Routing Problem with Location Congestion

1

[0,0]

2

[0,5]

3

[20,20]

4

[20,30]

5

[40,40]

6

[35,45]

(a) Consider six requests with service durations of 10 time units and time windows shown in the figure.
The travel time between any two nodes is 10 time units. Requests 3 and 4 are situated at a common
location with a service resource capacity of one. Also consider a vehicle that visits requests 1, 3 and 5
and another vehicle that visits requests 2, 4 and 6.

1

0

2

0

3

20

4

20

5

40

6

40

(b) The service start times shown in the figure is
feasible in traditional VRPs without synchroniza-
tion.

1

0

2

0

3

20

4

30

5

40

6

50

(c) With service resources, request 4 cannot be
started until time 30 because the resource is occu-
pied by request 3 from time 20 to 30. The delay
invalidates the solution in Figure 4.1b at request 6.

Figure 4.1: Example of a time window violation after delaying a vehicle due to insufficient
location resources.

4.3. The Mixed Integer Programming Model 109

Variable Description

T > 0 Time horizon.
𝒯 = [0, T] Time interval.
V ∈ {1, … ,∞} Number of vehicles.
𝒱 = {1, … ,V } Set of vehicles.
Q ≥ 0 Vehicle capacity.
P ∈ {1, … ,∞} Total number of pickup-delivery pairs.
R = 2P Total number of requests.
𝒫 = {1, … , P} Set of pickup requests/nodes.
𝒟 = {P + 1,… , R} Set of delivery requests/nodes.
ℛ = 𝒫 ∪𝒟 Set of all requests.
s Start node.
e End node.
𝒩 = ℛ ∪ {s, e} Set of all nodes.
L ∈ {1, … ,∞} Number of locations, excluding the depot location.
ℒ = {1, … , L} Set of locations.
ℛl = {i ∈ ℛ|li = l} Requests at location l ∈ ℒ.
Cl ∈ {1, … ,∞} Resource capacity of location l ∈ ℒ.
𝒦l = {1, … , 2|ℛl |} Set of events at location l ∈ ℒ.
li ∈ ℒ Location of i ∈ ℛ.
qi ∈ [−Q,Q] Demand at i ∈ 𝒩.
ai ∈ 𝒯 Earliest start of service at i ∈ 𝒩.
bi ∈ 𝒯 Latest start of service at i ∈ 𝒩.
ti ∈ 𝒯 Service duration of i ∈ 𝒩.
𝒜 Set of arcs. Defined in Equation (4.1).
di,j ∈ 𝒯 Distance and travel time along the arc (i, j) ∈ 𝒜.

flowv ,i,j ∈ {0, 1} Indicates if vehicle v ∈ 𝒱 traverses (i, j) ∈ 𝒜.
visitv ,i ∈ {0, 1} Indicates if vehicle v ∈ 𝒱 visits i ∈ ℛ.
loadv ,i ∈ [0,Q] Load of vehicle v ∈ 𝒱 after servicing i ∈ 𝒩.
arrv ,i ∈ 𝒯 Arrival time of vehicle v ∈ 𝒱 at i ∈ 𝒩.
servv ,i ∈ [ai , bi] Start of service by vehicle v ∈ 𝒱 at i ∈ 𝒩.
servEndv ,i ∈ [ai + ti , bi + ti] End of service by vehicle v ∈ 𝒱 at i ∈ 𝒩.
depv ,i ∈ 𝒯 Departure time of vehicle v ∈ 𝒱 at i ∈ 𝒩.
startl,k,i ∈ {0, 1} Indicates if k ∈ 𝒦l represents the start event of i ∈ ℛl .
endl,k,i ∈ {0, 1} Indicates if k ∈ 𝒦l represents the end event of i ∈ ℛl .
usel,k ∈ {0, … ,Cl } Resource use after event k ∈ 𝒦l ∪ {0} at l ∈ ℒ.
timel,k ∈ 𝒯 Time of event k ∈ 𝒦l ∪ {0} at l ∈ ℒ.

Table 4.1: The data and decision variables of the mixed integer programming model.

110 Chapter 4. The Vehicle Routing Problem with Location Congestion

which are represented by the set 𝒱 = {1, … ,V }. Every vehicle has a capacity Q ≥ 0.
The vehicles need to pick up and deliver P requests. The pickup requests are labeled 1 to

P and their corresponding deliveries are labeled P + 1 to 2P . Let R = 2P be the total number
of requests. The pickups are represented by the set 𝒫 = {1, … , P}, and the deliveries by the set
𝒟 = {P +1, … , R}. The set ℛ = 𝒫 ∪𝒟 represents all requests, and the set𝒩 = ℛ ∪ {s, e} represents
the nodes of the underlying graph, which has a node for each request i ∈ ℛ and two nodes
denoting the start s and end e of every vehicle route. Each pickup i ∈ 𝒫 has a vehicle load
demand of qi ∈ [0,Q], and its corresponding delivery P + i has a demand of qP+i = −qi ∈ [−Q, 0].
The start and end nodes have zero vehicle load demand, i.e., qs = 0 and qe = 0. Each node i ∈ 𝒩
has an earliest start time of service ai ∈ 𝒯, latest start time of service bi ∈ 𝒯 and service duration
ti ∈ 𝒯.

The requests are distributed across L locations, which are contained in the set ℒ = {1, … , L}.
Each request i is found at location li ∈ ℒ. The set ℛl = {i ∈ ℛ|li = l} represents the set of all
requests situated at location l ∈ ℒ. The problem specifies that either all locations only have
service resources or all locations only have presence resources. This restriction can be removed
with an easy generalization. Each location l ∈ ℒ has a resource capacity Cl ∈ {1, … ,∞}.

The resources are scheduled using event variables (e.g., Hooker 2007, Koné et al. 2011). Every
request i ∈ ℛl at l is associated with two events: a start event and an end event. For service
resources, the start and end events correspond to the start and end of service. For presence
resources, the start and end events correspond to the arrival and departure of the servicing
vehicle. The location resources are then scheduled by tracking the number of start and end
events at each location. The set 𝒦l = {1, … , 2|ℛl |} is the events at location l ∈ ℒ.

The nodes in the underlying graph are connected by the arcs

𝒜 = {(s, i)|i ∈ 𝒫} ∪ {(i, j)|i ∈ ℛ, j ∈ ℛ, i ≠ j} ∪ {(i, e)|i ∈ 𝒟} ∪ {(s, e)}. (4.1)

Each arc (i, j) ∈ 𝒜 has an associated cost/travel time di,j ∈ 𝒯. For any two locations l1, l2 ∈ ℒ,
all arcs from requests at l1 to requests at l2 have the same cost.

The primary decision variables are the flowv ,i,j variables, which indicate if vehicle v traverses
the arc (i, j). The visitv ,i variable indicates if vehicle v visits request i. The loadv ,i , arrv ,i , servv ,i ,
servEndv ,i and depv ,i variables respectively represent the vehicle load, arrival time, start time
of service, end time of service and departure time at request i. The usel,k and timel,k variables
contain the resource use after event k and the time of event k at location l.

Figure 4.2 depicts the three-index flow model underpinning the mixed integer programming
model of the VRPLC. The symbol M denotes an appropriate big-M constant. Objective Func-
tion (4.2) minimizes the total travel distance. Constraints (4.3) to (4.5) are the flow constraints,
which ensure that every vehicle follows a path beginning at the start node through to the end
node. Constraint (4.6) links the flow variables to the visit indicator variables. Constraint (4.7)
ensures that every request is visited. Constraints (4.8) and (4.9) are the pickup-delivery con-
straints, which require the corresponding delivery request of a pickup to occur after the pickup
and on the same vehicle. Constraint (4.10) zeroes the load demand at the start and end nodes.
Constraints (4.11) and (4.12) respectively bound the load variables at pickup and delivery nodes.

4.3. The Mixed Integer Programming Model 111

min∑
v∈𝒱

∑
(i,j)∈𝒜

di,jflowv ,i,j (4.2)

subject to

∑
j∶(s,j)∈𝒜

flowv ,s,j = 1 ∀v ∈ 𝒱, (4.3)

∑
h∶(h,i)∈𝒜

flowv ,h,i = ∑
j∶(i,j)∈𝒜

flowv ,i,j ∀v ∈ 𝒱, i ∈ ℛ, (4.4)

∑
h∶(h,e)∈𝒜

flowv ,h,e = 1 ∀v ∈ 𝒱, (4.5)

∑
h∶(h,i)∈𝒜

flowv ,h,i = visitv ,i ∀v ∈ 𝒱, i ∈ ℛ, (4.6)

∑
v∈𝒱

visitv ,i = 1 ∀i ∈ 𝒫, (4.7)

visitv ,i = visitv ,P+i ∀v ∈ 𝒱, i ∈ 𝒫, (4.8)

depv ,i + di,P+i ≤ arrv ,P+i ∀v ∈ 𝒱, i ∈ 𝒫, (4.9)

loadv ,i = 0 ∀v ∈ 𝒱, i ∈ {s, e}, (4.10)

qi ≤ loadv ,i ≤ Q ∀v ∈ 𝒱, i ∈ 𝒫, (4.11)

0 ≤ loadv ,i ≤ Q + qi ∀v ∈ 𝒱, i ∈ 𝒟, (4.12)

loadv ,i + qj − loadv ,j ≤ M(1 − flowv ,i,j) ∀v ∈ 𝒱, (i, j) ∈ 𝒜, (4.13)

arrv ,i ≤ servv ,i ∀v ∈ 𝒱, i ∈ ℛ, (4.14)

servv ,i + ti = servEndv ,i ∀v ∈ 𝒱, i ∈ ℛ, (4.15)

servEndv ,i ≤ depv ,i ∀v ∈ 𝒱, i ∈ ℛ, (4.16)

arrv ,i = servv ,i = servEndv ,i = depv ,i ∀v ∈ 𝒱, i ∈ {s, e}, (4.17)

depv ,i + di,j − arrv ,j ≤ M(1 − flowv ,i,j) ∀v ∈ 𝒱, (i, j) ∈ 𝒜, (4.18)

arrv ,j − depv ,i − di,j ≤ M(1 − flowv ,i,j) ∀v ∈ 𝒱, (i, j) ∈ 𝒜. (4.19)

Figure 4.2: The constraints of the three-index flowmodel within the mixed integer programming
model.

112 Chapter 4. The Vehicle Routing Problem with Location Congestion

∑
i∈ℛl

startl,k,i +∑
i∈ℛl

endl,k,i = 1 ∀l ∈ ℒ, k ∈ 𝒦l , (4.20)

∑
k∈𝒦l

startl,k,i = 1 ∀l ∈ ℒ, i ∈ ℛl , (4.21)

∑
k∈𝒦l

endl,k,i = 1 ∀l ∈ ℒ, i ∈ ℛl , (4.22)

usel,0 = 0 ∀l ∈ ℒ, (4.23)

usel,k = usel,k−1 +∑
i∈ℛl

startl,k,i −∑
i∈ℛl

endl,k,i ∀l ∈ ℒ, k ∈ 𝒦l , (4.24)

timel,0 = 0 ∀l ∈ ℒ, (4.25)

timel,k−1 ≤ timel,k ∀l ∈ ℒ, k ∈ 𝒦l , (4.26)

timel,k − servv ,i ≤ M(2 − startl,k,i − visitv ,i) ∀l ∈ ℒ, k ∈ 𝒦l , v ∈ 𝒱, i ∈ ℛl , (4.27)

servv ,i − timel,k ≤ M(2 − startl,k,i − visitv ,i) ∀l ∈ ℒ, k ∈ 𝒦l , v ∈ 𝒱, i ∈ ℛl , (4.28)

timel,k − servEndv ,i ≤ M(2 − endl,k,i − visitv ,i) ∀l ∈ ℒ, k ∈ 𝒦l , v ∈ 𝒱, i ∈ ℛl , (4.29)

servEndv ,i − timel,k ≤ M(2 − endl,k,i − visitv ,i) ∀l ∈ ℒ, k ∈ 𝒦l , v ∈ 𝒱, i ∈ ℛl . (4.30)

Figure 4.3: The constraints for service resources in the mixed integer programming model.

Constraint (4.13) is the usual load constraint. Constraints (4.14) to (4.16) order the arrival,
service start, service end, and departure times at each request. Constraint (4.17) constrains
the start node and end node to one common arrival/service/departure time. Constraints (4.18)
and (4.19) are the travel time constraints, which together state that arrv ,j = depv ,i +di,j whenever
flowv ,i,j = 1.

The novelty of the model lies in the additional constraints in Figure 4.3, which supplement
the constraints of Figure 4.2 to model service resources. Constraint (4.20) requires every event to
be classified as either a start event or an end event. Constraints (4.21) and (4.22) state that every
request has a start event and an end event. Constraint (4.23) initializes the resource use count.
Constraint (4.24) accumulates the resource use after every event. Constraint (4.25) initializes
the event time variables. Constraint (4.26) removes symmetries in the index of the events by
enforcing an ordering. Constraints (4.27) to (4.30) are implication constraints that link the event
time variables to the route time variables. To model presence resources, Constraints (4.27)
to (4.30) are replaced with

timel,k − arrv ,i ≤ M(2 − startl,k,i − visitv ,i) ∀l ∈ ℒ, k ∈ 𝒦l , v ∈ 𝒱, i ∈ ℛl ,

arrv ,i − timel,k ≤ M(2 − startl,k,i − visitv ,i) ∀l ∈ ℒ, k ∈ 𝒦l , v ∈ 𝒱, i ∈ ℛl ,

timel,k − depv ,i ≤ M(2 − endl,k,i − visitv ,i) ∀l ∈ ℒ, k ∈ 𝒦l , v ∈ 𝒱, i ∈ ℛl ,

depv ,i − timel,k ≤ M(2 − endl,k,i − visitv ,i) ∀l ∈ ℒ, k ∈ 𝒦l , v ∈ 𝒱, i ∈ ℛl .

4.4. The Constraint Programming Model 113

These constraints link the event time variables to the arrival and departure times instead of the
service start and end times.

4.4 The Constraint Programming Model

This section presents the constraint programming model for the VRPLC. It is adapted from the
standard constraint programming model of vehicle routing problems using successor variables,
which was explained in Section 2.8.2.

Table 4.2 lists the data and decision variables of the model. The data variables are mostly
same as the those of the mixed integer programming model except that many of the sets are now
discrete rather than continuous. One major difference is that each vehicle v ∈ 𝒱 has its own
start node s(v) = R + v and end node e(v) = R + V + v . The set 𝒮 = {R + 1, … , R + V } represents
all start nodes, and ℰ = {R + V + 1,… , R + 2V } represents all end nodes.

The primary decision variables are the successor variables succ(i), which determine the route
of each vehicle. The successor variables trace a path from the start node of a vehicle through
a number of nodes to the end node of a vehicle. For example, if succ(s(1)) = 1, succ(1) = 2,
succ(2) = e(1), then vehicle 1 departs its start node s(1) for requests 1 and 2 and then finishes at
its end node e(1).

The vec(i) variable contains the index of the vehicle that visits request i ∈ 𝒩. The load(i),
arr(i), serv(i), dep(i), and dur(i) variables respectively contain the load, arrival time, service
start time, departure time, and visit duration at request i.

Figure 4.4 depicts the constraints. Objective Function (4.31) minimizes the total travel
distance. Constraints (4.32) to (4.34) are the domain restrictions that ensure the requests
along a route are correctly ordered. Constraints (4.35) and (4.36) link the end of a route to
the start of the next route, and enables the Circuit global constraint in Constraint (4.37) to
eliminate subtours. Constraints (4.38) and (4.39) track the requests visited by a vehicle along its
route. Constraints (4.40) and (4.41) are the pickup and delivery constraints. Constraints (4.42)
to (4.45) are the usual load constraints. Constraints (4.46) and (4.47) order the arrival, service
and departure times at each request. Constraint (4.48) calculates the duration of each visit.
Constraint (4.49) enforces a common arrival/service/departure time at the start and end depot
nodes. Constraint (4.50) implements travel times. Constraint (4.51) models the service resources.
For presence resources, it can be replaced with

Cumulative({arr(i)|i ∈ ℛl }, {dur(i)|i ∈ ℛl }, 1,Cl) ∀l ∈ ℒ. (4.52)

The resource constraints aremodeled using the Cumulative(s,d, r,C) global constraint (Aggoun
and Beldiceanu 1993). Each component of the s, d and r vectors respectively denotes the start
time, duration and resource requirement of a task. The value C is the maximum capacity of
the resource on which the tasks are to be scheduled. It is important to note that the service
durations are fixed by the instance data, whereas the presence durations are variables.

114 Chapter 4. The Vehicle Routing Problem with Location Congestion

Name Description

T ∈ {1, … ,∞} Time horizon.
𝒯 = {0, … , T } Set of time values.
V ∈ {1, … ,∞} Number of vehicles.
𝒱 = {1, … ,V } Set of vehicles.
Q ∈ {0, … ,∞} Vehicle capacity.
P ∈ {1, … ,∞} Total number of pickup-delivery pairs.
R = 2P Total number of requests.
𝒫 = {1, … , P} Set of pickup requests/nodes.
𝒟 = {P + 1,… , R} Set of delivery requests/nodes.
ℛ = 𝒫 ∪𝒟 Set of all requests.
𝒮 = {R + 1,… , R + V } Set of vehicle start nodes.
ℰ = {R + V + 1,… , R + 2V } Set of vehicle end nodes.
s(v) = R + v Start node of vehicle v ∈ 𝒱.
e(v) = R + V + v End node of vehicle v ∈ 𝒱.
𝒩 = ℛ ∪ 𝒮 ∪ ℰ Set of all nodes.
L ∈ {1, … ,∞} Number of locations, excluding the depot location.
ℒ = {1, … , L} Set of locations.
Cl ∈ {1, … ,∞} Resource capacity of location l ∈ ℒ.
ℛl = {i ∈ ℛ|l(i) = l} Requests at location l ∈ ℒ.
l(i) ∈ ℒ Location of i ∈ ℛ.
d(i, j) ∈ 𝒯 Distance and travel time from i ∈ 𝒩 to j ∈ 𝒩.
a(i) ∈ 𝒯 Earliest start of service at i ∈ 𝒩.
b(i) ∈ 𝒯 Latest start of service at i ∈ 𝒩.
t(i) ∈ 𝒯 Service duration of i ∈ 𝒩.
q(i) ∈ {−Q, … ,Q} Demand at i ∈ 𝒩.

succ(i) ∈ 𝒩 Successor node of i ∈ 𝒩.
veh(i) ∈ 𝒱 Vehicle that visits i ∈ 𝒩.
load(i) ∈ {0, … ,Q} Load of vehicle veh(i) after servicing i ∈ 𝒩.
arr(i) ∈ 𝒯 Arrival time at i ∈ 𝒩.
serv(i) ∈ {a(i), … , b(i)} Start of service at i ∈ 𝒩.
dep(i) ∈ 𝒯 Departure time at i ∈ 𝒩.
dur(i) ∈ 𝒯 Visit duration at i ∈ ℛ.

Table 4.2: The data and decision variables of the constraint programming model.

4.4. The Constraint Programming Model 115

min∑
i∈ℛ∪𝒮

d(i, succ(i)) (4.31)

subject to

succ(s(v)) ∈ 𝒫 ∪ {e(v)} ∀v ∈ 𝒱, (4.32)

succ(i) ∈ 𝒫 ∪𝒟 ∀i ∈ 𝒫, (4.33)

succ(i) ∈ 𝒫 ∪𝒟 ∪ ℰ ∀i ∈ 𝒟, (4.34)

succ(e(v)) = s(v + 1) ∀v ∈ {1, … ,V − 1}, (4.35)

succ(e(V)) = s(1), (4.36)

Circuit(succ(⋅)), (4.37)

veh(s(v)) = veh(e(v)) = v ∀v ∈ 𝒱, (4.38)

veh(i) = veh(succ(i)) ∀i ∈ ℛ ∪ 𝒮, (4.39)

veh(i) = veh(P + i) ∀i ∈ 𝒫, (4.40)

dep(i) + d(i, P + i) ≤ arr(P + i) ∀i ∈ 𝒫, (4.41)

load(i) = 0 ∀i ∈ 𝒮 ∪ ℰ, (4.42)

q(i) ≤ load(i) ≤ Q ∀i ∈ 𝒫, (4.43)

0 ≤ load(i) ≤ Q + q(i) ∀i ∈ 𝒟, (4.44)

load(i) + q(succ(i)) = load(succ(i)) ∀i ∈ ℛ ∪ 𝒮, (4.45)

arr(i) ≤ serv(i) ∀i ∈ ℛ, (4.46)

serv(i) + t(i) ≤ dep(i) ∀i ∈ ℛ, (4.47)

dur(i) = dep(i) − arr(i) ∀i ∈ ℛ, (4.48)

arr(i) = serv(i) = dep(i) ∀i ∈ 𝒮 ∪ ℰ, (4.49)

dep(i) + d(i, succ(i)) = arr(succ(i)) ∀i ∈ ℛ ∪ 𝒮, (4.50)

Cumulative({serv(i)|i ∈ ℛl }, {t(i)|i ∈ ℛl }, 1,Cl) ∀l ∈ ℒ. (4.51)

Figure 4.4: The constraints in the constraint programming model.

116 Chapter 4. The Vehicle Routing Problem with Location Congestion

4.5 The Branch-and-Price-and-Check Model

This section describes the branch-and-price-and-check (BPC) approach to the VRPLC. The
BPC algorithm builds upon the ideas of the branch-and-cut-and-price model of the PDPTW by
Røpke and Cordeau (2009), which employs column generation to produce routes, and separation
subproblems to find cuts that forbid certain classes of infeasible routes. Although branch-and-
price itself can solve the problem, the various families of cuts add problem-specific knowledge
and greatly improve convergence. In other words, these cuts are implied cuts, as discussed in
Section 2.3.2, since they are not necessary to correctly formulate the problem.

The BPC model follows a similar approach; the difference is that the cuts generated by the
separation subproblem enforce the location resource constraints. These cuts are problem cuts,
not implied cuts, since they are necessary to solve the problem correctly, and they do not appear
elsewhere in the problem. In this sense, BPC integrates Benders decomposition/branch-and-
check into a branch-and-price framework.

Implied cuts and problem cuts are previously discussed in Section 2.3.2, and Benders de-
composition is introduced in Section 2.6.4. The rest of this section is organized as follows.
Sections 4.5.1 to 4.5.3 introduce the master, pricing and separation problems. Section 4.5.4
discusses the search tree and branching rules.

4.5.1 The Master Problem

The (restricted) master problem, depicted in Figure 4.5, is the linear relaxation of the Set
Partitioning problem, which is commonly seen in column generation models of vehicle routing
problems. The Set Partitioning problem selects a subset of routes from a main pool Ω of routes
such that this subset satisfies certain constraints. The variable xr ∈ [0, 1] denotes whether route
r ∈ Ω, with cost cr , is selected.

Objective Function (4.53) minimizes the total cost of the subset. Constraint (4.54) ensures
that all pickup requests are visited. The coefficient ai,r is equal to 1 if route r visits request i ∈ 𝒫
and is equal to 0 otherwise. The constraint that every request is picked up and delivered on
the same route appears in the pricing subproblem; hence, the requirement that all deliveries
are fulfilled is satisfied by Constraint (4.54). Constraint (4.55) imposes the nogood cuts. Every
nogood cut has an associated set B of arcs and a coefficient Br that denotes the number of arcs
in B that are traversed by route r . When a set of routes is determined to be infeasible by the
separation subproblem, one nogood cut is added to the master problem, with B containing the
arcs traversed by the routes in this set. Hence, the nogood cut prohibits this set of routes by
allowing at most |B| − 1 of their arcs to be used in any feasible solution.

4.5.2 The Pricing Subproblem

The pricing subproblem solves an elementary resource-constrained shortest path problem to
generate routes to add toΩ. It implements a labeling algorithm (e.g., Deo and Pang 1984, Nemani
and Ahuja 2011) seen in many vehicle routing problems (e.g., Dumas, Desrosiers and Soumis
1991, Irnich and Desaulniers 2005, Røpke and Cordeau 2009). Each route must:

4.5. The Branch-and-Price-and-Check Model 117

min∑
r∈Ω

crxr (4.53)

subject to

∑
r∈Ω

ai,rxr = 1 ∀i ∈ 𝒫, (4.54)

∑
r∈Ω

Brxr ≤ |B| − 1 ∀B ∈ ℬ, (4.55)

xr ∈ [0, 1] ∀r ∈ Ω. (4.56)

Figure 4.5: The master problem of the branch-and-price-and-check model.

1. leave the start node, visit a number of requests, and terminate at the end node,

2. satisfy the service start time window, travel time, load and pickup-delivery constraints,
and

3. have negative cost with respect to the reduced cost matrix ̄d i,j , which is defined as

̄d i,j =
⎧

⎨
⎩

di,j − πi +∑
B∈ℬ

1B,i,jμB ∀i ∈ 𝒫, j ∈ 𝒩,

di,j +∑
B∈ℬ

1B,i,jμB ∀i ∈ 𝒩 ⧵ 𝒫, j ∈ 𝒩,

where 𝒫 is the set of pickups, 𝒩 is the set of all nodes (pickups, deliveries, one start node
and one end node), di,j is the distance cost from i ∈ 𝒩 to j ∈ 𝒩, πi is the dual value of
Constraint (4.54), 1B,i,j is equal to 1 if the arc (i, j) appears in B and is equal to 0 otherwise,
and μB is the dual value of Constraint (4.55).

The labeling algorithm begins with a label at the start node. This label represents a subpath
consisting of only the start node. The label is then extended to each pickup node in turn, giving
subpaths that consist of the start node and one pickup node. Provided that these subpaths
are feasible with respect to the constraints mentioned above, their corresponding labels are
extended to other nodes. This process is repeated until a number of subpaths reach the end
node within some given time limit.

Solving the pricing subproblem using this labeling algorithm is equivalent to solving the
mixed integer program in Figure 4.2 without Constraint (4.7) and with ̄d i,j in place of di,j for an
unspecified vehicle v .

4.5.3 The Separation Subproblem

This section describes the separation subproblem for both service and presence resource con-
straints. The subproblem is modeled using constraint programing and contains similar con-
straints to those in the constraint programming model.

118 Chapter 4. The Vehicle Routing Problem with Location Congestion

Name Description

T ∈ {1, … ,∞} Time horizon.
𝒯 = {0, … , T } Set of time values.
V ∈ {1, … ,∞} Number of vehicles.
R ∈ {1, … ,∞} Total number of requests.
ℛ = {1, … , R} Set of all requests.
𝒮 = {R + 1,… , R + V } Set of vehicle start nodes.
ℰ = {R + V + 1,… , R + 2V } Set of vehicle end nodes.
𝒩 = ℛ ∪ 𝒮 ∪ ℰ Set of all nodes.
L ∈ {1, … ,∞} Number of locations, excluding the depot location.
ℒ = {1, … , L} Set of locations.
Cl ∈ {1, … ,∞} Resource capacity of location l ∈ ℒ.
ℛl = {i ∈ ℛ|l(i) = l} Requests at location l ∈ ℒ.
l(i) ∈ ℒ Location of i ∈ ℛ.
d(i, j) ∈ 𝒯 Distance and travel time from i ∈ 𝒩 to j ∈ 𝒩.
a(i) ∈ 𝒯 Earliest start of service at i ∈ 𝒩.
b(i) ∈ 𝒯 Latest start of service at i ∈ 𝒩.
t(i) ∈ 𝒯 Service duration of i ∈ 𝒩.
succ(i) ∈ ℛ ∪ ℰ Successor node of i ∈ ℛ ∪ 𝒮 in the routes of the master problem.

arr(i) ∈ 𝒯 Arrival time at i ∈ 𝒩.
serv(i) ∈ {a(i), … , b(i)} Start of service at i ∈ 𝒩.
dep(i) ∈ 𝒯 Departure time at i ∈ 𝒩.

Table 4.3: The data and decision variables in the separation subproblem.

Service Resources For the case of service resources, the constraints in the separation sub-
problem are extracted from the time and scheduling constraints of the constraint programming
model of the VRPLC. Table 4.3 lists the data and decision variables. The number V of vehicles
and the successor variables succ(⋅) are not decision variables; they are data variables fixed
according to the routes selected by the master problem. Figure 4.6 lists the constraints. The
decision variables are the arrival, service and departure times. Constraints (4.57) to (4.60) are
the time constraints and serve as task precedence constraints. Constraint (4.61) schedules the
resources.

Presence Resources Although it is possible to implement Constraint (4.52) in this subprob-
lem, it is more effective to preprocess the routes selected by the master program and introduce
the concept of a location visit to reduce the number of tasks in the subproblem. A location visit
starts when a vehicle arrives at a location and lasts until the vehicle departs from the location.
In other words, a location visit is a sequence of requests situated at one location. The start time
of a visit is the arrival time at the first request in the visit, and the end time is the departure
time at the last request in the visit. The requests in the visits are transferred to the subproblem
as data, but the arrival and departure times of the visits are variables.

The visits require additional data and decision variables, which are listed in Table 4.4.

4.5. The Branch-and-Price-and-Check Model 119

arr(i) ≤ serv(i) ∀i ∈ ℛ, (4.57)

serv(i) + t(i) ≤ dep(i) ∀i ∈ ℛ, (4.58)

arr(i) = serv(i) = dep(i) ∀i ∈ 𝒮 ∪ ℰ, (4.59)

dep(i) + d(i, succ(i)) = arr(succ(i)) ∀i ∈ ℛ ∪ 𝒮, (4.60)

Cumulative({serv(i)|i ∈ ℛl }, {t(i)|i ∈ ℛl }, 1,Cl) ∀l ∈ ℒ. (4.61)

Figure 4.6: The constraints of the separation subproblem for service resources.

Name Description

𝒦 Set of visits.
l(k) ∈ ℒ Location of visit k ∈ 𝒦.
𝒦l = {k ∈ 𝒦|l(k) = l} Set of visits to location l ∈ ℒ.
first(k) ∈ ℛ First request of the visit k ∈ 𝒦.
last(k) ∈ ℛ Last request of the visit k ∈ 𝒦.

start(k) ∈ 𝒯 Start time of visit k ∈ 𝒦.
end(k) ∈ 𝒯 End time of visit k ∈ 𝒦.
dur(k) ∈ 𝒯 Duration of visit k ∈ 𝒦.

Table 4.4: Additional data and decision variables for presence resources in the separation
subproblem.

The subproblem is shown in Figure 4.7. Constraints (4.62) to (4.65) are the time constraints.
Constraints (4.66) and (4.67) link the start and end times of a visit to the arrival and departure
times at the first and last requests of the visit. Constraint (4.68) calculates the duration of a visit,
and Constraint (4.69) is the cumulative resource constraint. Unlike for service resources, the
durations of the visits are variables.

4.5.4 The BPC Search Algorithm

This section presents the BPC algorithm, which integrates the components presented earlier.
The algorithm, described in Figure 4.8, begins by choosing an open node to solve (step 1). Nodes
are chosen using two alternating selection rules. The first rule chooses the node with the largest
number of flow variables fixed by branching, and the second rule selects the node with the
smallest lower bound. By alternating between these two node selection rules, the BPC algorithm
attempts to (1) find easy solutions by choosing nodes almost entirely fixed, giving the algorithm
good upper bounds in the early stages of the search, and (2) find better solutions that improve
substantially upon the current upper bound in the later stages.

In the chosen node, the BPC algorithm solves the master problem (step 2). If there is at
least one fractional route and the percentage change in the objective value over the past several
iterations does not exceed some value given as a parameter, the algorithm proceeds to branch

120 Chapter 4. The Vehicle Routing Problem with Location Congestion

arr(i) ≤ serv(i) ∀i ∈ ℛ, (4.62)

serv(i) + t(i) ≤ dep(i) ∀i ∈ ℛ, (4.63)

arr(i) = serv(i) = dep(i) ∀i ∈ 𝒮 ∪ ℰ, (4.64)

dep(i) + d(i, succ(i)) = arr(succ(i)) ∀i ∈ ℛ ∪ 𝒮, (4.65)

start(k) = arr(first(k)) ∀k ∈ 𝒦, (4.66)

end(k) = dep(last(k)) ∀k ∈ 𝒦, (4.67)

dur(k) = end(k) − start(k) ∀k ∈ 𝒦, (4.68)

Cumulative({start(k)|k ∈ 𝒦l }, {dur(k)|k ∈ 𝒦l }, 1,Cl) ∀l ∈ ℒ. (4.69)

Figure 4.7: Additional constraints for presence resources in the separation subproblem.

early (step 3), i.e., before the restricted master problem is solved to optimality, or equivalently,
prior to the pricing subproblem reporting that no routes with negative reduced cost exist (e.g.,
Lübbecke and Desrosiers 2005). Early branching can be beneficial because an optimal fractional
master problem solution is rarely useful and because fixing some arcs may fix other arcs by
reasoning about the load, time and pickup-delivery constraints.

If early branching is not completed, the algorithm then counts the number of integer
routes, i.e., routes r with xr = 1. If there are c > minl∈ℒ Cl integer routes, the BPC algorithm
solves the separation subproblem on these routes (step 4). It is unnecessary to solve the
separation subproblem if there are fewer than c integer xr variables as the location constraints
are automatically satisfied. Note that the solution to the master problemmay consist of fractional
values for some routes, but only the integer routes are transferred to the separation subproblem.

If no feasible schedule exists for these routes, a nogood cut is added to the master problem,
which is reoptimized. Otherwise, if all routes are integral, then the routes and the schedules
form a solution (step 5). Since the algorithm may iterate through this step multiple times in a
node, it is possible, though unlikely, that multiple solutions are found within one node.

The algorithm then proceeds to the pricing subproblem to generate new routes (step 6). If
new routes are found, they are added to the master problem, which is reoptimized. The node is
completed when no new routes are found.

Branching occurs if any route in the master problem is fractional and the node is not
suboptimal, i.e., the lower bound of the node is lower than the incumbent solution (step 7). The
BPC algorithm selects a fractional route r ′ = (i1, i2, … , in−1, in) of length n and creates n children,
in which certain arcs must or must not be used. The jth child, j = 1,… , n, corresponding to
the prefix (i1, i2, … , ij), has the edges (i1, i2), … , (ij−1, ij) present and the edge (ij , ij+1) absent.
This branching scheme is easily implemented by removing all incompatible edges in the graph
within the pricing subproblem and all incompatible routes in the master problem. Similar
branching rules have previously appeared in vehicle routing problems (e.g., Desrosiers, Soumis

4.6. Experimental Results 121

1. Node Selection: Select an open node, otherwise, terminate if no open nodes remain.
2. Master: Solve the master problem in Figure 4.5.
3. Early Branching: If there is at least one route r with 0 < xr < 1, and the percentage

change in the objective value has plateaued over the last several iterations, go to step 7.
4. Separation: If ∑r∈Ω(xr = 1) > minl∈ℒ Cl , solve the separation subproblem described in

Figure 4.6 (or Figure 4.7). If the separation subproblem is infeasible, generate a nogood
cut, and go back to step 2.

5. Feasible Solution: If all xr variables are integral, a feasible solution is found.
6. Pricing: Solve the pricing subproblem described in Section 4.5.2. If at least one new route

is generated, go back to step 2.
7. Branching: If the lower bound given by the master problem is less than the upper

bound, and there is at least one route r with 0 < xr < 1, select one such route r ′ =
(i1, i2, … , in−1, in). Create n open nodes, one for each (possibly empty or full) prefix of r .
In the open node corresponding to prefix (i1, i2, … , ij), require all edges in the prefix and
exclude the edge (ij , ij+1). Go to step 1.

Figure 4.8: The branch-and-price-and-check algorithm.

and Desrochers 1984, Dumas, Desrosiers and Soumis 1991) and traveling salesmen problems
(e.g., Bellmore and Malone 1971, Carpaneto and Toth 1980). The children nodes are added to
the set of open nodes.

4.6 Experimental Results

This section reports experimental results for the three approaches.

The Instances The algorithms are tested on three sets of randomly generated instances. The
time horizon is set at 100. Eight and eleven locations are generated on a Euclidean grid up to
40 units wide. Next, pickup-delivery pairs are generated and randomly distributed among the
locations. Service durations vary between 5 and 20, and load demands vary between 1 and 5.
The time windows of requests are randomly chosen. The requests are repeatedly generated
until 150 pickup-delivery pairs are feasible with respect to the time windows. Smaller instances
are created by randomly discarding some of the requests. Every instance is then duplicated
with a resource capacity of one to fifteen for every location. In total, there are 1,620 instances.

The Implementations The mixed integer programming model is solved using Gurobi. The
constraint programming model is solved using Chuffed. The master problem of the BPC model
is solved using Gurobi. The pricing subproblem is solved using a custom implementation of a
standard labeling algorithm. The separation subproblem is solved using Chuffed. The three
integrated models are also compared against a two-stage model to evaluate the feasibility of
sequential routing and scheduling. The sequential model is based on the BPC implementation.
It uses branch-and-price to find optimal vehicle routes that ignore the scheduling constraints in

122 Chapter 4. The Vehicle Routing Problem with Location Congestion

the first stage, and then schedules the vehicles on these routes in the second stage using the
separation subproblem. The two-stage model is only a heuristic since it does not explore the
entire search space. All four models are run for twelve hours on an Intel Xeon E5-2660 V3 CPU
at 2.6 GHz.

Summary of the Results All solutions for service resources are reported in Table 4.5 at the
end of this chapter on pages 126 to 130. The main findings are summarized as follows.

1. All three integrated models find optimal solutions to the instances with 10 pickup-delivery
requests. The CP and BPC models prove optimality to all of these instances while the MIP
formulation proves optimality to two of the three sets of instances. The two-stage model
finds all of the same optimal solution except the three instances with eight locations
and one resource at the locations because the optimal vehicle routes are infeasible with
respect to the scheduling constraints.

2. The BPCmodel continues to find optimal solutions to the instanceswith 15 pickup-delivery
requests, but the CP and MIP models begin to struggle. CP finds feasible solutions that
can be much worse than BPC, and MIP fails to even find feasible solution to many of
these instances. Nevertheless, CP proves optimality identically to BPC for the second set
of instances with eight locations, and MIP performs similarly for the same instance set
with eleven locations. TS fails to find feasible solutions to seven instances with one to
two resources because the optimal routes are infeasible with respect to the scheduling
constraints. Contrastingly, BPC proves optimality or infeasibility to these seven instances.
In particular, the routes for the instance with eight locations, fifteen request pairs and
one resource in the third set of instances is different to the routes of the instance with
two resources, despite having the same optimal value.

3. The BPC method finds optimal solutions to all but one of the feasible instances with
20 request pairs. On this instance, it closes the optimality gap to 0.6%. The CP model
performs significantly worse than BPC. However, it proves infeasibility to three of these
instances, which is one more than BPC. The MIP approach is also worse than BPC; it
finds very few feasible solutions. For the instances with 11 locations, 20 request pairs and
3, 5, 14 and 15 resources, MIP finds solutions known to be optimal but fails to close the
optimality gap. Since relaxing the scheduling constraints cannot invalidate a solution,
the same solution must be feasible for resource capacities greater than three. However,
the solver fails to explicitly find these solutions within the given time limit due to the
choices made by branching and/or the different dual solutions to the master problem.

4. Overall, there are 50 instances for which TS fails but BPC finds feasible solutions. Naturally,
these instances have tight scheduling constraints, which results in solutions with greater
optimal values or the same optimal value but with different routes.

5. BPC dominates TS up to 60 request pairs. Whenever TS is feasible, BPC finds the same or
better solutions, and proves their optimality or otherwise closes the optimality gap to
less than 0.8%.

6. TS finds better solutions than BPC to nine of the larger instances with 80 or more pickup-

4.6. Experimental Results 123

delivery pairs. This outcome occurs at the interface where BPC first finds feasible solutions
as the scheduling constraints relax, and it arises from the choices made by branching. In
BPC, the cuts induce different, and usually more, fractionalities, which lead the solver to
explore different areas of the search space by branching. As a result, BPC finds different
solutions to TS. Of course, some of these solutions are better and some are worse. This
effect will disappear if the solver is allowed to finish exploring the search tree beyond the
time limit. Nonetheless, BPC is only 0.5% worse on these nine instances.

7. BPC finds better solutions than TS on 18 instances. This, again, is due to the interaction
between the cuts and the branches chosen.

8. The CP model proves infeasibility to 69 of the instances, including some of the largest
with 150 pickup-delivery pairs. Having few resources and fixed task durations greatly
improves the propagation of the scheduling constraints, allowing the learning CP solver
to make strong deductions about the feasibility of the resource schedules.

9. The BPC model is able to prove infeasibility only to three of the smallest instances with
15 and 20 pairs of requests. The master problem in the BPC model has no knowledge
about the scheduling constraints, and therefore, must exclude an exponential number of
combinations of arcs before proving infeasibility.

10. The scheduling constraints in the MIP model are even weaker, leading it to not proving
infeasibility on any instance.

11. The objective values and the number of nogoods from the BPC solutions generally decrease
as the resource constraints are relaxed, allowing for some minor variation due to the
choices made by branching and the fixed time limit. This result indicates that the BPC
algorithm deals with looser capacity constraints effectively. It is able to schedule the
vehicles around the resources and maintain the same or similar routing.

12. The BPCmethod dominates the CP andMIPmodels on all instances except the 66 instances
for which CP proves infeasibility but BPC does not.

13. BPC finds feasible solutions to 695 of the 810 instances. On these instances, its average
optimality gap is 1.1%, and over 90% of these instances have 5.0% or smaller gap.

14. There are 46 instances for which no model proves feasibility or infeasibility.

The solutions for presence resources are shown in Table 4.6 on pages 135 to 139. Many of
the findings discussed in the previous analysis for service resources remain valid for presence
resources and are not repeated here. Several remarks are discussed below:

1. The performance of the four models are very similar to service resources. The models
cannot scale beyond similar instance sizes.

2. The trend of improving optimal values and fewer nogoods holds for presence resources
as for service resources.

3. The BPC method again dominates both the MIP and CP approaches besides the proofs of
infeasibility by the CP model.

4. BPC finds feasible solutions to 680 of the 810 instances. On these instances, its average
optimality gap is 1.1%, and over 91% of these instances have 5.0% or smaller gap.

124 Chapter 4. The Vehicle Routing Problem with Location Congestion

5. There are 51 instances for which BPC is feasible but TS is infeasible. There are 8 instances
for which TS is better than BPC. On these instances, BPC only performs 0.7% worse on
average. There are 21 instances for which TS is worse than BPC.

An obvious drawback of the BPC method compared to the CP model is that without the
scheduling constraints, or some relaxed form of the scheduling constraints, in the master
problem, it is unable to prove infeasibility prior to discovering an exponential number of cuts
forbidding all possible combinations of arcs.

The BPC model compares favorably against the two-stage approach. It dominates the
sequential method for almost all instances by finding the same or better solutions and by finding
solutions to the tighter instances for which the optimal vehicle routes found by the two-stage
method are infeasible with respect to the scheduling constraints. For the easier instances, BPC
generates no nogoods; therefore, it finds the same feasible solutions as TS, but unlike TS, BPC
guarantees their optimality. For a few of the largest instances, BPC performs worse than TS
due to the branching decisions. Given that TS is simply a heuristic, it is possible to run TS and
initialize the root node of BPC with the routes found by TS; thereby erasing this effect.

Overall, the results demonstrate that the BPC model outperforms both the mixed integer
programming and constraint programming models on almost all instances by finding better
solutions. The BPC approach nicely capitalizes on the orthogonal strengths of mathematical
programming and constraint programming by using column generation to produce routes and
dual bounds, and constraint programming to check the routes for feasibility of the resource
constraints.

4.7 Conclusion

This chapter presents the Vehicle Routing Problem with Location Congestion, which overlays
the Resource-Constrained Project Scheduling Problem on a traditional vehicle routing problem.
Two types of location resources are considered: service resources are used while requests are
in service, and presence resources are used whenever a vehicle is present at a location. The
problem is formulated as a mixed integer programming model, a constraint programming model,
a branch-and-price-and-check model and a sequential model. In the branch-and-price-and-check
model, the pricing subproblem generates routes for the master problem, and the separation
subproblem verifies the feasibility of the routes selected by the master problem against the
location resource constraints. In the sequential model, optimal vehicle routes ignoring the
scheduling constraints are first found and then fixed in the following scheduling stage.

Empirical results indicate that the branch-and-price-and-check approach finds optimal solu-
tions to instances with up to 160 requests (80 pickup-delivery pairs) and feasible solutions with
small optimality gaps to instances with up to 300 requests (150 pickup-delivery pairs). In general,
the branch-and-price-and-check method outperforms both the mixed integer programming and
constraint programming formulations, which are unable to consistently scale to instances larger
than ten pickup-delivery requests. The branch-and-price-and-check method also dominates
the sequential approach on almost all instances by finding the same or better solutions and

4.7. Conclusion 125

by finding feasible solutions to instances for which the two-stage method fails. The two-stage
method performs better than branch-and-price-and-check on a few of the large instances due to
the incomplete search conducted over the given time limit. Despite these minor shortcomings,
the branch-and-price-and-check method is the best performer overall.

A drawback of the branch-and-price-and-check model is that it does not explicitly contain
the scheduling constraints, and hence, must reason about the resources via the prohibition of
certain arcs. In contrast, the constraint programming model includes the scheduling constraints,
and therefore, can prove infeasibility rather quickly. The next chapter develops a technique
that remediates this limitation by further integrating the unique strengths of mathematical
programming and constraint programming.

126
C
hapter

4.
T
he

Vehicle
Routing

Problem
w
ith

Location
C
ongestion

Instance Set 1 Instance Set 2 Instance Set 3

TS MIP CP BPC TS MIP CP BPC TS MIP CP BPC

|ℒ| |𝒫| Cl UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG

8 10 1 – 146 146 0.0% 146 146 146 0.0% 27 – 249 249 0.0% 249 249 249 0.0% 72 – 84 44 47.6% 84 84 84 0.0% 11
2 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 56 29.1% 79 79 79 0.0% 0
3 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 53 32.9% 79 79 79 0.0% 0
4 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 61 22.8% 79 79 79 0.0% 0
5 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 55 30.4% 79 79 79 0.0% 0
6 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 57 27.8% 79 79 79 0.0% 0
7 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 57 27.8% 79 79 79 0.0% 0
8 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 54 31.6% 79 79 79 0.0% 0
9 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 53 32.9% 79 79 79 0.0% 0
10 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 56 29.1% 79 79 79 0.0% 0
11 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 56 29.1% 79 79 79 0.0% 0
12 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 56 29.1% 79 79 79 0.0% 0
13 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 56 29.1% 79 79 79 0.0% 0
14 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 56 29.1% 79 79 79 0.0% 0
15 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 58 26.6% 79 79 79 0.0% 0

11 10 1 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 62 26.2% 84 84 84 0.0% 0
2 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 64 23.8% 84 84 84 0.0% 0
3 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 67 20.2% 84 84 84 0.0% 0
4 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 64 23.8% 84 84 84 0.0% 0
5 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 62 26.2% 84 84 84 0.0% 0
6 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 62 26.2% 84 84 84 0.0% 0
7 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 64 23.8% 84 84 84 0.0% 0
8 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 65 22.6% 84 84 84 0.0% 0
9 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 63 25.0% 84 84 84 0.0% 0
10 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 65 22.6% 84 84 84 0.0% 0
11 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 64 23.8% 84 84 84 0.0% 0
12 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 63 25.0% 84 84 84 0.0% 0
13 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 65 22.6% 84 84 84 0.0% 0
14 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 64 23.8% 84 84 84 0.0% 0
15 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 65 22.6% 84 84 84 0.0% 0

Table 4.5: Solutions to the instances with service resources. The upper bound (UB), lower bound (LB), optimality gap (Gap) and the number of nogoods
(NG) are reported for each solver when available. The symbol × denotes a proof of infeasibility and values in bold indicate a proof of optimality.
(Continued on next page)

4.7.
C
onclusion

127

Instance Set 1 Instance Set 2 Instance Set 3

TS MIP CP BPC TS MIP CP BPC TS MIP CP BPC

|ℒ| |𝒫| Cl UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG

8 15 1 – – 45 – 204 196 196 0.0% 705 – – 170 – 359 359 359 0.0% 634 – – 24 – 150 118 118 0.0% 75
2 – – 47 – 212 180 180 0.0% 6 277 277 129 53.4% 277 277 277 0.0% 0 118 – 19 – 156 118 118 0.0% 0
3 179 – 44 – 208 179 179 0.0% 0 277 277 159 42.6% 277 277 277 0.0% 0 118 – 21 – 143 118 118 0.0% 0
4 179 208 46 77.9% 181 179 179 0.0% 0 277 277 204 26.4% 277 277 277 0.0% 0 118 – 21 – 175 118 118 0.0% 0
5 179 – 47 – 181 179 179 0.0% 0 277 277 137 50.5% 277 277 277 0.0% 0 118 – 19 – 175 118 118 0.0% 0
6 179 – 43 – 181 179 179 0.0% 0 277 277 210 24.2% 277 277 277 0.0% 0 118 133 23 82.7% 175 118 118 0.0% 0
7 179 – 48 – 181 179 179 0.0% 0 277 277 230 17.0% 277 277 277 0.0% 0 118 – 20 – 175 118 118 0.0% 0
8 179 191 45 76.4% 181 179 179 0.0% 0 277 277 206 25.6% 277 277 277 0.0% 0 118 – 24 – 175 118 118 0.0% 0
9 179 207 44 78.7% 181 179 179 0.0% 0 277 277 194 30.0% 277 277 277 0.0% 0 118 – 18 – 175 118 118 0.0% 0
10 179 – 47 – 181 179 179 0.0% 0 277 277 160 42.2% 277 277 277 0.0% 0 118 – 20 – 175 118 118 0.0% 0
11 179 186 46 75.3% 181 179 179 0.0% 0 277 277 160 42.2% 277 277 277 0.0% 0 118 – 22 – 175 118 118 0.0% 0
12 179 – 47 – 181 179 179 0.0% 0 277 277 159 42.6% 277 277 277 0.0% 0 118 – 16 – 175 118 118 0.0% 0
13 179 – 47 – 181 179 179 0.0% 0 277 277 162 41.5% 277 277 277 0.0% 0 118 – 20 – 175 118 118 0.0% 0
14 179 191 44 77.0% 181 179 179 0.0% 0 277 277 159 42.6% 277 277 277 0.0% 0 118 – 20 – 175 118 118 0.0% 0
15 179 199 44 77.9% 181 179 179 0.0% 0 277 277 191 31.0% 277 277 277 0.0% 0 118 – 20 – 175 118 118 0.0% 0

11 15 1 – 245 100 59.2% 234 223 223 0.0% 20 – – 374 – × × – – 74 – 124 42 66.1% 149 114 114 0.0% 290
2 219 227 77 66.1% 243 219 219 0.0% 0 302 302 302 0.0% 302 302 302 0.0% 0 107 – 45 – 161 107 107 0.0% 0
3 219 230 90 60.9% 272 219 219 0.0% 0 302 302 302 0.0% 302 302 302 0.0% 0 107 – 45 – 173 107 107 0.0% 0
4 219 227 93 59.0% 272 219 219 0.0% 0 302 302 302 0.0% 415 302 302 0.0% 0 107 – 44 – 173 107 107 0.0% 0
5 219 222 88 60.4% 272 219 219 0.0% 0 302 302 302 0.0% 415 302 302 0.0% 0 107 – 44 – 173 107 107 0.0% 0
6 219 235 96 59.1% 272 219 219 0.0% 0 302 302 302 0.0% 415 302 302 0.0% 0 107 – 41 – 173 107 107 0.0% 0
7 219 244 89 63.5% 272 219 219 0.0% 0 302 302 302 0.0% 415 302 302 0.0% 0 107 – 47 – 173 107 107 0.0% 0
8 219 258 92 64.3% 272 219 219 0.0% 0 302 302 302 0.0% 415 302 302 0.0% 0 107 – 44 – 173 107 107 0.0% 0
9 219 228 93 59.2% 272 219 219 0.0% 0 302 302 302 0.0% 415 302 302 0.0% 0 107 120 42 65.0% 173 107 107 0.0% 0
10 219 228 93 59.2% 272 219 219 0.0% 0 302 302 302 0.0% 415 302 302 0.0% 0 107 – 43 – 173 107 107 0.0% 0
11 219 228 93 59.2% 272 219 219 0.0% 0 302 302 302 0.0% 415 302 302 0.0% 0 107 – 44 – 173 107 107 0.0% 0
12 219 228 93 59.2% 272 219 219 0.0% 0 302 302 302 0.0% 415 302 302 0.0% 0 107 – 43 – 173 107 107 0.0% 0
13 219 228 92 59.6% 272 219 219 0.0% 0 302 302 302 0.0% 415 302 302 0.0% 0 107 143 42 70.6% 173 107 107 0.0% 0
14 219 228 92 59.6% 272 219 219 0.0% 0 302 302 302 0.0% 415 302 302 0.0% 0 107 143 42 70.6% 173 107 107 0.0% 0
15 219 219 102 53.4% 272 219 219 0.0% 0 302 302 302 0.0% 415 302 302 0.0% 0 107 – 43 – 173 107 107 0.0% 0

Table 4.5: Solutions to the instances with service resources. The upper bound (UB), lower bound (LB), optimality gap (Gap) and the number of nogoods
(NG) are reported for each solver when available. The symbol × denotes a proof of infeasibility and values in bold indicate a proof of optimality.
(Continued on next page)

128
C
hapter

4.
T
he

Vehicle
Routing

Problem
w
ith

Location
C
ongestion

Instance Set 1 Instance Set 2 Instance Set 3

TS MIP CP BPC TS MIP CP BPC TS MIP CP BPC

|ℒ| |𝒫| Cl UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG

8 20 1 – – 50 – × – 282 – 12,145 – – 107 – × × – – 6,377 – – 16 – 213 159 158 0.6% 6,669
2 – – 52 – 514 247 247 0.0% 115 – – 106 – 580 375 375 0.0% 1,087 148 – 17 – 282 148 148 0.0% 0
3 246 – 52 – 385 246 246 0.0% 0 369 – 110 – 580 369 369 0.0% 0 148 – 15 – 295 148 148 0.0% 0
4 246 – 51 – 410 246 246 0.0% 0 369 – 100 – 580 369 369 0.0% 0 148 – 18 – 268 148 148 0.0% 0
5 246 – 52 – 410 246 246 0.0% 0 369 – 116 – 457 369 369 0.0% 0 148 – 16 – 248 148 148 0.0% 0
6 246 – 53 – 410 246 246 0.0% 0 369 – 125 – 457 369 369 0.0% 0 148 – 19 – 248 148 148 0.0% 0
7 246 – 54 – 410 246 246 0.0% 0 369 – 132 – 457 369 369 0.0% 0 148 – 16 – 248 148 148 0.0% 0
8 246 – 53 – 410 246 246 0.0% 0 369 – 103 – 457 369 369 0.0% 0 148 – 18 – 248 148 148 0.0% 0
9 246 – 53 – 410 246 246 0.0% 0 369 – 113 – 457 369 369 0.0% 0 148 – 14 – 248 148 148 0.0% 0
10 246 – 50 – 410 246 246 0.0% 0 369 – 107 – 457 369 369 0.0% 0 148 – 17 – 248 148 148 0.0% 0
11 246 – 52 – 410 246 246 0.0% 0 369 – 102 – 457 369 369 0.0% 0 148 – 14 – 248 148 148 0.0% 0
12 246 – 52 – 410 246 246 0.0% 0 369 – 101 – 457 369 369 0.0% 0 148 – 18 – 248 148 148 0.0% 0
13 246 – 49 – 410 246 246 0.0% 0 369 – 100 – 459 369 369 0.0% 0 148 – 18 – 248 148 148 0.0% 0
14 246 – 52 – 410 246 246 0.0% 0 369 – 103 – 459 369 369 0.0% 0 148 – 17 – 248 148 148 0.0% 0
15 246 – 52 – 410 246 246 0.0% 0 369 – 103 – 459 369 369 0.0% 0 148 – 19 – 248 148 148 0.0% 0

11 20 1 – – 83 – 396 312 312 0.0% 8,390 – – 164 – × × – – 420 – – 27 – 281 147 147 0.0% 771
2 283 – 78 – 422 283 283 0.0% 0 – – 164 – 478 361 361 0.0% 26 143 – 27 – 287 143 143 0.0% 0
3 283 – 78 – 372 283 283 0.0% 0 359 359 183 49.0% 546 359 359 0.0% 0 143 – 27 – 265 143 143 0.0% 0
4 283 – 80 – 326 283 283 0.0% 0 359 376 207 44.9% 574 359 359 0.0% 0 143 – 26 – 244 143 143 0.0% 0
5 283 – 78 – 326 283 283 0.0% 0 359 359 202 43.7% 529 359 359 0.0% 0 143 – 28 – 244 143 143 0.0% 0
6 283 – 76 – 326 283 283 0.0% 0 359 393 174 55.7% 529 359 359 0.0% 0 143 – 27 – 244 143 143 0.0% 0
7 283 – 75 – 326 283 283 0.0% 0 359 – 130 – 529 359 359 0.0% 0 143 – 26 – 244 143 143 0.0% 0
8 283 – 77 – 326 283 283 0.0% 0 359 – 170 – 529 359 359 0.0% 0 143 – 32 – 244 143 143 0.0% 0
9 283 – 81 – 326 283 283 0.0% 0 359 – 154 – 529 359 359 0.0% 0 143 – 28 – 244 143 143 0.0% 0
10 283 – 78 – 326 283 283 0.0% 0 359 – 168 – 529 359 359 0.0% 0 143 – 26 – 244 143 143 0.0% 0
11 283 – 78 – 326 283 283 0.0% 0 359 361 165 54.3% 529 359 359 0.0% 0 143 – 27 – 244 143 143 0.0% 0
12 283 – 78 – 326 283 283 0.0% 0 359 – 141 – 529 359 359 0.0% 0 143 – 29 – 244 143 143 0.0% 0
13 283 – 78 – 326 283 283 0.0% 0 359 – 135 – 529 359 359 0.0% 0 143 – 28 – 244 143 143 0.0% 0
14 283 – 78 – 326 283 283 0.0% 0 359 359 168 53.2% 529 359 359 0.0% 0 143 – 26 – 244 143 143 0.0% 0
15 283 – 74 – 326 283 283 0.0% 0 359 359 168 53.2% 529 359 359 0.0% 0 143 – 27 – 244 143 143 0.0% 0

Table 4.5: Solutions to the instances with service resources. The upper bound (UB), lower bound (LB), optimality gap (Gap) and the number of nogoods
(NG) are reported for each solver when available. The symbol × denotes a proof of infeasibility and values in bold indicate a proof of optimality.
(Continued on next page)

4.7.
C
onclusion

129

Instance Set 1 Instance Set 2 Instance Set 3

TS MIP CP BPC TS MIP CP BPC TS MIP CP BPC

|ℒ| |𝒫| Cl UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG

8 30 1 – – 30 – × – 354 – 10,783 – – 83 – × – 514 – 35,636 – – 10 – × – 210 – 3,324
2 – – 30 – – 356 352 1.1% 8,985 – – 79 – – 594 514 13.5% 30,328 – – 8 – – 206 206 0.0% 1,468
3 351 – 30 – – 351 351 0.0% 0 517 – 80 – – 517 517 0.0% 0 204 – 8 – 460 204 204 0.0% 0
4 351 – 30 – – 351 351 0.0% 0 517 – 78 – – 517 517 0.0% 0 204 – 6 – – 204 204 0.0% 0
5 351 – 29 – – 351 351 0.0% 0 517 – 79 – – 517 517 0.0% 0 204 – 7 – – 204 204 0.0% 0
6 351 – 30 – – 351 351 0.0% 0 517 – 78 – – 517 517 0.0% 0 204 – 6 – – 204 204 0.0% 0
7 351 – 30 – – 351 351 0.0% 0 517 – 80 – – 517 517 0.0% 0 204 – 8 – – 204 204 0.0% 0
8 351 – 30 – – 351 351 0.0% 0 517 – 80 – – 517 517 0.0% 0 204 – 10 – – 204 204 0.0% 0
9 351 – 30 – – 351 351 0.0% 0 517 – 79 – – 517 517 0.0% 0 204 – 6 – – 204 204 0.0% 0
10 351 – 30 – – 351 351 0.0% 0 517 – 78 – – 517 517 0.0% 0 204 – 6 – – 204 204 0.0% 0
11 351 – 30 – – 351 351 0.0% 0 517 – 79 – – 517 517 0.0% 0 204 – 7 – – 204 204 0.0% 0
12 351 – 31 – – 351 351 0.0% 0 517 – 80 – – 517 517 0.0% 0 204 – 10 – – 204 204 0.0% 0
13 351 – 30 – – 351 351 0.0% 0 517 – 84 – – 517 517 0.0% 0 204 – 8 – – 204 204 0.0% 0
14 351 – 30 – – 351 351 0.0% 0 517 – 78 – – 517 517 0.0% 0 204 – 6 – – 204 204 0.0% 0
15 351 – 30 – – 351 351 0.0% 0 517 – 77 – – 517 517 0.0% 0 204 – 10 – – 204 204 0.0% 0

11 30 1 – – 63 – × – 383 – 17,216 – – 132 – × – 529 – 29,892 – – 20 – – – 184 – 4,995
2 387 – 64 – – 387 387 0.0% 124 – – 129 – 869 544 544 0.0% 14,011 184 – 11 – – 184 184 0.0% 0
3 387 – 62 – – 387 387 0.0% 0 – – 132 – – 538 538 0.0% 344 184 – 20 – 433 184 184 0.0% 0
4 387 – 63 – – 387 387 0.0% 0 536 – 132 – – 536 536 0.0% 0 184 – 21 – 426 184 184 0.0% 0
5 387 – 63 – – 387 387 0.0% 0 536 – 128 – 816 536 536 0.0% 0 184 – 10 – – 184 184 0.0% 0
6 387 – 63 – – 387 387 0.0% 0 536 – 129 – – 536 536 0.0% 0 184 – 8 – – 184 184 0.0% 0
7 387 – 62 – – 387 387 0.0% 0 536 – 130 – – 536 536 0.0% 0 184 – 22 – – 184 184 0.0% 0
8 387 – 62 – – 387 387 0.0% 0 536 – 130 – – 536 536 0.0% 0 184 – 20 – – 184 184 0.0% 0
9 387 – 63 – – 387 387 0.0% 0 536 – 132 – – 536 536 0.0% 0 184 – 20 – – 184 184 0.0% 0
10 387 – 62 – – 387 387 0.0% 0 536 – 127 – – 536 536 0.0% 0 184 – 20 – – 184 184 0.0% 0
11 387 – 64 – – 387 387 0.0% 0 536 – 130 – – 536 536 0.0% 0 184 – 11 – – 184 184 0.0% 0
12 387 – 64 – – 387 387 0.0% 0 536 – 30 – – 536 536 0.0% 0 184 – 20 – – 184 184 0.0% 0
13 387 – 64 – – 387 387 0.0% 0 536 – 35 – – 536 536 0.0% 0 184 – 20 – – 184 184 0.0% 0
14 387 – 64 – – 387 387 0.0% 0 536 – 130 – – 536 536 0.0% 0 184 – 6 – – 184 184 0.0% 0
15 387 – 63 – – 387 387 0.0% 0 536 – 130 – – 536 536 0.0% 0 184 – 10 – – 184 184 0.0% 0

Table 4.5: Solutions to the instances with service resources. The upper bound (UB), lower bound (LB), optimality gap (Gap) and the number of nogoods
(NG) are reported for each solver when available. The symbol × denotes a proof of infeasibility and values in bold indicate a proof of optimality.
(Continued on next page)

130
C
hapter

4.
T
he

Vehicle
Routing

Problem
w
ith

Location
C
ongestion

Instance Set 1 Instance Set 2 Instance Set 3

TS MIP CP BPC TS MIP CP BPC TS MIP CP BPC

|ℒ| |𝒫| Cl UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG

8 40 1 – – 16 – × – 426 – 17,780 – – 0 – × – 625 – 38,889 – – 0 – × – 237 – 4,164
2 – – 16 – – 503 428 14.9% 12,608 – – 8 – × – 625 – 37,803 – – 0 – – – 235 – 6,928
3 431 – 0 – – 431 431 0.0% 6 634 – 0 – – 634 634 0.0% 308 – – 0 – – 252 235 6.7% 2,254
4 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
5 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
6 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
7 431 – 5 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
8 431 – 16 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
9 431 – 6 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
10 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
11 431 – 14 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 3 – – 239 239 0.0% 0
12 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
13 431 – 10 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
14 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
15 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0

11 40 1 – – 32 – × – 505 – 2,773 – – 66 – × – 682 – 33,456 – – 0 – × – 236 – 11,685
2 – – 14 – – 551 496 10.0% 3,364 – – 54 – × – 682 – 33,474 – – 0 – – 238 238 0.0% 163
3 499 – 32 – – 499 499 0.0% 0 – – 56 – – 755 682 9.7% 22,868 238 – 0 – – 238 238 0.0% 1
4 499 – 38 – – 499 499 0.0% 0 – – 51 – – 716 688 3.9% 19,032 238 – 0 – – 238 238 0.0% 0
5 499 – 17 – – 499 499 0.0% 0 696 – 51 – – 696 696 0.0% 30 238 – 3 – – 238 238 0.0% 0
6 499 – 14 – – 499 499 0.0% 0 696 – 54 – – 696 696 0.0% 0 238 – 0 – – 238 238 0.0% 0
7 499 – 5 – – 499 499 0.0% 0 696 – 53 – – 696 696 0.0% 0 238 – 0 – – 238 238 0.0% 0
8 499 – 14 – – 499 499 0.0% 0 696 – 54 – – 696 696 0.0% 0 238 – 0 – – 238 238 0.0% 0
9 499 – 14 – – 499 499 0.0% 0 696 – 51 – – 696 696 0.0% 0 238 – 0 – – 238 238 0.0% 0
10 499 – 14 – – 499 499 0.0% 0 696 – 55 – – 696 696 0.0% 0 238 – 0 – – 238 238 0.0% 0
11 499 – 35 – – 499 499 0.0% 0 696 – 51 – – 696 696 0.0% 0 238 – 0 – – 238 238 0.0% 0
12 499 – 32 – – 499 499 0.0% 0 696 – 54 – – 696 696 0.0% 0 238 – 0 – – 238 238 0.0% 0
13 499 – 14 – – 499 499 0.0% 0 696 – 53 – – 696 696 0.0% 0 238 – 0 – – 238 238 0.0% 0
14 499 – 20 – – 499 499 0.0% 0 696 – 56 – – 696 696 0.0% 0 238 – 4 – – 238 238 0.0% 0
15 499 – 32 – – 499 499 0.0% 0 696 – 54 – – 696 696 0.0% 0 238 – 0 – – 238 238 0.0% 0

Table 4.5: Solutions to the instances with service resources. The upper bound (UB), lower bound (LB), optimality gap (Gap) and the number of nogoods
(NG) are reported for each solver when available. The symbol × denotes a proof of infeasibility and values in bold indicate a proof of optimality.
(Continued on next page)

4.7.
C
onclusion

131

Instance Set 1 Instance Set 2 Instance Set 3

TS MIP CP BPC TS MIP CP BPC TS MIP CP BPC

|ℒ| |𝒫| Cl UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG

8 60 1 – – 0 – × – 606 – 15,782 – – 0 – × – 903 – 31,754 – – 0 – × – 326 – 11,343
2 – – 0 – × – 603 – 12,807 – – 0 – × – 903 – 31,669 – – 0 – – – 325 – 7
3 – – 0 – – 690 606 12.2% 12,962 – – 0 – × – 903 – 31,754 – – 0 – – 403 326 19.1% 9,284
4 – – 0 – – 635 611 3.8% 1,883 – – 0 – – 992 913 8.0% 22,466 – – 0 – – 352 327 7.1% 746
5 619 – 0 – – 619 614 0.8% 232 922 – 0 – – 922 918 0.4% 1,604 332 – 0 – – 332 330 0.6% 9
6 619 – 0 – – 619 617 0.3% 0 922 – 0 – – 922 922 0.0% 394 332 – 0 – – 332 330 0.6% 0
7 619 – 0 – – 619 616 0.5% 0 922 – 0 – – 922 922 0.0% 1 332 – 0 – – 332 330 0.6% 0
8 619 – 0 – – 619 617 0.3% 0 922 – 0 – – 922 922 0.0% 0 332 – 0 – – 332 330 0.6% 0
9 619 – 0 – – 619 616 0.5% 0 922 – 0 – – 922 922 0.0% 0 332 – 0 – – 332 330 0.6% 0
10 619 – 0 – – 619 617 0.3% 0 922 – 0 – – 922 922 0.0% 0 332 – 0 – – 332 330 0.6% 0
11 619 – 0 – – 619 617 0.3% 0 922 – 0 – – 922 922 0.0% 0 332 – 0 – – 332 330 0.6% 0
12 619 – 0 – – 619 617 0.3% 0 922 – 0 – – 922 922 0.0% 0 332 – 0 – – 332 330 0.6% 0
13 619 – 0 – – 619 617 0.3% 0 922 – 0 – – 922 922 0.0% 0 332 – 0 – – 332 330 0.6% 0
14 619 – 0 – – 619 617 0.3% 0 922 – 0 – – 922 922 0.0% 0 332 – 0 – – 332 330 0.6% 0
15 619 – 0 – – 619 617 0.3% 0 922 – 0 – – 922 922 0.0% 0 332 – 0 – – 332 330 0.6% 0

11 60 1 – – 4 – × – 699 – 13,973 – – 0 – × – 985 – 27,952 – – 0 – × – 322 – 14,545
2 – – 4 – – – 699 – 17,424 – – 0 – × – 985 – 28,667 – – 0 – – – 322 – 2,378
3 – – 4 – – 746 704 5.6% 2,056 – – 0 – – – 985 – 26,176 324 – 0 – – 324 324 0.0% 0
4 706 – 4 – – 706 706 0.0% 0 – – 0 – – 1,049 988 5.8% 18,506 324 – 0 – – 324 324 0.0% 0
5 706 – 4 – – 706 706 0.0% 0 – – 0 – – 992 989 0.3% 7,556 324 – 0 – – 324 324 0.0% 0
6 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0
7 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0
8 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0
9 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0
10 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0
11 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0
12 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0
13 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0
14 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0
15 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0

Table 4.5: Solutions to the instances with service resources. The upper bound (UB), lower bound (LB), optimality gap (Gap) and the number of nogoods
(NG) are reported for each solver when available. The symbol × denotes a proof of infeasibility and values in bold indicate a proof of optimality.
(Continued on next page)

132
C
hapter

4.
T
he

Vehicle
Routing

Problem
w
ith

Location
C
ongestion

Instance Set 1 Instance Set 2 Instance Set 3

TS MIP CP BPC TS MIP CP BPC TS MIP CP BPC

|ℒ| |𝒫| Cl UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG

8 80 1 – – 0 – × – 746 – 3,171 – – 0 – × – 1,176 – 28,124 – – 0 – × – 390 – 2,865
2 – – 0 – × – 746 – 3,169 – – 0 – × – 1,176 – 27,082 – – 0 – – – 390 – 17
3 – – 0 – – – 746 – 13,897 – – 0 – × – 1,176 – 28,660 – – 0 – – – 391 – 2,730
4 – – 0 – – 845 755 10.7% 2,971 – – 0 – – – 1,176 – 28,040 393 – 0 – – 393 393 0.0% 111
5 794 – 0 – – 799 755 5.5% 1,903 – – 0 – – 1,370 1,182 13.7% 20,805 393 – 0 – – 393 393 0.0% 0
6 794 – 0 – – 795 761 4.3% 149 1,195 – 0 – – 1,195 1,182 1.1% 2,565 393 – 0 – – 393 393 0.0% 0
7 794 – 0 – – 794 762 4.0% 0 1,195 – 0 – – 1,194 1,184 0.8% 1,729 393 – 0 – – 393 393 0.0% 0
8 794 – 0 – – 794 762 4.0% 0 1,195 – 0 – – 1,195 1,184 0.9% 2,242 393 – 0 – – 393 393 0.0% 0
9 794 – 0 – – 794 762 4.0% 0 1,195 – 0 – – 1,195 1,186 0.8% 0 393 – 0 – – 393 393 0.0% 0
10 794 – 0 – – 794 762 4.0% 0 1,195 – 0 – – 1,195 1,186 0.8% 0 393 – 0 – – 393 393 0.0% 0
11 794 – 0 – – 794 762 4.0% 0 1,195 – 0 – – 1,195 1,186 0.8% 0 393 – 0 – – 393 393 0.0% 0
12 794 – 0 – – 794 762 4.0% 0 1,195 – 0 – – 1,195 1,186 0.8% 0 393 – 0 – – 393 393 0.0% 0
13 794 – 0 – – 794 762 4.0% 0 1,195 – 0 – – 1,195 1,186 0.8% 0 393 – 0 – – 393 393 0.0% 0
14 794 – 0 – – 794 762 4.0% 0 1,195 – 0 – – 1,195 1,186 0.8% 0 393 – 0 – – 393 393 0.0% 0
15 794 – 0 – – 793 763 3.8% 0 1,195 – 0 – – 1,195 1,186 0.8% 0 393 – 0 – – 393 393 0.0% 0

11 80 1 – – 4 – × – 876 – 8,763 – – 0 – × – 1,260 – 24,022 – – 0 – × – 411 – 10,388
2 – – 4 – × – 872 – 12,877 – – 0 – × – 1,260 – 25,102 – – 0 – – – 407 – 12
3 – – 4 – – – 875 – 9,282 – – 0 – × – 1,260 – 24,733 – – 0 – – – 410 – 780
4 – – 4 – – – 881 – 914 – – 0 – – – 1,260 – 25,974 413 – 0 – – 413 411 0.5% 184
5 883 – 4 – – 883 883 0.0% 32 – – 0 – – 1,340 1,260 6.0% 11,902 413 – 0 – – 413 412 0.2% 0
6 883 – 4 – – 883 883 0.0% 0 – – 0 – – 1,319 1,266 4.0% 5,011 413 – 0 – – 413 412 0.2% 0
7 883 – 4 – – 883 883 0.0% 0 – – 0 – – 1,312 1,269 3.3% 2,083 413 – 0 – – 413 412 0.2% 0
8 883 – 4 – – 883 883 0.0% 0 1,280 – 0 – – 1,280 1,270 0.8% 2,165 413 – 0 – – 413 412 0.2% 0
9 883 – 4 – – 883 883 0.0% 0 1,280 – 0 – – 1,280 1,272 0.6% 0 413 – 0 – – 413 412 0.2% 0
10 883 – 4 – – 883 883 0.0% 0 1,280 – 0 – – 1,280 1,272 0.6% 0 413 – 0 – – 413 412 0.2% 0
11 883 – 4 – – 883 883 0.0% 0 1,280 – 0 – – 1,280 1,272 0.6% 0 413 – 0 – – 413 412 0.2% 0
12 883 – 4 – – 883 883 0.0% 0 1,280 – 0 – – 1,280 1,272 0.6% 0 413 – 0 – – 413 412 0.2% 0
13 883 – 4 – – 883 883 0.0% 0 1,280 – 0 – – 1,280 1,272 0.6% 0 413 – 0 – – 413 412 0.2% 0
14 883 – 4 – – 883 883 0.0% 0 1,280 – 0 – – 1,280 1,272 0.6% 0 413 – 0 – – 413 411 0.5% 0
15 883 – 4 – – 883 883 0.0% 0 1,280 – 0 – – 1,280 1,272 0.6% 0 413 – 0 – – 413 412 0.2% 0

Table 4.5: Solutions to the instances with service resources. The upper bound (UB), lower bound (LB), optimality gap (Gap) and the number of nogoods
(NG) are reported for each solver when available. The symbol × denotes a proof of infeasibility and values in bold indicate a proof of optimality.
(Continued on next page)

4.7.
C
onclusion

133

Instance Set 1 Instance Set 2 Instance Set 3

TS MIP CP BPC TS MIP CP BPC TS MIP CP BPC

|ℒ| |𝒫| Cl UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG

8 100 1 – – 0 – × – 899 – 2,645 – – 0 – × – 1,454 – 26,079 – – 0 – × – 459 – 22,399
2 – – 0 – × – 902 – 18,689 – – 0 – × – 1,454 – 26,217 – – 0 – – – 459 – 20
3 – – 0 – – – 899 – 0 – – 0 – × – 1,454 – 26,633 – – 0 – – – 459 – 0
4 – – 0 – – – 904 – 1,789 – – 0 – × – 1,454 – 26,568 492 – 0 – – 493 462 6.3% 512
5 – – 0 – – 999 906 9.3% 950 – – 0 – – – 1,454 – 11 492 – 0 – – 492 464 5.7% 22
6 – – 0 – – 982 909 7.4% 111 – – 0 – – 1,603 1,462 8.8% 2,133 492 – 0 – – 486 464 4.5% 0
7 970 – 0 – – 970 910 6.2% 2 – – 0 – – 1,513 1,463 3.3% 2,927 492 – 0 – – 492 464 5.7% 0
8 970 – 0 – – 964 910 5.6% 0 1,504 – 0 – – 1,513 1,464 3.2% 874 492 – 0 – – 486 464 4.5% 0
9 970 – 0 – – 964 910 5.6% 0 1,504 – 0 – – 1,504 1,465 2.6% 0 492 – 0 – – 486 464 4.5% 0
10 970 – 0 – – 964 910 5.6% 0 1,504 – 0 – – 1,504 1,465 2.6% 0 492 – 0 – – 486 464 4.5% 0
11 970 – 0 – – 964 910 5.6% 0 1,504 – 0 – – 1,504 1,465 2.6% 0 492 – 0 – – 486 464 4.5% 0
12 970 – 0 – – 964 910 5.6% 0 1,504 – 0 – – 1,504 1,465 2.6% 0 492 – 0 – – 492 464 5.7% 0
13 970 – 0 – – 964 910 5.6% 0 1,504 – 0 – – 1,504 1,465 2.6% 0 492 – 0 – – 486 464 4.5% 0
14 970 – 0 – – 964 910 5.6% 0 1,504 – 0 – – 1,504 1,465 2.6% 0 492 – 0 – – 486 464 4.5% 0
15 970 – 0 – – 964 910 5.6% 0 1,504 – 0 – – 1,504 1,465 2.6% 0 492 – 0 – – 492 464 5.7% 0

11 100 1 – – 4 – × – 1,038 – 2,461 – – 0 – × – 1,535 – 24,071 – – 0 – × – 475 – 19,758
2 – – 4 – × – 1,038 – 2,454 – – 0 – × – 1,535 – 22,294 – – 0 – – – 475 – 3
3 – – 4 – – – 1,042 – 8,694 – – 0 – × – 1,535 – 23,391 – – 0 – – – 476 – 1,237
4 – – 4 – – 1,136 1,047 7.8% 747 – – 0 – – – 1,535 – 22,478 – – 0 – – – 476 – 1,240
5 1,060 – 4 – – 1,068 1,048 1.9% 1,239 – – 0 – – – 1,536 – 25,235 480 – 0 – – 479 477 0.4% 20
6 1,060 – 4 – – 1,060 1,051 0.8% 1 – – 0 – – 1,627 1,539 5.4% 2,141 480 – 0 – – 481 477 0.8% 0
7 1,060 – 4 – – 1,060 1,051 0.8% 0 1,585 – 0 – – 1,588 1,547 2.6% 2,364 480 – 0 – – 480 477 0.6% 0
8 1,060 – 4 – – 1,060 1,051 0.8% 0 1,585 – 0 – – 1,585 1,544 2.6% 3 480 – 0 – – 480 477 0.6% 0
9 1,060 – 4 – – 1,060 1,051 0.8% 0 1,585 – 0 – – 1,585 1,544 2.6% 0 480 – 0 – – 480 477 0.6% 0
10 1,060 – 4 – – 1,060 1,051 0.8% 0 1,585 – 0 – – 1,585 1,544 2.6% 0 480 – 0 – – 480 477 0.6% 0
11 1,060 – 4 – – 1,060 1,051 0.8% 0 1,585 – 0 – – 1,585 1,544 2.6% 0 480 – 0 – – 480 477 0.6% 0
12 1,060 – 4 – – 1,060 1,051 0.8% 0 1,585 – 0 – – 1,585 1,544 2.6% 0 480 – 0 – – 480 477 0.6% 0
13 1,060 – 4 – – 1,060 1,051 0.8% 0 1,585 – 0 – – 1,585 1,544 2.6% 0 480 – 0 – – 480 477 0.6% 0
14 1,060 – 4 – – 1,060 1,051 0.8% 0 1,585 – 0 – – 1,585 1,544 2.6% 0 480 – 0 – – 480 477 0.6% 0
15 1,060 – 4 – – 1,060 1,051 0.8% 0 1,585 – 0 – – 1,585 1,544 2.6% 0 480 – 0 – – 480 477 0.6% 0

Table 4.5: Solutions to the instances with service resources. The upper bound (UB), lower bound (LB), optimality gap (Gap) and the number of nogoods
(NG) are reported for each solver when available. The symbol × denotes a proof of infeasibility and values in bold indicate a proof of optimality.
(Continued on next page)

134
C
hapter

4.
T
he

Vehicle
Routing

Problem
w
ith

Location
C
ongestion

Instance Set 1 Instance Set 2 Instance Set 3

TS MIP CP BPC TS MIP CP BPC TS MIP CP BPC

|ℒ| |𝒫| Cl UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG

8 150 1 – – – – × – 1,280 – 14,611 – – – – × – 2,153 – 18,786 – – – – × – 0 – 3,281
2 – – – – × – 1,280 – 14,626 – – – – × – 2,153 – 18,777 – – – – × – 0 – 12
3 – – – – – – 1,280 – 14,715 – – – – × – 2,153 – 18,952 – – – – – – 0 – 1
4 – – – – – – 1,280 – 14 – – – – × – 2,153 – 18,992 – – – – – – 0 – 0
5 – – – – – – 1,280 – 0 – – – – – – 2,153 – 18,992 – – – – – – 619 – 843
6 – – – – – 1,441 1,284 10.9% 690 – – – – – – 2,153 – 0 667 – – – – 667 620 7.0% 0
7 – – – – – 1,391 1,285 7.6% 284 – – – – – – 2,153 – 0 667 – – – – 667 620 7.0% 0
8 1,364 – – – – 1,364 1,286 5.7% 1 – – – – – – 2,153 – 0 667 – – – – 667 620 7.0% 0
9 1,364 – – – – 1,364 1,286 5.7% 0 – – – – – – 2,153 – 0 667 – – – – 667 620 7.0% 0
10 1,364 – – – – 1,364 1,286 5.7% 0 – – – – – 2,245 2,157 3.9% 2,624 667 – – – – 667 620 7.0% 0
11 1,364 – – – – 1,364 1,286 5.7% 0 2,217 – – – – 2,217 2,160 2.6% 0 667 – – – – 667 620 7.0% 0
12 1,364 – – – – 1,364 1,286 5.7% 0 2,217 – – – – 2,217 2,160 2.6% 0 667 – – – – 667 620 7.0% 0
13 1,364 – – – – 1,364 1,286 5.7% 0 2,217 – – – – 2,217 2,160 2.6% 0 667 – – – – 667 620 7.0% 0
14 1,364 – – – – 1,364 1,286 5.7% 0 2,217 – – – – 2,217 2,160 2.6% 0 667 – – – – 667 620 7.0% 0
15 1,364 – – – – 1,364 1,286 5.7% 0 2,217 – – – – 2,217 2,160 2.6% 0 667 – – – – 667 620 7.0% 0

11 150 1 – – 0 – × – 1,435 – 3,612 – – 0 – × – 2,220 – 13,583 – – – – × – 0 – 13,118
2 – – 0 – × – 1,435 – 3,611 – – 0 – × – 2,220 – 13,559 – – – – × – 0 – 15
3 – – 0 – × – 1,435 – 3 – – 0 – × – 2,220 – 13,575 – – – – – – 0 – 0
4 – – 0 – – – 1,435 – 0 – – 0 – × – 2,220 – 13,887 – – – – – – 683 – 940
5 – – 0 – – 1,551 1,441 7.1% 692 – – 0 – – – 2,220 – 13,882 – – – – – – 683 – 863
6 1,506 – 0 – – 1,531 1,439 6.0% 579 – – 0 – – – 2,220 – 13,905 – – – – – – 684 – 206
7 1,506 – 0 – – 1,511 1,445 4.4% 0 – – 0 – – – 2,221 – 16,117 – – – – – 734 684 6.8% 77
8 1,506 – – – – 1,506 1,444 4.1% 0 – – 0 – – – 2,221 – 3,312 734 – – – – 734 684 6.8% 0
9 1,506 – 4 – – 1,506 1,444 4.1% 0 2,266 – 0 – – 2,266 2,222 1.9% 1,283 734 – – – – 734 684 6.8% 0
10 1,506 – 0 – – 1,506 1,444 4.1% 0 2,266 – – – – 2,266 2,223 1.9% 0 734 – – – – 734 684 6.8% 0
11 1,506 – 4 – – 1,506 1,444 4.1% 0 2,266 – 0 – – 2,266 2,223 1.9% 0 734 – – – – 734 684 6.8% 0
12 1,506 – 4 – – 1,506 1,444 4.1% 0 2,266 – 0 – – 2,266 2,223 1.9% 0 734 – – – – 734 684 6.8% 0
13 1,506 – 4 – – 1,506 1,444 4.1% 0 2,266 – 0 – – 2,266 2,223 1.9% 0 734 – – – – 734 684 6.8% 0
14 1,506 – 0 – – 1,506 1,445 4.1% 0 2,266 – 0 – – 2,266 2,223 1.9% 0 734 – – – – 734 684 6.8% 0
15 1,506 – 0 – – 1,506 1,445 4.1% 0 2,266 – 0 – – 2,266 2,223 1.9% 0 734 – – – – 734 684 6.8% 0

Table 4.5: Solutions to the instances with service resources. The upper bound (UB), lower bound (LB), optimality gap (Gap) and the number of nogoods
(NG) are reported for each solver when available. The symbol × denotes a proof of infeasibility and values in bold indicate a proof of optimality.

4.7.
C
onclusion

135

Instance Set 1 Instance Set 2 Instance Set 3

TS MIP CP BPC TS MIP CP BPC TS MIP CP BPC

|ℒ| |𝒫| Cl UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG

8 10 1 – 146 146 0.0% 146 146 146 0.0% 27 – 249 249 0.0% 249 249 249 0.0% 107 – 88 41 53.4% 84 84 84 0.0% 11
2 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 65 17.7% 79 79 79 0.0% 0
3 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 53 32.9% 79 79 79 0.0% 0
4 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 53 32.9% 79 79 79 0.0% 0
5 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 57 27.8% 79 79 79 0.0% 0
6 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 57 27.8% 79 79 79 0.0% 0
7 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 56 29.1% 79 79 79 0.0% 0
8 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 55 30.4% 79 79 79 0.0% 0
9 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 57 27.8% 79 79 79 0.0% 0
10 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 53 32.9% 79 79 79 0.0% 0
11 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 53 32.9% 79 79 79 0.0% 0
12 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 53 32.9% 79 79 79 0.0% 0
13 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 53 32.9% 79 79 79 0.0% 0
14 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 53 32.9% 79 79 79 0.0% 0
15 146 146 146 0.0% 146 146 146 0.0% 0 205 205 205 0.0% 205 205 205 0.0% 0 79 79 54 31.6% 79 79 79 0.0% 0

11 10 1 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 62 26.2% 84 84 84 0.0% 0
2 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 63 25.0% 84 84 84 0.0% 0
3 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 68 19.0% 84 84 84 0.0% 0
4 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 62 26.2% 84 84 84 0.0% 0
5 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 65 22.6% 84 84 84 0.0% 0
6 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 64 23.8% 84 84 84 0.0% 0
7 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 63 25.0% 84 84 84 0.0% 0
8 146 146 130 11.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 64 23.8% 84 84 84 0.0% 0
9 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 63 25.0% 84 84 84 0.0% 0
10 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 63 25.0% 84 84 84 0.0% 0
11 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 63 25.0% 84 84 84 0.0% 0
12 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 65 22.6% 84 84 84 0.0% 0
13 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 64 23.8% 84 84 84 0.0% 0
14 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 63 25.0% 84 84 84 0.0% 0
15 146 146 146 0.0% 146 146 146 0.0% 0 231 231 231 0.0% 231 231 231 0.0% 0 84 84 64 23.8% 84 84 84 0.0% 0

Table 4.6: Solutions to the instances with presence resources. The upper bound (UB), lower bound (LB), optimality gap (Gap) and the number of
nogoods (NG) are reported for each solver when available. The symbol × denotes a proof of infeasibility and values in bold indicate a proof of optimality.
(Continued on next page)

136
C
hapter

4.
T
he

Vehicle
Routing

Problem
w
ith

Location
C
ongestion

Instance Set 1 Instance Set 2 Instance Set 3

TS MIP CP BPC TS MIP CP BPC TS MIP CP BPC

|ℒ| |𝒫| Cl UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG

8 15 1 – – 47 – 239 206 206 0.0% 2,172 – – 160 – × × – – 1,367 – – 17 – 150 120 120 0.0% 119
2 – 192 59 69.3% 196 180 180 0.0% 6 277 277 173 37.5% 277 277 277 0.0% 0 118 – 26 – 151 118 118 0.0% 0
3 179 180 48 73.3% 196 179 179 0.0% 0 277 277 195 29.6% 277 277 277 0.0% 0 118 – 20 – 144 118 118 0.0% 0
4 179 186 52 72.0% 196 179 179 0.0% 0 277 277 204 26.4% 277 277 277 0.0% 0 118 – 19 – 144 118 118 0.0% 0
5 179 191 50 73.8% 196 179 179 0.0% 0 277 277 203 26.7% 277 277 277 0.0% 0 118 – 22 – 160 118 118 0.0% 0
6 179 – 51 – 196 179 179 0.0% 0 277 277 146 47.3% 277 277 277 0.0% 0 118 – 22 – 160 118 118 0.0% 0
7 179 191 49 74.3% 196 179 179 0.0% 0 277 277 188 32.1% 277 277 277 0.0% 0 118 – 23 – 160 118 118 0.0% 0
8 179 196 52 73.5% 196 179 179 0.0% 0 277 277 189 31.8% 277 277 277 0.0% 0 118 – 20 – 160 118 118 0.0% 0
9 179 194 49 74.7% 196 179 179 0.0% 0 277 277 177 36.1% 277 277 277 0.0% 0 118 – 21 – 160 118 118 0.0% 0
10 179 188 47 75.0% 196 179 179 0.0% 0 277 277 207 25.3% 277 277 277 0.0% 0 118 – 20 – 160 118 118 0.0% 0
11 179 205 52 74.6% 196 179 179 0.0% 0 277 277 207 25.3% 277 277 277 0.0% 0 118 – 19 – 160 118 118 0.0% 0
12 179 213 48 77.5% 196 179 179 0.0% 0 277 277 225 18.8% 277 277 277 0.0% 0 118 – 15 – 160 118 118 0.0% 0
13 179 220 49 77.7% 196 179 179 0.0% 0 277 277 213 23.1% 277 277 277 0.0% 0 118 – 19 – 160 118 118 0.0% 0
14 179 180 51 71.7% 196 179 179 0.0% 0 277 277 230 17.0% 277 277 277 0.0% 0 118 – 20 – 160 118 118 0.0% 0
15 179 – 45 – 196 179 179 0.0% 0 277 277 237 14.4% 277 277 277 0.0% 0 118 – 18 – 160 118 118 0.0% 0

11 15 1 – 244 63 74.2% 241 223 223 0.0% 20 – – 354 – × × – – 263 – – 44 – 157 114 114 0.0% 263
2 219 231 98 57.6% 248 219 219 0.0% 0 302 302 302 0.0% 302 302 302 0.0% 0 107 – 41 – 143 107 107 0.0% 0
3 219 230 93 59.6% 250 219 219 0.0% 0 302 302 302 0.0% 302 302 302 0.0% 0 107 – 42 – 147 107 107 0.0% 0
4 219 225 78 65.3% 250 219 219 0.0% 0 302 302 302 0.0% 302 302 302 0.0% 0 107 – 41 – 147 107 107 0.0% 0
5 219 225 92 59.1% 250 219 219 0.0% 0 302 302 302 0.0% 302 302 302 0.0% 0 107 – 45 – 147 107 107 0.0% 0
6 219 219 84 61.6% 250 219 219 0.0% 0 302 302 302 0.0% 302 302 302 0.0% 0 107 125 44 64.8% 147 107 107 0.0% 0
7 219 229 101 55.9% 250 219 219 0.0% 0 302 302 302 0.0% 302 302 302 0.0% 0 107 – 46 – 147 107 107 0.0% 0
8 219 248 102 58.9% 250 219 219 0.0% 0 302 302 302 0.0% 302 302 302 0.0% 0 107 – 46 – 147 107 107 0.0% 0
9 219 219 95 56.6% 250 219 219 0.0% 0 302 302 302 0.0% 302 302 302 0.0% 0 107 – 44 – 147 107 107 0.0% 0
10 219 219 99 54.8% 250 219 219 0.0% 0 302 302 302 0.0% 302 302 302 0.0% 0 107 121 42 65.3% 147 107 107 0.0% 0
11 219 219 99 54.8% 250 219 219 0.0% 0 302 302 302 0.0% 302 302 302 0.0% 0 107 – 45 – 147 107 107 0.0% 0
12 219 219 98 55.3% 250 219 219 0.0% 0 302 302 302 0.0% 302 302 302 0.0% 0 107 126 44 65.1% 147 107 107 0.0% 0
13 219 219 98 55.3% 250 219 219 0.0% 0 302 302 302 0.0% 302 302 302 0.0% 0 107 – 42 – 147 107 107 0.0% 0
14 219 219 95 56.6% 250 219 219 0.0% 0 302 302 302 0.0% 302 302 302 0.0% 0 107 – 42 – 147 107 107 0.0% 0
15 219 240 102 57.5% 250 219 219 0.0% 0 302 302 302 0.0% 302 302 302 0.0% 0 107 – 42 – 147 107 107 0.0% 0

Table 4.6: Solutions to the instances with presence resources. The upper bound (UB), lower bound (LB), optimality gap (Gap) and the number of
nogoods (NG) are reported for each solver when available. The symbol × denotes a proof of infeasibility and values in bold indicate a proof of optimality.
(Continued on next page)

4.7.
C
onclusion

137

Instance Set 1 Instance Set 2 Instance Set 3

TS MIP CP BPC TS MIP CP BPC TS MIP CP BPC

|ℒ| |𝒫| Cl UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG

8 20 1 – – 51 – × – 259 – 19,850 – – 105 – × × – – 18,990 – – 14 – 228 161 156 3.1% 9,169
2 – – 53 – 477 247 247 0.0% 115 – – 119 – 580 375 375 0.0% 762 148 – 16 – 297 148 148 0.0% 0
3 246 – 51 – 449 246 246 0.0% 0 369 – 101 – 566 369 369 0.0% 0 148 – 16 – 293 148 148 0.0% 0
4 246 – 51 – 455 246 246 0.0% 0 369 – 99 – 448 369 369 0.0% 0 148 – 18 – 266 148 148 0.0% 0
5 246 – 55 – 437 246 246 0.0% 0 369 – 116 – 551 369 369 0.0% 0 148 – 18 – 243 148 148 0.0% 0
6 246 – 51 – 437 246 246 0.0% 0 369 – 95 – 551 369 369 0.0% 0 148 – 16 – 217 148 148 0.0% 0
7 246 – 51 – 437 246 246 0.0% 0 369 – 107 – 551 369 369 0.0% 0 148 – 18 – 242 148 148 0.0% 0
8 246 – 52 – 437 246 246 0.0% 0 369 – 127 – 551 369 369 0.0% 0 148 – 14 – 242 148 148 0.0% 0
9 246 – 52 – 437 246 246 0.0% 0 369 – 104 – 551 369 369 0.0% 0 148 – 17 – 242 148 148 0.0% 0
10 246 – 53 – 437 246 246 0.0% 0 369 – 120 – 551 369 369 0.0% 0 148 – 20 – 242 148 148 0.0% 0
11 246 – 53 – 437 246 246 0.0% 0 369 – 123 – 551 369 369 0.0% 0 148 – 17 – 242 148 148 0.0% 0
12 246 – 54 – 437 246 246 0.0% 0 369 – 106 – 551 369 369 0.0% 0 148 – 15 – 242 148 148 0.0% 0
13 246 – 52 – 437 246 246 0.0% 0 369 – 112 – 551 369 369 0.0% 0 148 – 15 – 242 148 148 0.0% 0
14 246 – 48 – 437 246 246 0.0% 0 369 – 105 – 551 369 369 0.0% 0 148 – 19 – 242 148 148 0.0% 0
15 246 – 52 – 437 246 246 0.0% 0 369 – 99 – 551 369 369 0.0% 0 148 – 17 – 242 148 148 0.0% 0

11 20 1 – – 81 – 374 321 308 4.0% 13,641 – – 153 – × × – – 7,966 – – 33 – 295 147 147 0.0% 984
2 283 – 79 – 403 283 283 0.0% 0 – – 188 – 564 361 361 0.0% 26 143 – 26 – 267 143 143 0.0% 0
3 283 – 82 – 449 283 283 0.0% 0 359 – 158 – 522 359 359 0.0% 0 143 – 29 – 290 143 143 0.0% 0
4 283 – 88 – 458 283 283 0.0% 0 359 – 164 – 551 359 359 0.0% 0 143 – 28 – 267 143 143 0.0% 0
5 283 – 75 – 458 283 283 0.0% 0 359 – 127 – 516 359 359 0.0% 0 143 – 28 – 247 143 143 0.0% 0
6 283 – 79 – 458 283 283 0.0% 0 359 359 176 51.0% 516 359 359 0.0% 0 143 – 31 – 247 143 143 0.0% 0
7 283 – 76 – 458 283 283 0.0% 0 359 – 128 – 516 359 359 0.0% 0 143 – 28 – 247 143 143 0.0% 0
8 283 – 75 – 458 283 283 0.0% 0 359 – 140 – 516 359 359 0.0% 0 143 – 29 – 247 143 143 0.0% 0
9 283 – 81 – 458 283 283 0.0% 0 359 – 152 – 516 359 359 0.0% 0 143 – 25 – 247 143 143 0.0% 0
10 283 – 79 – 458 283 283 0.0% 0 359 – 151 – 516 359 359 0.0% 0 143 – 36 – 247 143 143 0.0% 0
11 283 – 75 – 458 283 283 0.0% 0 359 – 166 – 516 359 359 0.0% 0 143 – 27 – 247 143 143 0.0% 0
12 283 – 79 – 458 283 283 0.0% 0 359 – 144 – 516 359 359 0.0% 0 143 – 27 – 247 143 143 0.0% 0
13 283 – 79 – 458 283 283 0.0% 0 359 – 155 – 516 359 359 0.0% 0 143 – 37 – 247 143 143 0.0% 0
14 283 – 80 – 458 283 283 0.0% 0 359 372 171 54.0% 516 359 359 0.0% 0 143 – 27 – 247 143 143 0.0% 0
15 283 – 80 – 458 283 283 0.0% 0 359 – 156 – 516 359 359 0.0% 0 143 – 28 – 247 143 143 0.0% 0

Table 4.6: Solutions to the instances with presence resources. The upper bound (UB), lower bound (LB), optimality gap (Gap) and the number of
nogoods (NG) are reported for each solver when available. The symbol × denotes a proof of infeasibility and values in bold indicate a proof of optimality.
(Continued on next page)

138
C
hapter

4.
T
he

Vehicle
Routing

Problem
w
ith

Location
C
ongestion

Instance Set 1 Instance Set 2 Instance Set 3

TS MIP CP BPC TS MIP CP BPC TS MIP CP BPC

|ℒ| |𝒫| Cl UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG

8 30 1 – – 30 – × – 348 – 16,505 – – 84 – × – 514 – 35,193 – – 7 – × – 207 – 2,952
2 – – 30 – – 356 352 1.1% 6,963 – – 78 – – 686 514 25.1% 30,880 – – 7 – – 239 204 14.6% 6,143
3 351 – 30 – 725 351 351 0.0% 0 517 – 78 – – 517 517 0.0% 0 – – 6 – – 205 205 0.0% 95
4 351 – 30 – – 351 351 0.0% 0 517 – 76 – – 517 517 0.0% 0 204 – 6 – – 204 204 0.0% 0
5 351 – 30 – – 351 351 0.0% 0 517 – 75 – – 517 517 0.0% 0 204 – 10 – – 204 204 0.0% 0
6 351 – 30 – – 351 351 0.0% 0 517 – 82 – – 517 517 0.0% 0 204 – 6 – – 204 204 0.0% 0
7 351 – 30 – – 351 351 0.0% 0 517 – 80 – – 517 517 0.0% 0 204 – 9 – – 204 204 0.0% 0
8 351 – 30 – – 351 351 0.0% 0 517 – 76 – – 517 517 0.0% 0 204 – 9 – – 204 204 0.0% 0
9 351 – 30 – – 351 351 0.0% 0 517 – 78 – – 517 517 0.0% 0 204 – 10 – – 204 204 0.0% 0
10 351 – 28 – – 351 351 0.0% 0 517 – 74 – – 517 517 0.0% 0 204 – 6 – – 204 204 0.0% 0
11 351 – 30 – – 351 351 0.0% 0 517 – 75 – – 517 517 0.0% 0 204 – 10 – – 204 204 0.0% 0
12 351 – 30 – – 351 351 0.0% 0 517 – 77 – – 517 517 0.0% 0 204 – 7 – – 204 204 0.0% 0
13 351 – 30 – – 351 351 0.0% 0 517 – 76 – – 517 517 0.0% 0 204 – 7 – – 204 204 0.0% 0
14 351 – 30 – – 351 351 0.0% 0 517 – 79 – – 517 517 0.0% 0 204 – 10 – – 204 204 0.0% 0
15 351 – 30 – – 351 351 0.0% 0 517 – 76 – – 517 517 0.0% 0 204 – 7 – – 204 204 0.0% 0

11 30 1 – – 63 – × – 383 – 7,617 – – 30 – × – 529 – 30,038 – – 21 – – – 183 – 6,821
2 387 – 62 – – 387 387 0.0% 124 – – 130 – – 544 544 0.0% 13,160 184 – 6 – – 184 184 0.0% 0
3 387 – 62 – – 387 387 0.0% 0 – – 131 – – 538 538 0.0% 344 184 – 21 – – 184 184 0.0% 0
4 387 – 62 – 798 387 387 0.0% 0 536 – 131 – – 536 536 0.0% 0 184 – 20 – – 184 184 0.0% 0
5 387 – 62 – 798 387 387 0.0% 0 536 – 131 – – 536 536 0.0% 0 184 – 20 – – 184 184 0.0% 0
6 387 – 62 – 798 387 387 0.0% 0 536 – 131 – – 536 536 0.0% 0 184 – 14 – – 184 184 0.0% 0
7 387 – 63 – 798 387 387 0.0% 0 536 – 32 – – 536 536 0.0% 0 184 – 10 – – 184 184 0.0% 0
8 387 – 62 – 798 387 387 0.0% 0 536 – 32 – – 536 536 0.0% 0 184 – 21 – – 184 184 0.0% 0
9 387 – 63 – 798 387 387 0.0% 0 536 – 132 – – 536 536 0.0% 0 184 – 20 – – 184 184 0.0% 0
10 387 – 62 – 798 387 387 0.0% 0 536 – 132 – – 536 536 0.0% 0 184 – 20 – – 184 184 0.0% 0
11 387 – 62 – 798 387 387 0.0% 0 536 – 133 – – 536 536 0.0% 0 184 – 10 – – 184 184 0.0% 0
12 387 – 62 – 798 387 387 0.0% 0 536 – 132 – – 536 536 0.0% 0 184 – 20 – – 184 184 0.0% 0
13 387 – 62 – 798 387 387 0.0% 0 536 – 132 – – 536 536 0.0% 0 184 – 20 – – 184 184 0.0% 0
14 387 – 62 – 798 387 387 0.0% 0 536 – 32 – – 536 536 0.0% 0 184 – 16 – – 184 184 0.0% 0
15 387 – 22 – 798 387 387 0.0% 0 536 – 132 – – 536 536 0.0% 0 184 – 20 – – 184 184 0.0% 0

Table 4.6: Solutions to the instances with presence resources. The upper bound (UB), lower bound (LB), optimality gap (Gap) and the number of
nogoods (NG) are reported for each solver when available. The symbol × denotes a proof of infeasibility and values in bold indicate a proof of optimality.
(Continued on next page)

4.7.
C
onclusion

139

Instance Set 1 Instance Set 2 Instance Set 3

TS MIP CP BPC TS MIP CP BPC TS MIP CP BPC

|ℒ| |𝒫| Cl UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG

8 40 1 – – 14 – × – 426 – 18,661 – – 0 – × – 625 – 36,911 – – 0 – × – 234 – 12,487
2 – – 0 – – – 427 – 8,693 – – 0 – × – 625 – 27,030 – – 0 – – – 235 – 3,647
3 431 – 0 – – 431 431 0.0% 6 – – 0 – – 645 625 3.1% 16,350 – – 0 – – 266 235 11.7% 2,353
4 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 – – 0 – – 239 238 0.4% 882
5 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
6 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
7 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
8 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
9 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
10 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
11 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
12 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
13 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
14 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0
15 431 – 0 – – 431 431 0.0% 0 634 – 0 – – 634 634 0.0% 0 239 – 0 – – 239 239 0.0% 0

11 40 1 – – 14 – × – 489 – 12,301 – – 50 – × – 682 – 32,708 – – 4 – × – 236 – 10,368
2 – – 14 – – 556 495 11.0% 6,782 – – 28 – × – 682 – 34,062 – – 0 – – 238 238 0.0% 250
3 499 – 14 – – 499 499 0.0% 0 – – 42 – – 772 682 11.7% 24,610 238 – 0 – – 238 238 0.0% 1
4 499 – 14 – – 499 499 0.0% 0 – – 28 – – 716 688 3.9% 20,026 238 – 0 – – 238 238 0.0% 0
5 499 – 4 – – 499 499 0.0% 0 696 – 40 – – 696 696 0.0% 30 238 – 0 – – 238 238 0.0% 0
6 499 – 5 – – 499 499 0.0% 0 696 – 28 – – 696 696 0.0% 0 238 – 2 – – 238 238 0.0% 0
7 499 – 14 – – 499 499 0.0% 0 696 – 49 – – 696 696 0.0% 0 238 – 0 – – 238 238 0.0% 0
8 499 – 14 – – 499 499 0.0% 0 696 – 34 – – 696 696 0.0% 0 238 – 0 – – 238 238 0.0% 0
9 499 – 14 – – 499 499 0.0% 0 696 – 56 – – 696 696 0.0% 0 238 – 0 – – 238 238 0.0% 0
10 499 – 14 – – 499 499 0.0% 0 696 – 36 – – 696 696 0.0% 0 238 – 0 – – 238 238 0.0% 0
11 499 – 14 – – 499 499 0.0% 0 696 – 44 – – 696 696 0.0% 0 238 – 0 – – 238 238 0.0% 0
12 499 – 14 – – 499 499 0.0% 0 696 – 45 – – 696 696 0.0% 0 238 – 0 – – 238 238 0.0% 0
13 499 – 14 – – 499 499 0.0% 0 696 – 42 – – 696 696 0.0% 0 238 – 0 – – 238 238 0.0% 0
14 499 – 14 – – 499 499 0.0% 0 696 – 40 – – 696 696 0.0% 0 238 – 0 – – 238 238 0.0% 0
15 499 – 14 – – 499 499 0.0% 0 696 – 41 – – 696 696 0.0% 0 238 – 0 – – 238 238 0.0% 0

Table 4.6: Solutions to the instances with presence resources. The upper bound (UB), lower bound (LB), optimality gap (Gap) and the number of
nogoods (NG) are reported for each solver when available. The symbol × denotes a proof of infeasibility and values in bold indicate a proof of optimality.
(Continued on next page)

140
C
hapter

4.
T
he

Vehicle
Routing

Problem
w
ith

Location
C
ongestion

Instance Set 1 Instance Set 2 Instance Set 3

TS MIP CP BPC TS MIP CP BPC TS MIP CP BPC

|ℒ| |𝒫| Cl UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG

8 60 1 – – 0 – × – 604 – 23,518 – – 0 – × – 903 – 30,509 – – 0 – × – 326 – 6,081
2 – – 0 – × – 606 – 18,480 – – 0 – × – 903 – 31,406 – – 0 – – – 326 – 13,068
3 – – 0 – – 700 607 13.3% 3,294 – – 0 – – – 903 – 33,219 – – 0 – – – 327 – 1,792
4 – – 0 – – 638 611 4.2% 2,062 – – 0 – – – 912 – 19,396 – – 0 – – 363 327 9.9% 1,048
5 619 – 0 – – 619 613 1.0% 273 922 – 0 – – 925 913 1.3% 8,769 – – 0 – – 348 327 6.0% 883
6 619 – 0 – – 619 617 0.3% 0 922 – 0 – – 922 918 0.4% 1,427 332 – 0 – – 332 330 0.6% 0
7 619 – 0 – – 619 616 0.5% 0 922 – 0 – – 922 922 0.0% 182 332 – 0 – – 332 330 0.6% 0
8 619 – 0 – – 619 617 0.3% 0 922 – 0 – – 922 922 0.0% 0 332 – 0 – – 332 330 0.6% 0
9 619 – 0 – – 619 617 0.3% 0 922 – 0 – – 922 922 0.0% 0 332 – 0 – – 332 330 0.6% 0
10 619 – 0 – – 619 617 0.3% 0 922 – 0 – – 922 922 0.0% 0 332 – 0 – – 332 330 0.6% 0
11 619 – 0 – – 619 617 0.3% 0 922 – 0 – – 922 922 0.0% 0 332 – 0 – – 332 330 0.6% 0
12 619 – 0 – – 619 618 0.2% 0 922 – 0 – – 922 922 0.0% 0 332 – 0 – – 332 330 0.6% 0
13 619 – 0 – – 619 618 0.2% 0 922 – 0 – – 922 922 0.0% 0 332 – 0 – – 332 330 0.6% 0
14 619 – 0 – – 619 617 0.3% 0 922 – 0 – – 922 922 0.0% 0 332 – 0 – – 332 330 0.6% 0
15 619 – 0 – – 619 618 0.2% 0 922 – 0 – – 922 922 0.0% 0 332 – 0 – – 332 330 0.6% 0

11 60 1 – – 4 – × – 699 – 15,099 – – 0 – × – 985 – 26,490 – – 0 – × – 322 – 14,559
2 – – 4 – – – 699 – 3,119 – – 0 – × – 985 – 27,884 – – 0 – – – 322 – 3,965
3 – – 4 – – 729 704 3.4% 2,418 – – 0 – – – 985 – 23,220 – – 0 – – 324 324 0.0% 119
4 706 – 4 – – 706 706 0.0% 0 – – 0 – – 1,049 988 5.8% 17,678 324 – 0 – – 324 324 0.0% 0
5 706 – 4 – – 706 706 0.0% 0 – – 0 – – 992 989 0.3% 7,205 324 – 0 – – 324 324 0.0% 0
6 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0
7 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0
8 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0
9 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0
10 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0
11 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0
12 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0
13 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0
14 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0
15 706 – 4 – – 706 706 0.0% 0 991 – 0 – – 991 991 0.0% 0 324 – 0 – – 324 324 0.0% 0

Table 4.6: Solutions to the instances with presence resources. The upper bound (UB), lower bound (LB), optimality gap (Gap) and the number of
nogoods (NG) are reported for each solver when available. The symbol × denotes a proof of infeasibility and values in bold indicate a proof of optimality.
(Continued on next page)

4.7.
C
onclusion

141

Instance Set 1 Instance Set 2 Instance Set 3

TS MIP CP BPC TS MIP CP BPC TS MIP CP BPC

|ℒ| |𝒫| Cl UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG

8 80 1 – – 0 – × – 746 – 3,216 – – 0 – × – 1,176 – 28,861 – – 0 – × – 390 – 14,770
2 – – 0 – × – 746 – 20,083 – – 0 – × – 1,176 – 28,390 – – 0 – – – 390 – 8,810
3 – – 0 – – – 746 – 16,948 – – 0 – × – 1,176 – 27,177 – – 0 – – – 391 – 1,219
4 – – 0 – – 866 754 12.9% 4,357 – – 0 – – – 1,176 – 29,646 393 – 0 – – 393 393 0.0% 111
5 – – 0 – – 811 757 6.7% 1,049 – – 0 – – – 1,180 – 25,328 393 – 0 – – 393 393 0.0% 0
6 794 – 0 – – 795 761 4.3% 210 – – 0 – – – 1,183 – 12,903 393 – 0 – – 393 393 0.0% 0
7 794 – 0 – – 794 762 4.0% 0 – – 0 – – 1,243 1,183 4.8% 5,410 393 – 0 – – 393 393 0.0% 0
8 794 – 0 – – 794 762 4.0% 0 1,195 – 0 – – 1,197 1,186 0.9% 928 393 – 0 – – 393 393 0.0% 0
9 794 – 0 – – 794 762 4.0% 0 1,195 – 0 – – 1,195 1,184 0.9% 421 393 – 0 – – 393 393 0.0% 0
10 794 – 0 – – 794 763 3.9% 0 1,195 – 0 – – 1,195 1,186 0.8% 0 393 – 0 – – 393 393 0.0% 0
11 794 – 0 – – 794 761 4.2% 0 1,195 – 0 – – 1,195 1,186 0.8% 0 393 – 0 – – 393 393 0.0% 0
12 794 – 0 – – 794 763 3.9% 0 1,195 – 0 – – 1,195 1,186 0.8% 0 393 – 0 – – 393 393 0.0% 0
13 794 – 0 – – 794 762 4.0% 0 1,195 – 0 – – 1,195 1,186 0.8% 0 393 – 0 – – 393 393 0.0% 0
14 794 – 0 – – 775 762 1.7% 0 1,195 – 0 – – 1,195 1,186 0.8% 0 393 – 0 – – 393 393 0.0% 0
15 794 – 0 – – 775 762 1.7% 0 1,195 – 0 – – 1,195 1,186 0.8% 0 393 – 0 – – 393 393 0.0% 0

11 80 1 – – 4 – × – 871 – 2,463 – – 0 – × – 1,260 – 24,496 – – 0 – × – 410 – 9,774
2 – – 4 – – – 872 – 14,985 – – 0 – × – 1,260 – 24,553 – – 0 – – – 410 – 3,488
3 – – 4 – – – 875 – 16,354 – – 0 – × – 1,260 – 24,637 – – 0 – – – 410 – 772
4 – – 4 – – 965 880 8.8% 2,201 – – 0 – – – 1,260 – 25,370 – – 0 – – 448 411 8.3% 464
5 883 – 4 – – 883 883 0.0% 338 – – 0 – – 1,450 1,260 13.1% 20,788 413 – 0 – – 413 411 0.5% 379
6 883 – 4 – – 883 883 0.0% 0 – – 0 – – – 1,266 – 7,696 413 – 0 – – 413 412 0.2% 0
7 883 – 4 – – 883 883 0.0% 0 – – 0 – – 1,315 1,267 3.7% 4,107 413 – 0 – – 413 412 0.2% 0
8 883 – 4 – – 883 883 0.0% 0 1,280 – 0 – – 1,281 1,271 0.8% 1,193 413 – 0 – – 413 412 0.2% 0
9 883 – 4 – – 883 883 0.0% 0 1,280 – 0 – – 1,280 1,274 0.5% 0 413 – 0 – – 413 412 0.2% 0
10 883 – 4 – – 883 883 0.0% 0 1,280 – 0 – – 1,280 1,272 0.6% 0 413 – 0 – – 413 412 0.2% 0
11 883 – 4 – – 883 883 0.0% 0 1,280 – 0 – – 1,280 1,272 0.6% 0 413 – 0 – – 413 412 0.2% 0
12 883 – 4 – – 883 883 0.0% 0 1,280 – 0 – – 1,280 1,272 0.6% 0 413 – 0 – – 413 412 0.2% 0
13 883 – 4 – – 883 883 0.0% 0 1,280 – 0 – – 1,280 1,272 0.6% 0 413 – 0 – – 413 412 0.2% 0
14 883 – 4 – – 883 883 0.0% 0 1,280 – 0 – – 1,280 1,272 0.6% 0 413 – 0 – – 413 412 0.2% 0
15 883 – 4 – – 883 883 0.0% 0 1,280 – 0 – – 1,280 1,272 0.6% 0 413 – 0 – – 413 412 0.2% 0

Table 4.6: Solutions to the instances with presence resources. The upper bound (UB), lower bound (LB), optimality gap (Gap) and the number of
nogoods (NG) are reported for each solver when available. The symbol × denotes a proof of infeasibility and values in bold indicate a proof of optimality.
(Continued on next page)

142
C
hapter

4.
T
he

Vehicle
Routing

Problem
w
ith

Location
C
ongestion

Instance Set 1 Instance Set 2 Instance Set 3

TS MIP CP BPC TS MIP CP BPC TS MIP CP BPC

|ℒ| |𝒫| Cl UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG

8 100 1 – – 0 – × – 902 – 10,416 – – 0 – × – 1,454 – 27,115 – – 0 – × – 459 – 10,591
2 – – 0 – × – 902 – 11,969 – – 0 – × – 1,454 – 26,938 – – 0 – – – 461 – 16,475
3 – – 0 – – – 902 – 15,531 – – 0 – × – 1,454 – 26,476 – – 0 – – – 462 – 1,105
4 – – 0 – – – 904 – 1,792 – – 0 – – – 1,454 – 27,561 492 – 0 – – 497 463 6.8% 372
5 – – 0 – – 1,007 906 10.0% 972 – – 0 – – – 1,454 – 27,020 492 – 0 – – 492 464 5.7% 22
6 – – 0 – – 982 909 7.4% 197 – – 0 – – – 1,456 – 19,567 492 – 0 – – 492 464 5.7% 0
7 970 – 0 – – 957 910 4.9% 4 – – 0 – – – 1,461 – 3,429 492 – 0 – – 486 464 4.5% 0
8 970 – 0 – – 964 910 5.6% 0 – – 0 – – – 1,459 – 299 492 – 0 – – 486 464 4.5% 0
9 970 – 0 – – 964 910 5.6% 0 – – 0 – – 1,513 1,463 3.3% 46 492 – 0 – – 486 464 4.5% 0
10 970 – 0 – – 970 910 6.2% 0 1,504 – 0 – – 1,504 1,462 2.8% 16 492 – 0 – – 486 464 4.5% 0
11 970 – 0 – – 958 910 5.0% 0 1,504 – 0 – – 1,504 1,465 2.6% 0 492 – 0 – – 492 464 5.7% 0
12 970 – 0 – – 958 907 5.3% 0 1,504 – 0 – – 1,504 1,465 2.6% 0 492 – 0 – – 486 464 4.5% 0
13 970 – 0 – – 957 910 4.9% 0 1,504 – 0 – – 1,504 1,465 2.6% 0 492 – 0 – – 486 464 4.5% 0
14 970 – 0 – – 958 910 5.0% 0 1,504 – 0 – – 1,504 1,465 2.6% 0 492 – 0 – – 486 462 4.9% 0
15 970 – 0 – – 958 910 5.0% 0 1,504 – 0 – – 1,504 1,465 2.6% 0 492 – 0 – – 492 464 5.7% 0

11 100 1 – – 4 – × – 1,038 – 8,505 – – 0 – × – 1,535 – 22,180 – – 0 – × – 475 – 19,951
2 – – 4 – × – 1,042 – 2,982 – – 0 – × – 1,535 – 22,159 – – 0 – – – 475 – 8,959
3 – – 4 – – – 1,040 – 9,742 – – 0 – × – 1,535 – 22,162 – – 0 – – – 476 – 1,149
4 – – 4 – – 1,185 1,046 11.7% 4,482 – – 0 – – – 1,535 – 22,267 – – 0 – – – 476 – 1,212
5 1,060 – 4 – – 1,083 1,047 3.3% 1,245 – – 0 – – – 1,535 – 22,225 480 – 0 – – 478 477 0.2% 23
6 1,060 – 4 – – 1,060 1,051 0.8% 47 – – 0 – – – 1,537 – 4,176 480 – 0 – – 478 477 0.2% 0
7 1,060 – 4 – – 1,060 1,051 0.8% 0 – – 0 – – 1,624 1,539 5.2% 2,162 480 – 0 – – 480 477 0.6% 0
8 1,060 – 4 – – 1,060 1,051 0.8% 0 1,585 – 0 – – 1,582 1,545 2.3% 2,548 480 – 0 – – 480 477 0.6% 0
9 1,060 – 4 – – 1,060 1,051 0.8% 0 1,585 – 0 – – 1,585 1,544 2.6% 3 480 – 0 – – 480 477 0.6% 0
10 1,060 – 4 – – 1,060 1,051 0.8% 0 1,585 – 0 – – 1,585 1,544 2.6% 0 480 – 0 – – 480 477 0.6% 0
11 1,060 – 4 – – 1,060 1,051 0.8% 0 1,585 – 0 – – 1,585 1,544 2.6% 0 480 – 0 – – 480 477 0.6% 0
12 1,060 – 4 – – 1,060 1,051 0.8% 0 1,585 – 0 – – 1,585 1,544 2.6% 0 480 – 0 – – 480 477 0.6% 0
13 1,060 – 4 – – 1,060 1,051 0.8% 0 1,585 – 0 – – 1,585 1,544 2.6% 0 480 – 0 – – 480 477 0.6% 0
14 1,060 – 4 – – 1,060 1,051 0.8% 0 1,585 – 0 – – 1,585 1,544 2.6% 0 480 – 0 – – 480 477 0.6% 0
15 1,060 – 4 – – 1,060 1,051 0.8% 0 1,585 – 0 – – 1,585 1,544 2.6% 0 480 – 0 – – 480 477 0.6% 0

Table 4.6: Solutions to the instances with presence resources. The upper bound (UB), lower bound (LB), optimality gap (Gap) and the number of
nogoods (NG) are reported for each solver when available. The symbol × denotes a proof of infeasibility and values in bold indicate a proof of optimality.
(Continued on next page)

4.7.
C
onclusion

143

Instance Set 1 Instance Set 2 Instance Set 3

TS MIP CP BPC TS MIP CP BPC TS MIP CP BPC

|ℒ| |𝒫| Cl UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG UB UB LB Gap UB UB LB Gap NG

8 150 1 – – – – × – 1,280 – 14,294 – – – – × – 2,153 – 18,698 – – – – × – 0 – 9,322
2 – – – – × – 1,280 – 14,471 – – – – × – 2,153 – 18,686 – – – – – – 0 – 2,982
3 – – – – × – 1,280 – 14,392 – – – – × – 2,153 – 18,504 – – – – – – 0 – 8,982
4 – – – – – – 1,283 – 8,329 – – – – × – 2,153 – 18,531 – – – – – – 0 – 2,227
5 – – – – – – 1,283 – 1,525 – – – – – – 2,153 – 20,621 – – – – – – 619 – 759
6 – – – – – 1,506 1,283 14.8% 656 – – – – – – 2,153 – 7,961 667 – – – – 667 620 7.0% 0
7 – – – – – – 1,283 – 1,438 – – – – – – 2,155 – 2,322 667 – – – – 667 620 7.0% 0
8 – – – – – 1,407 1,285 8.7% 375 – – – – – – 2,155 – 2,929 667 – – – – 667 620 7.0% 0
9 1,364 – – – – 1,364 1,285 5.8% 182 – – – – – – 2,156 – 3,017 667 – – – – 667 620 7.0% 0
10 1,364 – – – – 1,364 1,286 5.7% 0 – – – – – – 2,153 – 429 667 – – – – 667 620 7.0% 0
11 1,364 – – – – 1,364 1,286 5.7% 0 – – – – – – 2,153 – 286 667 – – – – 667 620 7.0% 0
12 1,364 – – – – 1,364 1,286 5.7% 0 – – – – – – 2,155 – 18 667 – – – – 667 620 7.0% 0
13 1,364 – – – – 1,364 1,286 5.7% 0 2,217 – – – – 2,206 2,155 2.3% 0 667 – – – – 667 620 7.0% 0
14 1,364 – – – – 1,364 1,286 5.7% 0 2,217 – – – – 2,217 2,160 2.6% 0 667 – – – – 667 620 7.0% 0
15 1,364 – – – – 1,364 1,286 5.7% 0 2,217 – – – – 2,217 2,160 2.6% 0 667 – – – – 667 620 7.0% 0

11 150 1 – – 0 – × – 1,435 – 3,596 – – 0 – × – 2,220 – 13,790 – – – – × – 0 – 14,792
2 – – 4 – × – 1,435 – 9,132 – – 0 – × – 2,220 – 13,840 – – – – × – 0 – 22,348
3 – – 4 – – – 1,439 – 5,639 – – 0 – × – 2,220 – 13,847 – – – – – – 683 – 984
4 – – 4 – – – 1,440 – 1,219 – – 0 – – – 2,220 – 13,830 – – – – – – 683 – 962
5 – – 0 – – – 1,440 – 1,268 – – 0 – – – 2,220 – 13,889 – – – – – – 683 – 842
6 1,506 – 4 – – 1,533 1,441 6.0% 737 – – 0 – – – 2,220 – 13,930 – – – – – – 684 – 212
7 1,506 – 0 – – 1,506 1,442 4.2% 321 – – – – – – 2,220 – 13,916 – – – – – 736 683 7.2% 599
8 1,506 – 4 – – 1,506 1,444 4.1% 0 – – 0 – – – 2,220 – 4,821 734 – – – – 734 684 6.8% 0
9 1,506 – 4 – – 1,506 1,444 4.1% 0 – – 0 – – 2,285 2,221 2.8% 952 734 – – – – 734 684 6.8% 0
10 1,506 – 4 – – 1,506 1,444 4.1% 0 2,266 – 0 – – 2,269 2,223 2.0% 2,141 734 – – – – 734 684 6.8% 0
11 1,506 – 4 – – 1,506 1,445 4.1% 0 2,266 – 0 – – 2,266 2,223 1.9% 0 734 – – – – 734 684 6.8% 0
12 1,506 – 4 – – 1,506 1,445 4.1% 0 2,266 – 0 – – 2,266 2,223 1.9% 0 734 – – – – 734 684 6.8% 0
13 1,506 – 0 – – 1,506 1,444 4.1% 0 2,266 – – – – 2,266 2,223 1.9% 0 734 – – – – 734 684 6.8% 0
14 1,506 – 4 – – 1,506 1,445 4.1% 0 2,266 – – – – 2,266 2,223 1.9% 0 734 – – – – 734 684 6.8% 0
15 1,506 – 4 – – 1,506 1,445 4.1% 0 2,266 – 0 – – 2,266 2,223 1.9% 0 734 – – – – 734 684 6.8% 0

Table 4.6: Solutions to the instances with presence resources. The upper bound (UB), lower bound (LB), optimality gap (Gap) and the number of nogoods
(NG) are reported for each solver when available. The symbol × denotes a proof of infeasibility and values in bold indicate a proof of optimality.

Chapter 5

Branch-and-Check with
Explanations

Strong objective bounds are necessary for pruning large sections of the search space in hard
optimization problems. The linear relaxation bounds in mixed integer programming are gen-
erally stronger than the bounds found by propagators in constraint programming because
propagators usually have a narrow view of the problem (e.g., Focacci, Lodi and Milano 1999,
Hooker 2006, Milano 2010), whereas the constraints in a linear relaxation can directly influence
the objective function via elementary row operations. Even though constraint programming
lacks strong bounds (e.g., Benchimol et al. 2012, Focacci, Lodi and Milano 2002, 2004), it excels
at finding feasible solutions in satisfaction problems (e.g., Milano 2010), and particularly, in
scheduling problems (e.g., Schutt et al. 2009, 2010, 2013). The previous chapter shows that
it is possible to take advantage of the distinct strengths of mixed integer programming and
constraint programming by hybridization. This concept is developed further in the present
chapter.

This chapter proposes an exact method named branch-and-check with explanations (BCE).
BCE represents an optimization problem in terms of amaster problem and a checking subproblem.
Themaster problem is amixed integer program that ignores a number of difficult constraints. The
feasibility of these constraints is checked in the constraint programming checking subproblem.
More precisely, BCE uses constraint programming for three purposes: (1) to fix variables in the
master problem through propagation and inference, (2) to generate cuts in the master problem
via conflict analysis, and (3) to probe the feasibility of candidate solutions from the linear
relaxation and to derive additional cuts through conflict analysis if the probing fails. Hence,
the constraint programming model can be viewed, in some way, as equivalent to an advanced
separation algorithm and primal heuristic in conventional branch-and-cut.

BCE opens some interesting opportunities unavailable in branch-and-cut. First, it has the
advantage of relying on a general-purpose constraint programming engine for inference and cut
separation, bypassing the need for problem-specific separation algorithms. Second, it permits

As described in the Preface, the main findings of this chapter are published in the paper titled “Branch-and-Check
with Explanations for the Vehicle Routing Problem with Time Windows”.

145

146 Chapter 5. Branch-and-Check with Explanations

conflict-based branching rules in addition to traditional branching rules (e.g., fractional or
pseudo-cost branching). Finally, BCE can recognize special classes of cuts after conflict analysis
and then strengthen them using well-known techniques from the mathematical programming
literature. As a result, BCE offers a natural integration of not only mathematical programming
and constraint programming but also Boolean satisfiability via conflict analysis.

The BCEmethod is evaluated on the Vehicle Routing Problemwith TimeWindows (VRPTW).
Experimental results indicate that BCE outperforms a branch-and-cut algorithm: it proves op-
timality on more instances and finds significantly better solutions to instances for which branch-
and-cut cannot prove optimality. The results also show that a conflict-based branching rule is
particularly effective in BCE and that cut strengthening produces interesting improvements to
the lower bounds.

The rest of this chapter is structured as follows. Section 5.1 formalizes the BCE method for
the VRPTW. Section 5.2 discusses several cut strengthenings. Section 5.3 presents experimental
results that compare the BCE model of the VRPTW to the branch-and-cut model. Section 5.4
discusses limitations and potential improvements of the BCE approach for the VRPTW and the
relevance of BCE to branch-and-price. Section 5.5 presents concluding remarks.

5.1 The Branch-and-Check Model of the VRPTW

This section proposes the BCE model of the VRPTW. The model is organized around a mixed
integer programming master problem and a constraint programming checking subproblem.

The Master Problem The master problem is the standard two-index flow model mentioned
in Section 2.7. Its data and decision variables are listed in Table 5.1. The problem is modeled
over a time interval 𝒯 = [0, T], where T > 0. It contains an unlimited number of vehicles with
capacity Q ≥ 0. The set 𝒬 = [0,Q] denotes the range of vehicle load. The vehicles need to
service R requests, which are grouped in the set ℛ = {1, … , R}. The set 𝒩 = ℛ ∪ {s, e} represents
the nodes of the underlying graph, which has a node for each request i ∈ ℛ and two additional
nodes denoting the start depot s = 0 and end depot e = R + 1. The nodes in the underlying
graph are connected by the arcs

𝒜 = {(s, i)|i ∈ ℛ} ∪ {(i, j)|i, j ∈ ℛ, i ≠ j, ai + ti,j ≤ bj , qi + qj ≤ Q} ∪ {(i, e)|i ∈ ℛ}. (5.1)

Each arc (i, j) ∈ 𝒜 has an associated cost ci,j ∈ ℤ+ and travel time ti,j ∈ 𝒯. Each request i ∈ ℛ
has a vehicle load demand qi ∈ 𝒬, while the start and end nodes have zero demand, i.e., qs = 0
and qe = 0. Each node i ∈ 𝒩 has an earliest start time of service ai ∈ 𝒯 and latest start time of
service bi ∈ 𝒯, with as = bs = 0 and ae = be = T . The service durations of the requests, which
are present in the models from the previous chapters, are unnecessary in this model as they can
be folded into the travel times. The xi,j ∈ {0, 1} decision variable indicates if a vehicle traverses
the arc (i, j) ∈ 𝒜.

The initial constraints of the model are shown in Figure 5.1. Objective Function (5.2)
minimizes the total travel distance. Constraints (5.3) and (5.4) require every request to be visited

5.1. The Branch-and-Check Model of the VRPTW 147

Name Description

T > 0 Time horizon.
𝒯 = [0, T] Time interval.
Q ≥ 0 Vehicle capacity.
𝒬 = [0,Q] Range of vehicle load.
R ∈ {1, … ,∞} Number of requests.
ℛ = {1, … , R} Set of requests.
s = 0 Start node.
e = R + 1 End node.
𝒩 = ℛ ∪ {s, e} Set of all nodes.
𝒜 Arcs of the network. Defined in Equation (5.1).
ci,j ∈ ℤ+ Distance cost along arc (i, j) ∈ 𝒜.
ti,j ∈ 𝒯 Travel time along arc (i, j) ∈ 𝒜.
qi ∈ 𝒬 Vehicle load demand of i ∈ 𝒩.
ai ∈ 𝒯 Earliest service start time at i ∈ 𝒩.
bi ∈ 𝒯 Latest service start time at i ∈ 𝒩.

xi,j ∈ {0, 1} Decision variable indicating if a vehicle traverses (i, j) ∈ 𝒜.

Table 5.1: The data and decision variables of the mixed integer programming master problem.

exactly once. Notice that the subtour elimination, vehicle capacity and time window constraints
are omitted from the master problem.

The Checking Subproblem The decision variables of the constraint programming model are
listed in Table 5.2. Instead of successor and predecessor variables commonly seen in constraint
programming models of vehicle routing problems, the checking subproblem uses the yi,j ∈ {0, 1}
variable to indicate whether a vehicle traverses the arc (i, j) ∈ 𝒜. Using these binary variables
provides a one-to-one mapping between the y variables and the x variables of the master
problem. The li ∈ [qi ,Q] ⊆ 𝒬 and ti ∈ [ai , bi] ⊆ 𝒯 variables respectively contain the vehicle load
and time at request i ∈ 𝒩.

min∑
(i,j)∈𝒜

ci,jxi,j (5.2)

subject to

∑
h∶(h,i)∈𝒜

xh,i = 1 ∀i ∈ ℛ, (5.3)

∑
j∶(i,j)∈𝒜

xi,j = 1 ∀i ∈ ℛ. (5.4)

Figure 5.1: Initial constraints of the mixed integer programming master problem.

148 Chapter 5. Branch-and-Check with Explanations

Name Description

yi,j ∈ {0, 1} Decision variable indicating if a vehicle traverses (i, j) ∈ 𝒜.
li ∈ [qi ,Q] ⊆ 𝒬 Vehicle load after service at request i ∈ 𝒩.
ti ∈ [ai , bi] ⊆ 𝒯 Time that a vehicle begins service at request i ∈ 𝒩.

Table 5.2: The decision variables of the constraint programming checking subproblem.

⋁
h∶(h,i)∈𝒜

yh,i ∀i ∈ ℛ, (5.5)

⋁
j∶(i,j)∈𝒜

yi,j ∀i ∈ ℛ, (5.6)

¬yh,i ∨ ¬yh,j ∀h, i, j ∈ 𝒩 ∶ (h, i) ∈ 𝒜, (h, j) ∈ 𝒜, i ≠ j, (5.7)

¬yh,j ∨ ¬yi,j ∀h, i, j ∈ 𝒩 ∶ (h, j) ∈ 𝒜, (i, j) ∈ 𝒜, h ≠ i, (5.8)

NoSubtour(y), (5.9)

yi,j → lj ≥ li + qj ∀(i, j) ∈ 𝒜, (5.10)

yi,j → tj ≥ ti + ti,j ∀(i, j) ∈ 𝒜. (5.11)

Figure 5.2: Initial constraints of the constraint programming checking subproblem.

5.1. The Branch-and-Check Model of the VRPTW 149

Figure 5.2 presents the initial constraints, i.e., without the nogoods. Constraint (5.5) requires
an arc entering every node i, i.e., ensures that i has at least one predecessor. Constraint (5.6)
requires an arc exiting every node i, i.e., ensures that i has at least one successor. Constraint (5.7)
states that every node h can be a predecessor to at most one other node. Similarly, Constraint (5.8)
states that every node j can be a successor to at most one other node. Constraints (5.5) to (5.8) is
a binarization of the AllDifferent global constraint, and together, the four constraints ensure
that every request is visited exactly once. Constraint (5.9) is a global constraint, proposed by
Pesant et al. (1998), that prevents subtours. Its propagator is a simple algorithm that prevents
the head of a partial path from connecting to its tail. Constraints (5.10) and (5.11) enforce the
vehicle capacity and travel time constraints.

Communication between the Two Models The two models communicate in three ways:
(1) variable assignments in the constraint programming model are transmitted to the mixed
integer programming model, (2) candidate solutions from the linear relaxation are probed
using the constraint programming model to determine if they are valid for the VRPTW, and (3)
nogoods found by conflict analysis in the constraint programming model are translated into
cuts in the mixed integer programming model.

Extended Conflict Analysis When a failure occurs in the constraint programming solver,
conflict analysis derives a First Unique Implication Point (1UIP) nogood that is added to the
constraint programming subproblem. This constraint should also be added to themaster problem
but sometimes it cannot be translated into a cut for the master problem because it contains
variables that do not appear in the master problem (i.e., the load and time variables). As a result,
the BCE algorithm features an extended conflict analysis that continues explaining the failure
until the nogood only contains variables in master problem. This nogood has the form

⋁
(i,j)∈𝒞1

yi,j ∨⋁
(i,j)∈𝒞2

¬yi,j ,

where 𝒞1,𝒞2 ⊆ 𝒜 are sets of arcs. This nogood can be rewritten as the cut

∑
(i,j)∈𝒞1

xi,j +∑
(i,j)∈𝒞2

(1 − xi,j) ≥ 1.

It is always possible to obtain these cuts since the solver only branches on variables in the master
problem. Observe that the BCE algorithm provides a general-purpose mechanism to separate cuts in
the master problem via the extended conflict analysis. These cuts, which we call MIP-1UIP nogoods,
are automatically generated and do not rely on specialized separation algorithms.

Probing the Linear Relaxation The BCE algorithm probes whether the current linear re-
laxation solution is feasible with respect to the subtour elimination, vehicle capacity and time
constraints. It temporarily assigns every yi,j variable to the value of the corresponding xi,j
variable in the linear relaxation, provided that this value is integral. The resulting tentative
assignments can then be propagated by the constraint programming solver. If a failure occurs,

150 Chapter 5. Branch-and-Check with Explanations

conflict analysis generates nogoods for both the constraint programming and mixed integer
programming models. The mixed integer programming cut will exclude the current linear
relaxation solution, forcing it to find another candidate solution, and improve the lower bound.

The Search Algorithm The BCE algorithm, detailed in Figure 5.3, includes the components
described earlier. It blends depth-first and best-first search since best-first search is experiment-
ally evaluated to be effective for many optimization problems (e.g., Achterberg 2007, Achterberg,
Berthold et al. 2008, IBM 2015), but complicates the implementation of constraint programming
solvers with conflict analysis, as discussed in Section 2.4.2. The node selection strategy selects
the node with the lowest lower bound from the set of open nodes and then explores the node
subtree using depth-first search until it reaches a limit on the maximum number of open nodes
per subtree. Once it reaches this limit, all unsolved siblings in the subtree are moved into the
set of open nodes, and then the algorithm starts a new depth-first search from the node with
the next lowest lower bound. Section 5.4 explains the rationale behind this search procedure.

Once a node is selected (step 1), the constraint programming subproblem infers the im-
plications of the decision (step 2). In the case of failure, the constraint programming solver
generates nogoods for both models and then backtracks (step 5b). If the test succeeds, the BCE
algorithm checks for suboptimality using the linear relaxation (step 3). If the node is suboptimal,
it backtracks (step 5b). Otherwise, the BCE algorithm checks the linear relaxation solution
against the omitted constraints and separates cuts using conflict analysis if necessary (step 4).
The BCE algorithm iterates between the linear relaxation and the feasibility test until no cuts
are generated. Then, if the node is fractional and not suboptimal, the BCE algorithm executes
a branching step (step 5a). Two branching rules are implemented. The first selects the most
fractional variable and the second selects the variable with the highest activity, which is defined
as the number of nogoods in which the variable has previously appeared. This branching rule,
known as activity-based search or variable state independent decaying sum (VSIDS), guides the
search tree towards subtrees that can be quickly pruned due to infeasibility (Moskewicz et al.
2001). The activities mirror the statistics collected in pseudocost branching but for infeasibility
instead of suboptimality (e.g., Achterberg, Koch and Martin 2005).

Illustrating the Extended Conflict Analysis The following discussion illustrates the ex-
tended conflict analysis procedure. Figure 5.4 shows an example of a network. Next to every
request is its time window. The travel time across any arc is 10 units of time. Figure 5.5 depicts
the implication graph for one run of the BCE algorithm. Literals shown in a grey are fixed by
the data at the root level, and hence, are always true. They are discarded in the explanations
but are shown for clarity.

The BCE solver first branches on ¬y4,6, removing the arc (4, 6). The travel time constraint,
Constraint (5.11), propagates Jt6 ≥ 30K with the reason

Jt3 ≥ 25K ∧ Jc3,6 = 10K ∧ ¬y4,6 ∧ Jt5 ≥ 20K ∧ Jc5,6 = 10K → Jt6 ≥ 30K

because the predecessor of request 6 must be either 3 or 5, and the earliest time to reach 6

5.1. The Branch-and-Check Model of the VRPTW 151

1. Node Selection: Select an open node. Terminate if no open nodes remain.
2. Feasibility Check: Propagate the constraint programming model to determine the

implications of the branching decision of the node. If the propagation fails, perform
conflict analysis, add the 1UIP and the MIP-1UIP nogoods to the constraint programming
and mixed integer programming models, and go to step 5b. Otherwise, fix xi,j in the
mixed integer programming model to the values assigned to the yi,j variables.

3. Suboptimality Check: Solve the linear relaxation. If the objective value is worse than
the incumbent solution, go to step 5b.

4. Candidate Solution Probing: For all xi,j variables with a value of 0 or 1 in the linear
relaxation, temporarily fix the yi,j variables in the constraint programming model to the
same value. Propagate the constraint programming model. If it fails, perform conflict
analysis, generate the 1UIP and the MIP-1UIP nogoods and go back to step 3.

5. Branching and Backtracking: If all xi,j variables are integral, store the linear relaxation
solution as the incumbent solution and go to step 5b. Otherwise, go to step 5a because
the node is fractional.
(a) Branching: Create two children nodes from a fractional xi,j variable. Fix the

variable to 0 in one child node and to 1 in the other.
(b) Backtracking: If the number of nodes in the current subtree exceeds the limit or if

the subtree is entirely solved, move all unsolved siblings in the subtree to the set
of open nodes and go back to step 1. Otherwise, backtrack to an ancestor with an
unsolved child node, select the child node and go to step 2.

Figure 5.3: The branch-and-check with explanations search algorithm.

0

[0, 0]

1

[30, 60]

2

[20, 60]

3[25, 40]
4 [10, 40]

5

[20, 40]

6 [20, 40]

7 [30, 40]

Others

Others

Figure 5.4: Example of a network. Next to every request is its time window. Travel across any
arc incurs ten units of time. The load demands are not shown as they are not relevant to the
discussion.

152 Chapter 5. Branch-and-Check with Explanations

¬y4,6

t3 ≥ 25

c3,6 = 10

t5 ≥ 20

c5,6 = 10

t6 ≥ 30

¬y3,6

y5,6

¬y5,7 ¬y5,2

y0,1 y6,2

¬y6,7 t2 ≥ 40

y2,7

c6,2 = 10

c2,7 = 10

t7 ≤ 40false

Figure 5.5: Example of an implication graph after making the decisions ¬y4,6, ¬y3,6, y0,1 and
y6,2 on the network in Figure 5.4. Yellow literals are branching decisions. Blue literals are
propagations. Grey literals are propagated at the root level, and hence, can be excluded from
the nogoods since they are always true.

5.1. The Branch-and-Check Model of the VRPTW 153

is at time min(min(t3) + c3,6,min(t5) + c5,6) = 30. The BCE solver then branches on ¬y3,6.
Constraint (5.5) requires every request to have a predecessor, which leads to the assignment of
y5,6 with the reason

¬y3,6 ∧ ¬y4,6 → y5,6.

Constraint (5.8) then propagates

y5,6 → ¬y5,2

and

y5,6 → ¬y5,7.

The BCE solver then branches on y0,1, which does not produce any inference, and then branches
on y6,2, which produces the following inferences:

y6,2 → ¬y6,7,

¬y6,7 ∧ ¬y5,7 → y2,7,

y6,2 ∧ Jt6 ≥ 30K ∧ Jc6,2 = 10K → Jt2 ≥ 40K.

Then, the travel time propagator fails with

y2,7 ∧ Jt2 ≥ 40K ∧ Jc2,7 = 10K ∧ Jt7 ≤ 40K → false.

Conflict analysis deduces the following:

y2,7 ∧ Jt2 ≥ 40K ∧ Jc2,7 = 10K ∧ Jt7 ≤ 40K → false

y2,7 ∧ Jt2 ≥ 40K ∧ true ∧ true → false

(¬y6,7 ∧ ¬y5,7) ∧ (y6,2 ∧ Jt6 ≥ 30K ∧ Jc6,2 = 10K) → false

y6,2 ∧ ¬y5,7 ∧ Jt6 ≥ 30K ∧ true → false

y6,2 ∧ ¬y5,7 ∧ Jt6 ≥ 30K → false. (5.12)

This explanation contains exactly one literal (y6,2) at the current depth, and hence, is rewritten
as the 1UIP clause

¬y6,2 ∨ y5,7 ∨ Jt6 < 30K,

which is added to the constraint programming model. Conflict analysis must continue because
the nogood contains a time literal. It explains Jt6 ≥ 30K in Equation (5.12), which results in the
MIP-1UIP explanation

y6,2 ∧ ¬y5,7 ∧ ¬y4,6 → false.

This explanation is rewritten into the disjunction

¬y6,2 ∨ y5,7 ∨ y4,6, (5.13)

154 Chapter 5. Branch-and-Check with Explanations

and then into the cut

(1 − x6,2) + x5,7 + x4,6 ≥ 1.

Note that the literal y5,7 was not assigned by the search.

5.2 Nogood Strengthening

The BCE algorithm presented so far uses a completely general-purpose mechanism for cut
separation. Despite its generality, conflict analysis routinely discovers classical cuts. For instance,
when the subtour elimination propagator fails, conflict analysis frequently derives a subtour
elimination cut. These cuts can be strengthened using proven techniques whenever they are
recognized. This section presents a post-processing step that recognizes then strengthens several
types of cuts. In general, strengthening cuts is relatively simple but may have a significant
impact on the quality of the lower bounds.

Infeasible Path Cuts Infeasible partial path cuts arise from the failure of the load or time
constraints (Constraints (5.10) and (5.11)). Let P = i1, i2, … , ik , with all i1, … , ik ∈ 𝒩 distinct, be a
partial path. The partial path P is infeasible with respect to the load constraint if ∑k

u=1 qiu > Q,
and it is infeasible with respect to the time constraint if tik > bik , where ti1 = ai1 and tiu =
max(aiu , tiu−1 + tiu−1,iu) for u = 2,… , k. When a load or time window constraint fails, conflict
analysis will usually produce the nogood

⋁
(i,j)∈A(P)

¬yi,j , (5.14)

where A(P) = {(i1, i2), … , (ik−1, ik)} is the arcs of P . This nogood requires one arc of P to be
unused. It can be stated equivalently as requiring at least one arc that exits P , i.e.,

⋁
(i,j)∈Δ+(P)

yi,j ,

where Δ+(P) = ⋃k−1
u=1{(iu , j) ∈ 𝒜|j ≠ iu+1}. This nogood can be translated into the cut

∑
(i,j)∈Δ+(P)

xi,j ≥ 1.

Kallehauge, Boland and Madsen (2007) showed that this cut can be strengthened into

∑
(i,j)∈Δ̃+(P)

xi,j ≥ 1,

5.2. Nogood Strengthening 155

where

Δ̃+(P) =
k−1
⋃
u=1

({(iu , j) ∈ 𝒜|iu ∈ ℛ, j ∈ ℛ, j ≠ i1, … , iu+1,
u
∑
v=1

qiv + qj ≤ Q, tiu + tiu ,j ≤ bj } ∪

{(iu , e) ∈ 𝒜})

is the arcs that branch off P to a feasible request. In other words, the strengthening discards
arcs that are not feasible when taking into account the load and time window constraints.

Subtour EliminationCuts The propagator of Constraint (5.9) will fail if the solution contains
a subtour S = i1, i2, … , ik , where i1 = ik and all i1, i2, … , ik−1 ∈ ℛ are distinct. Conflict analysis
will usually find the nogood

⋁
(i,j)∈A(S)

¬yi,j , (5.15)

whereA(S) = {(i1, i2), … , (ik−1, ik)} is the arcs of S. Using the same reasoning as for the infeasible
path cuts, this nogood can be rewritten as the cut

∑
(i,j)∈Δ+(S)

xi,j ≥ 1. (5.16)

If aj + cj,i > bi , then no vehicle can depart j for i while respecting the time windows. Hence,
i must precede j with respect to time, written as i ≺ j. Let π(j) = {i ∈ 𝒩|i ≺ j} be the set
of requests that precedes j with respect to time and let σ(i) = {j ∈ 𝒩|i ≺ j} be the set of
requests that i precedes. Kallehauge, Boland and Madsen (2007) proved that Constraint (5.16)
can be strengthened in two ways by reasoning about the precedence relations. Proposition 5.1
strengthens it to weak predecessor cuts, and Proposition 5.2 strengthens it to weak successor cuts.

Proposition 5.1. Let ̄S = 𝒩 ⧵ S be the nodes not in a subtour S, then for any u ∈ S, Con-
straint (5.16) can be strengthened to

∑
(i,j)∈𝒜∶
i∈S⧵π(u),
j∈ ̄S⧵π(u)

xi,j ≥ 1. (5.17)

Proof. Consider Figure 5.6, which shows a subtour S and a feasible path F that visits the request
u. Let v ∈ ℛ be the last request of F visited by S. By definition, v is visited by S, i.e., v ∈ S.
Furthermore, since F is a feasible path, v cannot precede u with respect to time, i.e., v ∉ π(u).
Hence, v ∈ S ⧵π(u). Now consider the successor of v , denoted by succ(v) ∈ 𝒩. By the definition
of v, succ(v) cannot be visited by S, i.e., succ(v) ∉ S. Again, succ(v) cannot precede u with
respect to time since F is a feasible path. Hence, succ(v) ∈ ̄S ⧵ π(u). Considering every request
in S as v results in the proposition.

156 Chapter 5. Branch-and-Check with Explanations

u

v

SF

Figure 5.6: Example of a subtour S in dashed arrows and a feasible path F in solid arrows. The
request u is visited by both S and F . The request v is the last request of F visited by S.

Proposition 5.2. Let ̄S = 𝒩 ⧵ S be the nodes not in a subtour S, then for any u ∈ S, Con-
straint (5.16) can be strengthened to

∑
(i,j)∈𝒜∶
i∈S⧵σ(u),
j∈ ̄S⧵σ(u)

xi,j ≥ 1. (5.18)

Proof. Similar to Proposition 5.1.

General Cuts Conflict analysis can find cuts that are do not have the form of Constraint (5.14)
nor Constraint (5.15). These cuts contain both true literals and false literals, such as those of
Constraint (5.13). They originate from fixing an arc to be unused (i.e., setting xi,j = 0 for some
(i, j) ∈ 𝒜), which can result in tightening the bounds of a time or load variable. Consequently,
an assigned arc can become infeasible. Hence, the originating nogood will contain both true
and false literals. We are not aware of vehicle routing cuts in the literature that mix true literals
and false literals. This is possibly because tightening bounds is too costly for every call to
a separation algorithm. Constraint programming maintains the bounds internally as part of
propagation, and hence, the bounds are readily available. Because of this, these cuts seem to be
fundamentally linked to constraint programming. It is an open research issue to understand
whether these cuts can be strengthened.

5.3 Experimental Results

The Solvers The BCE algorithm includes a small constraint programming solver with no-
good learning and calls Gurobi 6.5.2 to solve the linear relaxations. The algorithm presented
in Figure 5.3 has a limit of 500 nodes for the depth-first search. This number was chosen
experimentally as it was superior to limits of 100, 1,000, 5,000, and 10,000 nodes, as shown
later. The experiments consider four versions of the BCE algorithm: with and without cut
strengthening, and with the two branching rules presented earlier. In the strengthened cuts of
Equations (5.17) and (5.18), the request u is repeated for all valid u ∈ S. The four versions of

5.3. Experimental Results 157

the solver are compared against published results for the branch-and-cut model by Kallehauge,
Boland and Madsen (2007), as well as a pure constraint programming model and a pure mixed
integer programming model. The constraint programming model is the standard VRPTW model
based on successor variables (e.g., Kilby, Prosser and Shaw 2000, Rousseau, Gendreau and Pesant
2002) and is solved using Chuffed. The mixed integer programming model is the three-index
flow model (e.g., Vigo and Toth 2014) and is solved using Gurobi. The reported results for the
branch-and-cut model are given one hour of execution time on an Intel Pentium III CPU at
600 MHz. For a fair comparison, our solvers are run for ten minutes on an Intel Xeon E5-2660
V3 CPU at 2.6 GHz. Additional results for shorter time-outs of 1 minute and 5 minutes are
provided in Appendix A.

The Test Instances The solvers are tested on all the Solomon benchmarks with 100 requests
(see Section 2.7). In order to compare BCE against results from the branch-and-cut publication,
the instance data are rounded using the same procedure. Let (x′i , y

′
i) be the original coordinates

of node i, and let q′i , s
′
i , a

′
i and b′i be the original load demand, service duration, earliest service

start time and latest service start time of node i. Define xi = 10x′i and yi = 10y′i , and then
set ai = 10a′i , bi = 10b′i , ci,j = ⌊√(xi − xj)2 + (yi − yj)2⌋ and ti,j = 10s′i + ci,j . This procedure
essentially rounds the distances, travel times, time windows and vehicle demands to one decimal
place and the floored distance costs restore the triangle inequality.

The Results The results are reported in Table 5.3. The pure constraint programming model
failed to find any feasible solution and is omitted from the table. The pure mixed integer
programming model proves optimality on only one instance and finds poor-quality solutions
to three other instances. These results are expected and are given to confirm the need for the
other approaches. The rest of this section compares the branch-and-cut and BCE approaches.

Upper Bounds The four BCE methods are able to find the same or better solutions than the
branch-and-cut algorithm for all instances except C204. Of the best solutions found, all but
two (R201 and C204) can be found using the activity-based branching rule (with or without
strengthening). For the C instances, branch-and-cut and BCE with activity-based search and cut
strengthening are comparable since they both dominate on seven of the eight instances. For the
R and RC instances, BCE with activity-based search improves upon the branch-and-cut method,
which generally finds solutions with costs about five times higher.

Lower Bounds First observe that BCE with activity-based search and cut strengthening
proves optimality on one more instance (RC201) than branch-and-cut, which is quite remarkable.
The bounds found by the branch-and-cut model are superior to those from all BCE methods
except for instance RC201, on which BCE with activity-based search and cut strengthening finds
a tighter bound. This is not surprising since the branch-and-cut algorithm implements families
of cuts not present in the BCE model. These families of cuts capture logic that the constraints in
the checking subproblem do not. Stronger objective bounds should be available once the BCE
model is expanded with global optimization constraints (to be discussed in the next section).

158
C
hapter

5.
Branch-and-C

heck
w
ith

Explanations

Branch-and-Check – Most-Fractional Branch-and-Check – Activity-based

No Strengthening With Strengthening No Strengthening With Strengthening Branch-and-Cut Mixed Integer Program

Instance LB UB Time LB UB Time LB UB Time LB UB Time LB UB Time LB UB Time

R201 1055.8 1198.0 – 1117.7 1143.3 – 1054.7 1177.6 – 1114.3 1149.9 – 1132.7 1155.6 – 975.6 – –
R202 762.8 1213.0 – 852.1 1219.6 – 763.2 1133.4 – 850.7 1109.3 – 888.6 4980.0 – 715.3 – –
R203 660.1 1244.8 – 709.8 1253.6 – 659.9 1025.2 – 707.7 1052.2 – 748.1 4980.0 – 620.3 – –
R204 625.3 1166.7 – 639.2 1193.3 – 625.8 858.4 – 638.3 887.4 – 661.9 4980.0 – 584.9 – –
R205 796.3 1222.0 – 889.6 1069.9 – 794.3 1091.3 – 876.9 1052.5 – 900.0 4980.0 – 732.3 – –
R206 686.3 1171.6 – 751.4 1157.4 – 686.0 1040.1 – 745.3 1018.9 – 783.6 4980.0 – 644.8 – –
R207 648.1 1187.5 – 681.5 1168.5 – 647.5 940.7 – 685.8 941.4 – 714.8 4980.0 – 603.1 – –
R208 623.2 1097.4 – 633.5 1187.7 – 623.4 855.0 – 635.3 832.5 – 651.8 4980.0 – 577.2 – –
R209 687.5 1238.1 – 756.6 1172.5 – 686.5 1046.6 – 753.1 1073.8 – 785.8 4980.0 – 648.2 – –
R210 679.7 1225.6 – 749.9 1240.3 – 679.8 1105.6 – 750.8 1024.9 – 798.3 4980.0 – 636.6 – –
R211 621.2 1335.5 – 633.0 1355.9 – 621.2 1004.2 – 632.1 1065.1 – 645.1 4980.0 – 577.2 4224.9 –

C201 589.1 589.1 0.0 589.1 589.1 0.0 589.1 589.1 0.0 589.1 589.1 0.0 589.1 589.1 11.5 589.1 589.1 15.2
C202 548.7 679.8 – 589.1 589.1 131.2 548.2 629.9 – 589.1 589.1 12.6 589.1 589.1 202.9 524.3 – –
C203 526.5 948.3 – 563.4 672.2 – 524.7 686.5 – 565.9 601.2 – 586.0 632.3 – 507.3 – –
C204 516.3 946.7 – 552.9 1086.7 – 514.7 884.5 – 555.9 660.9 – 584.4 597.1 – 488.3 – –
C205 546.9 685.8 – 586.4 586.4 0.2 546.5 613.1 – 586.4 586.4 16.3 586.4 586.4 334.4 511.4 – –
C206 539.9 776.9 – 586.0 586.0 11.8 538.2 702.6 – 586.0 586.0 10.6 586.0 586.0 419.0 504.7 4997.5 –
C207 542.7 851.1 – 585.8 585.8 20.6 538.3 635.2 – 585.8 585.8 8.3 585.8 585.8 527.5 503.9 – –
C208 534.5 857.2 – 585.8 585.8 60.0 533.1 652.4 – 585.8 585.8 11.2 585.8 585.8 569.7 500.3 – –

RC201 1086.5 1403.6 – 1245.8 1261.8 – 1081.0 1338.3 – 1261.8 1261.8 44.5 1250.1 1288.2 – 938.3 – –
RC202 704.5 1465.9 – 912.7 1418.6 – 699.2 1204.2 – 916.9 1152.3 – 940.1 6609.4 – 641.0 – –
RC203 615.0 1402.7 – 750.2 1359.6 – 610.8 1149.0 – 748.8 1117.6 – 781.6 6609.4 – 563.1 – –
RC204 583.9 1410.2 – 657.8 1352.4 – 581.0 1007.1 – 657.0 923.5 – 692.7 6609.4 – 532.4 – –
RC205 822.5 1511.6 – 1075.5 1307.0 – 818.8 1249.8 – 1055.8 1240.9 – 1081.7 6609.4 – 746.3 – –
RC206 785.4 1485.4 – 964.3 1273.9 – 784.9 1270.2 – 950.7 1202.8 – 974.8 6609.4 – 698.2 – –
RC207 647.3 1486.3 – 794.6 1424.5 – 642.9 1193.5 – 800.9 1172.1 – 832.4 6609.4 – 594.9 – –
RC208 572.7 1629.8 – 624.0 1776.1 – 573.9 1039.5 – 624.3 1078.4 – 647.7 6609.4 – 527.1 5299.5 –

Table 5.3: Solutions to the Solomon instances with 100 requests. The table reports the lower bound, upper bound and time to prove optimality for each
of the solvers. The best upper bound for each instance is shown in bold. The constraint programming model is omitted as it is unable to find feasible
solutions to any instance.

5.3. Experimental Results 159

The Number of Cuts Table 5.4 presents the number of cuts found in the version of the
solver that uses activity-based branching with cut strengthening. Cuts that have the form of
Constraints (5.14) and (5.15) are respectively labeled infeasible path and subtour cuts. These
two families of cuts can be strengthened according to the methods presented previously. The
remaining cuts have neither of these two forms and are directly added to the linear relaxation.
On average, 12% of the cuts, and on one occasion, 40% of the cuts, are these general cuts, which
are believed to be previously unconsidered in the operations research literature.

The Impact of Branching Rules Activity-based branching performs significantly better
than most-fractional branching. Without cut strengthening, activity-based branching finds
solutions better than most-fractional branching on all instances except C201, on which all four
BCE methods prove optimality. With cut strengthening, activity-based search performs better
on 19 of the 27 instances and worse on only one instance.

The Impact of Cut Strengthening Cut strengthening improves the lower bounds for both
branching rules. For the C instances, cut strengthening is critical for proving optimality. For
the RC instances except RC208, BCE with activity-based branching and cut strengthening finds
solutions better than the other methods. Cut strengthening interferes with the activity-based
branching rule for about half of the R instances. The cause of this interference is not yet
understood.

The Impact of Best-first Node Selection on the Upper Bounds A higher frequency of
best-first node selection is used to emulate true best-first search. Frequently performing best-
first node selection is expected to perform better in hard optimization problems since the solver
can explore disparate parts of the search tree. However, this must be balanced with exploring
deep into the tree because conflict analysis naturally depends on depth-first search, as explained
previously in Section 2.4.2. Table 5.5 lists the upper bounds found by several versions of the
solver that vary the number of nodes solved using depth-first search before executing one
best-first node selection. The table shows that solving 500 nodes using depth-first search then
choosing the next node using best-first search better balances optimization and nogood learning
by finding the best solution to nine instances.

The Impact of Best-first Node Selection on the Lower Bounds Best-first search favors
nodes with the least lower bound first, and as such, is expected to find better lower bounds.
Table 5.6 lists the lower bounds found by the same versions of the solver mentioned above.
Coincidentally, executing best-first node selection after every 500 nodes performs better than
after every 100 nodes. With this parameter, the solver finds the best lower bound to 13 instances.
This is probably due to inefficiencies of the implementation, which incurs significant overhead
during each restart (e.g., recreating all variables, literals and constraints).

The results indicate that BCE is an interesting avenue for solving hard vehicle routing
problems. BCE finds superior primal solutions despite its simplicity and the fact that it ignores

160 Chapter 5. Branch-and-Check with Explanations

many families of cuts and that the checking subproblem does not reason about optimality nor
variables with fractional values in the linear relaxation solution. For practitioners without the
expertise in branch-and-cut, BCE provides an interesting and practically appealing alternative.

5.4 Future Research Directions

The BCE algorithm, presented here as a proof-of-concept, can be improved in many ways. This
section explores some potential improvements.

Branching The branching rules implemented are extremely simple: assign a fractional vari-
able to 0 in one child and to 1 in the other. This branching rule makes the search tree highly
unbalanced, considerably degrading the performance of the solver. Furthermore, always branch-
ing on the most fractional variable is known to perform worse than randomly selecting a
fractional variable (Achterberg, Koch and Martin 2005). However, this branching rule was tested
in order to maintain a deterministic solver. Future implementations should test branching on
cutsets, which is a branching rule commonly seen in vehicle routing problems (e.g., Lysgaard,
Letchford and Eglese 2004, Naddef and Rinaldi 2002). It would also be interesting to test branch-
ing on variables in the constraint programming model (e.g., branching on time windows) by
propagating these decisions and enforcing the implications in the mixed integer programming
model.

Search Strategy Tables 5.5 and 5.6 show that the VRPTW greatly benefits from best-first
search. For simplicity, the BCE implementation uses depth-first search, which allows literals
and explanations to be stored in a stack data structure. It is obviously possible to implement
conflict analysis in best-first search but an efficient implementation is non-trivial and is an
open research question in itself. As explained in Section 5.1, the search strategy of the BCE
implementation blends depth-first search with periodic best-first selection to explore attractive
parts of the search tree.

Subtour Elimination The propagator of Constraint (5.9) is extremely simple and only elim-
inates assignments that would create a cycle. This contrasts with separation algorithms, which
are able to separate cuts using fractional solutions. It would be highly desirable to study the
impact of more advanced propagators and explanations for subtour elimination in constraint
programming.

Global Optimization Constraints The objective function has been omitted from the check-
ing subproblem because propagators for linear functions are known to be weak. Sophisticated
propagators for theWeightedCircuit constraint (Benchimol et al. 2012) should be implemented,
as they may produce considerably stronger nogoods.

Application to Branch-and-Price As discussed earlier in Section 2.3.4, branch-and-cut-and-
price is the current state-of-the-art exact method for solving classical vehicle routing problems

5.4. Future Research Directions 161

Number of Cuts Percentage

Instance Infeasible Path Subtour Other Infeasible Path Subtour Other

R201 112 70 15 57% 36% 8%
R202 671 189 104 70% 20% 11%
R203 933 285 199 66% 20% 14%
R204 910 375 213 61% 25% 14%
R205 606 237 97 64% 25% 10%
R206 707 246 95 67% 23% 9%
R207 741 306 318 54% 22% 23%
R208 639 372 265 50% 29% 21%
R209 739 230 223 62% 19% 19%
R210 652 232 133 64% 23% 13%
R211 1281 387 178 69% 21% 10%

C201 0 0 0 – – –
C202 86 53 0 62% 38% 0%
C203 494 200 29 68% 28% 4%
C204 588 337 274 49% 28% 23%
C205 141 55 1 72% 28% 1%
C206 128 67 1 65% 34% 1%
C207 10 76 0 12% 88% 0%
C208 33 70 0 32% 68% 0%

RC201 85 76 6 51% 46% 4%
RC202 449 159 81 65% 23% 12%
RC203 789 284 197 62% 22% 16%
RC204 670 311 647 41% 19% 40%
RC205 448 155 46 69% 24% 7%
RC206 711 207 91 70% 21% 9%
RC207 666 200 139 66% 20% 14%
RC208 1733 456 490 65% 17% 18%

Table 5.4: The number of cuts found and the proportion of each family of cuts in the solver that
uses activity-based branching with cut strengthening.

162 Chapter 5. Branch-and-Check with Explanations

Instance 100 500 1000 5000 10000

R201 1153.7 1149.9 1145.5 1143.6 1145.4
R202 1110.1 1109.3 1143.9 1120.4 1136.7
R203 1055.8 1052.2 1019.5 1059.9 1053.3
R204 896.0 887.4 888.7 921.9 948.9
R205 1068.5 1052.5 1041.4 1045.0 1058.8
R206 1044.1 1018.9 1010.7 1022.5 1051.0
R207 959.2 941.4 1011.5 993.1 1008.0
R208 814.7 832.5 848.4 876.7 820.9
R209 1079.8 1073.8 1019.6 1015.9 1008.3
R210 1022.9 1024.9 1064.7 1037.8 1033.2
R211 1121.6 1065.1 1107.1 1097.0 1135.4

C201 589.1 589.1 589.1 589.1 589.1
C202 589.1 589.1 589.1 589.1 589.1
C203 631.2 601.2 648.5 668.0 680.8
C204 648.1 660.9 655.2 654.9 719.8
C205 586.4 586.4 586.4 586.4 608.8
C206 586.0 586.0 586.0 586.0 586.0
C207 585.8 585.8 585.8 585.8 585.8
C208 585.8 585.8 585.8 585.8 585.8

RC201 1269.2 1261.8 1261.8 1261.8 1261.8
RC202 1182.0 1152.3 1187.7 1195.1 1219.6
RC203 1073.8 1117.6 1084.6 1130.3 1173.0
RC204 897.9 923.5 891.3 937.0 937.0
RC205 1272.6 1240.9 1230.5 1218.0 1219.7
RC206 1256.9 1202.8 1231.4 1154.4 1222.9
RC207 1182.4 1172.1 1168.0 1169.7 1183.3
RC208 1153.7 1078.4 1217.4 1146.4 1158.0

Table 5.5: Upper bounds from variants of the solver with different numbers of nodes solved
using depth-first search before performing best-first node selection. Best to worst solutions in
each row are colored from green to red.

5.4. Future Research Directions 163

Instance 100 500 1000 5000 10000

R201 1115.2 1114.3 1115.2 1116.1 1114.7
R202 848.1 850.7 843.4 810.1 803.8
R203 707.1 707.7 703.6 688.6 683.3
R204 636.4 638.3 637.9 633.5 631.3
R205 878.5 876.9 872.0 854.5 844.0
R206 745.9 745.3 743.2 726.3 719.3
R207 682.8 685.8 682.8 669.0 664.3
R208 635.3 635.3 634.2 629.3 627.8
R209 755.7 753.1 742.0 718.9 703.8
R210 753.7 750.8 740.5 725.9 722.4
R211 632.6 632.1 631.9 630.0 629.2

C201 589.1 589.1 589.1 589.1 589.1
C202 589.1 589.1 589.1 589.1 589.1
C203 570.6 565.9 567.5 550.3 547.2
C204 550.3 555.9 552.2 531.2 526.7
C205 586.4 586.4 586.4 586.4 585.6
C206 586.0 586.0 586.0 586.0 586.0
C207 585.8 585.8 585.8 585.8 585.8
C208 585.8 585.8 585.8 585.8 585.8

RC201 1242.9 1261.8 1261.8 1261.8 1261.8
RC202 912.7 916.9 893.6 862.0 848.7
RC203 757.7 748.8 739.1 691.1 670.7
RC204 653.3 657.0 649.7 624.9 618.8
RC205 1051.2 1055.8 1052.6 985.3 978.1
RC206 941.5 950.7 951.2 905.8 892.3
RC207 797.7 800.9 792.9 762.6 742.4
RC208 623.9 624.3 623.7 611.6 610.8

Table 5.6: Lower bounds from variants of the solver with different numbers of nodes solved
using depth-first search before performing best-first node selection. Best to worst bounds in
each row are colored from green to red.

164 Chapter 5. Branch-and-Check with Explanations

by incorporating both column generation and cut generation. Preliminary experiments with
an existing branch-and-price solver show that BCE is not beneficial with column generation
for the VRPTW as nogoods will not be generated in step 4 of Figure 5.3 because this step will
not fail since the paths already respect the time and capacity constraints. However, step 2
can fail due to incompatibility between the branching decisions of a node. This infeasibility
cannot be detected by the pricing problem because it has no knowledge of the global problem,
nor detected by the master problem until all paths are generated because artificial variables
satisfy the constraints in the interim. Incompatible branching decisions can induce nogoods but
this seldom occurs in branch-and-price because its linear relaxation bound is asymptotically
tight, allowing it to discard nodes due to suboptimality much earlier than infeasibility. Hence,
branch-and-price-and-check is unlikely to prove useful in solving classical vehicle routing
problems. It is, however, useful for rich vehicle routing problems with inter-route constraints as
shown in the previous chapter. This is because inter-route constraints are difficult to consider
within the pricing subproblem because the pricing subproblem, being a shortest path problem,
has no knowledge of the interactions between routes in the parent problem.

Automatic Cut Strengthening The constraint programming model contains all the omitted
constraints; namely, the subtour elimination, vehicle capacity and time window constraints. As
a result, conflict analysis can deduce nogoods based on the combined infeasibility of multiple
constraints. In contrast, separation algorithms only reason about one family of cuts. It is an open
question whether conflict analysis can strengthen the cuts from reasoning about a conjunction
of constraints. Automatically deducing strengthened cuts will be highly advantageous as it will
enable strengthenings to be declared in a model instead of manually implemented in a solver.

Automatic Dantzig-Wolfe Decomposition A long-sought goal of combinatorial optimiz-
ation is to let a user declare a model then leave its solution to a software system that selects
an appropriate solver. A full unification of BCE with automatic Dantzig-Wolfe decomposition
(Bergner et al. 2015, Puchinger et al. 2011) and automatic cut strengthening will be a major
breakthrough since a software system will be able to detect problem structures and seamlessly
apply Benders decomposition and Dantzig-Wolfe decomposition to construct stronger branch-
and-cut-and-price models. Considering that many state-of-the-art problem-specific solvers are
based on branch-and-cut-and-price, this reformulation can potentially rival the latest advances.

5.5 Conclusion

This chapter proposed the framework of branch-and-check with explanations (BCE) as a step
towards unifying linear programming, constraint programming and Boolean satisfiability. BCE
finds cuts using general-purpose conflict analysis instead of specialized separation algorithms.
The method features a master problem, which ignores a number of constraints, and a checking
subproblem, which uses inference to check the feasibility of the omitted constraints and con-
flict analysis to derive nogood cuts. It also leverages conflict-based branching rules and can

5.5. Conclusion 165

strengthen cuts using traditional insights from branch-and-cut in a post-processing step.
Experimental results on the Vehicle Routing Problem with Time Windows show that BCE is

a viable alternative to branch-and-cut. In particular, BCE dominates branch-and-cut, both in
proving optimality (with cut strengthening) and in finding high-quality solutions.

BCE offers an interesting alternative to existing branch-and-cut approaches. By using a
general-purpose constraint programming solver to derive cuts, BCE can greatly simplify the
modeling of problems that traditionally use branch-and-cut. This, in turn, avoids the need
for dedicated separation algorithms. BCE is also capable of identifying well-known classes
of cuts and strengthening them in a post-processing step. Finally, BCE significantly benefits
from conflict-based branching rules, opening further opportunities typically not available in
branch-and-cut.

Chapter 6

Conclusion

This chapter summarizes the main findings previously presented in this thesis and provides
several recommendations for future research.

Introduction Chapter 1 introduced vehicle routing problems and the field of combinatorial
optimization. It laid out two combinatorial optimization technologies for modeling and solving
vehicle routing problems; namely, mixed integer programming and constraint programming. It
outlined their weaknesses and proposed hybridization for mitigating these weaknesses.

Background Chapter 2 reviewed background material to the main chapters of this thesis. It
formalized linear programming and generalized it to mixed integer programming, and then
considered Boolean satisfiability and extended it to constraint programming. It also presented
four basic vehicle routing problems.

Joint Vehicle and Crew Routing and Scheduling Problem Chapter 3 saw the develop-
ment of the Joint Vehicle and Crew Routing and Scheduling Problem (JVCRSP). In the JVCRSP,
crews must drive vehicles to service requests at a number of locations and crews have a limit on
their driving duration. Crews are able to interchange vehicles at all locations, making the vehicle
routes and crew routes tightly coupled since two vehicles must be present at a location for a
crew to switch vehicles. The problem involves simultaneously routing and scheduling vehicles
and crews, which are traditionally solved in stages. A mixed integer programming model and a
constraint programming model were developed for the JVCRSP. The constraint programming
model included a global optimization constraint that partially calculates objective bounds using
a linear relaxation. The results showed that executing a custom-built large neighborhood search
on the constraint programming model performed better than the other approaches.

A shortcoming of the constraint programming model is the crew maximum driving duration
constraint, which calculates the maximum driving duration by subtracting the start time of a
crew from its end time. This is especially ineffective as the start and end times are available
only at the final stages of the search when the routes are almost fully specified.

Both the mixed integer programming and constraint programming model can be further
improved with better neighborhoods. The four existing neighborhoods isolated vehicle object-

167

168 Chapter 6. Conclusion

ives and crew objectives. Since the vehicles and crews are interdependent, implementing a
neighborhood that simultaneously reasoned about vehicle and crew objectives and constraints
should have a significant impact on the solutions.

TheVehicleRouting Problemwith LocationCongestion Chapter 4 presented the Vehicle
Routing Problem with Location Congestion (VRPLC). In addition to designing minimal-cost
routes, the problem involves scheduling vehicles around the availabilities of a limited number
of resources. The scheduling interferes with the routing, making the two aspects highly inter-
dependent. The problem was solved using a branch-and-price-and-check method, which uses
column generation to find high-quality routes that disregard the scheduling requirements, and
a constraint programming subproblem to verify whether the routes adhere to the scheduling
constraints. The branch-and-price-and-check method was compared against a pure mixed
integer programming model, a pure constraint programming model and a two-stage sequential
model. The results indicated that the hybrid branch-and-price-and-check method performed
better than the other three approaches.

A major fault of the branch-and-price-and-check model is its inability to translate temporal
nogoods in the checking subproblem to arc nogoods in the master problem. Currently, the
scheduling constraints are completely absent in the master problem; they are enforced by
forbidding combinations of arcs. Hence, all routes must be rejected by cuts in order to prove
infeasibility. Equipping the master problem with a relaxation of the scheduling constraints
would enable it to prove infeasibility without an exponential number of cuts. Whether this is
possible is presently not known.

Branch-and-Check with Explanations Chapter 5 formally develops the preliminary ideas
from the previous chapter into an exact method named branch-and-check with explanations
(BCE). The BCE method unifies mixed integer programming, constraint programming and
Boolean satisfiability. It begins with a linear relaxation that omits difficult constraints. Solving
the linear relaxation produces an objective bound and a linearly feasible solution. The solution is
checked in the constraint programming subproblem for the feasibility of the omitted constraints.
If the solution is infeasible, the solution is passed through a Boolean satisfiability solver, which
performs conflict analysis to learn nogoods. The nogoods are added as constraints in the linear
relaxation and in the constraint programming subproblem. The method was assessed on the
Vehicle Routing Problem with Time Windows, and the results demonstrated that this fully
hybrid method performed better than an existing branch-and-cut method.

An obvious avenue for future research is to the develop the BCE method into a general
black-box solver. The method is currently implemented in a proof-of-concept solver custom-
tailored to the Vehicle Routing Problem with Time Windows. The implementation is inefficient
and does not make use of recent advances in constraint programming and Boolean satisfiability
solvers. Building a generic solver would enable the BCE method to be evaluated on problems
traditionally avoided by the constraint programming community.

A thorough investigation into compromises between depth-first search and best-first search

169

is also warranted. The impact of tradeoffs between depth-first search and best-first search
are significant since the results improved when the node selection strategy moved away from
depth-first search towards best-first search. However, conflict analysis is most practical with
depth-first search because the nogoods can only be built by exploring deep into the search tree.
Instead of implementing conflict analysis with best-first search, it may be possible to use other
node selection rules that emulate best-first search. For example, this can include pausing the
linear relaxation and then diving deeper into the search tree with constraint programming.

Integrating BCE with automatic Dantzig-Wolfe decomposition and automatic cut strength-
ening will be a major advance for the field. Currently, both branch-and-cut-and-price and cut
strengthening must be manually implemented as they exploit problem-specific knowledge and
combinatorial substructures. Having an automatic system for detecting problem structures and
creating branch-and-cut-and-price reformulations can enable models to be stated and solved
efficiently using the latest methods in optimization.

The Future This dissertation presented several advances towards the grand unification of
mixed integer programming, constraint programming and Boolean satisfiability. Even though
the hybrid techniques were developed specifically for vehicle routing problems, they are general
in the sense that they are applicable to many other problems. It would be interesting to see these
techniques applied in other problem domains, and particularly, in generic black-box solvers.

Bibliography

Achterberg, T. (2007). ‘Constraint Integer Programming’. PhD thesis. Technische Universität
Berlin.

Achterberg, T., T. Berthold et al. (2008). ‘Constraint Integer Programming: A New Approach to
Integrate CP and MIP’. In: Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems: 5th International Conference, CPAIOR 2008 Paris,
France, May 20-23, 2008 Proceedings. Ed. by L. Perron and M. A. Trick. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 6–20.

Achterberg, T., T. Koch and A. Martin (2005). ‘Branching rules revisited’. In: Operations Research
Letters 33.1, pp. 42–54.

Aggoun, A. and N. Beldiceanu (1993). ‘Extending chip in order to solve complex scheduling and
placement problems’. In: Mathematical and Computer Modelling 17.7, pp. 57–73.

Applegate, D. et al. (2003). ‘Implementing the Dantzig-Fulkerson-Johnson algorithm for large
traveling salesman problems’. In: Mathematical programming 97.1-2, pp. 91–153.

Backer, B. et al. (2000). ‘Solving Vehicle Routing Problems Using Constraint Programming and
Metaheuristics’. In: Journal of Heuristics 6.4, pp. 501–523.

Baldacci, R., N. Christofides and A. Mingozzi (2008). ‘An exact algorithm for the vehicle routing
problem based on the set partitioning formulation with additional cuts’. In: Mathematical
Programming 115.2, pp. 351–385.

Baldacci, R., A. Mingozzi and R. Roberti (2011). ‘New route relaxation and pricing strategies for
the vehicle routing problem’. In: Operations Research 59.5, pp. 1269–1283.

Bard, J. F., G. Kontoravdis and G. Yu (2002). ‘A Branch-and-Cut Procedure for the Vehicle Routing
Problem with Time Windows’. In: Transportation Science 36.2, pp. 250–269.

Barnhart, C., E. L. Johnson et al. (1998). ‘Branch-and-Price: Column Generation for Solving
Huge Integer Programs’. In: Operations Research 46.3, pp. 316–329.

Barnhart, C., F. Lu and R. Shenoi (1998). ‘Integrated Airline Schedule Planning’. In: ed. by G. Yu.
Operations Research in the Airline Industry. Springer US. Chap. 13, pp. 384–403.

Beck, J. C. (2010). ‘Checking-Up on Branch-and-Check’. In: Principles and Practice of Constraint
Programming – CP 2010. Ed. by D. Cohen. Vol. 6308. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 84–98.

Beck, J. C., P. Prosser and E. Selensky (2002). ‘On the Reformulation of Vehicle Routing Prob-
lems and Scheduling Problems’. In: Abstraction, Reformulation, and Approximation. Ed. by

171

172 Bibliography

S. Koenig and R. Holte. Vol. 2371. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 282–289.

Beck, J. C., P. Prosser and E. Selensky (2003). ‘Vehicle Routing and Job Shop Scheduling: What’s
the Difference?’ In: Proceedings of the Thirteenth International Conference on International
Conference on Automated Planning and Scheduling. ICAPS’03. AAAI Press, pp. 267–276.

Bellmore, M. and J. C. Malone (1971). ‘Pathology of Traveling-Salesman Subtour-Elimination
Algorithms’. In: Operations Research 19.2, pp. 278–307.

Benchimol, P. et al. (2012). ‘Improved filtering for weighted circuit constraints’. In: Constraints
17.3, pp. 205–233.

Benders, J. F. (1962). ‘Partitioning procedures for solving mixed-variables programming prob-
lems’. In: Numerische mathematik 4.1, pp. 238–252.

Benson, H. Y. (2011). ‘Interior‐Point Linear Programming Solvers’. In: Wiley Encyclopedia of
Operations Research and Management Science. John Wiley & Sons, Inc.

Bent, R. and P. Van Hentenryck (2004). ‘A Two-Stage Hybrid Local Search for the Vehicle Routing
Problem with Time Windows’. In: Transportation Science 38.4, pp. 515–530.

Bent, R. and P. Van Hentenryck (2006). ‘A two-stage hybrid algorithm for pickup and delivery
vehicle routing problems with time windows’. In: Computers & Operations Research 33.4,
pp. 875–893.

Bergman, D., A. A. Cire and W.-J. van Hoeve (2015). ‘Improved Constraint Propagation via
Lagrangian Decomposition’. In: Principles and Practice of Constraint Programming: 21st
International Conference, CP 2015, Cork, Ireland, August 31 – September 4, 2015, Proceedings.
Ed. by G. Pesant. Springer International Publishing, pp. 30–38.

Bergner, M. et al. (2015). ‘Automatic Dantzig–Wolfe reformulation of mixed integer programs’.
In: Mathematical Programming 149.1, pp. 391–424.

Bessiere, C. (2010). ‘Basic CP Theory: Consistency And Propagation (Advanced)’. In: Wiley
Encyclopedia of Operations Research and Management Science. John Wiley & Sons, Inc.

Bixby, R. E. (2002). ‘Solving real-world linear programs: a decade and more of progress’. In:
Operations Research 50.1, pp. 3–15.

Bramel, J. and D. Simchi-Levi (1997). ‘On the Effectiveness of Set Covering Formulations for the
Vehicle Routing Problem with Time Windows’. In: 45.2, pp. 295–301.

Bräysy, O. and G. Hasle (2014). ‘Software Tools and Emerging Technologies for Vehicle Routing
and Intermodal Transportation’. In: ed. by D. Vigo and P. Toth. Second Edition. Vehicle Rout-
ing: Problems, Methods, and Applications. Society for Industrial and Applied Mathematics.
Chap. 12, pp. 351–380.

Carpaneto, G. and P. Toth (1980). ‘Some New Branching and Bounding Criteria for the Asym-
metric Travelling Salesman Problem’. In: Management Science 7, p. 736.

Castro, P. M., I. E. Grossmann and L.-M. Rousseau (2011). ‘Decomposition Techniques for Hybrid
MILP/CP Models applied to Scheduling and Routing Problems’. In: Hybrid Optimization.
Ed. by P. Van Hentenryck and M. Milano. Vol. 45. Springer Optimization and Its Applications.
Springer New York, pp. 135–167.

173

Christofides, N. and S. Eilon (1969). ‘An Algorithm for the Vehicle-dispatching Problem’. In:
Journal of the Operational Research Society 20.3, pp. 309–318.

Chung, W. (2010). ‘Dantzig–Wolfe Decomposition’. In:Wiley Encyclopedia of Operations Research
and Management Science. John Wiley & Sons, Inc.

Cochran, J. J. (2010). ‘An Introduction to Linear Programming’. In: Wiley Encyclopedia of Opera-
tions Research and Management Science. John Wiley & Sons, Inc.

Cordeau, J.-F. et al. (2001). ‘Benders Decomposition for Simultaneous Aircraft Routing and Crew
Scheduling’. In: Transportation Science 35.4, pp. 375–388.

Dantzig, G. B. and J. Ramser (1959). ‘The Truck Dispatching Problem’. In: Management Science
6.1, p. 80.

Dantzig, G. B. and P. Wolfe (1960). ‘Decomposition Principle for Linear Programs’. In: Operations
Research 8.1, pp. 101–111.

Dantzig, G. B., R. Fulkerson and S. Johnson (1954). ‘Solution of a large-scale traveling-salesman
problem’. In: Journal of the Operations Research Society of America 2.4, pp. 393–410.

Davis, M., G. Logemann and D. Loveland (1962). ‘A Machine Program for Theorem-proving’. In:
Communications of the ACM 5.7, pp. 394–397.

Davis, M. and H. Putnam (1960). ‘A Computing Procedure for Quantification Theory’. In: Journal
of the ACM 7.3, pp. 201–215.

Deo, N. and C.-Y. Pang (1984). ‘Shortest-Path Algorithms: Taxonomy and Annotation’. In:
Networks 14.2, pp. 275–323.

Desaulniers, G., J. Desrosiers and M. M. Solomon (2005). Column Generation. Springer US.
Desaulniers, G., O. B. Madsen and S. Røpke (2014). ‘The Vehicle Routing Problem with Time

Windows’. In: ed. by D. Vigo and P. Toth. Second Edition. Vehicle Routing: Problems,Methods,
and Applications. Society for Industrial and Applied Mathematics. Chap. 5, pp. 119–159.

Desrochers, M., J. Desrosiers and M. Solomon (1992). ‘A New Optimization Algorithm for the
Vehicle Routing Problem with Time Windows’. In: Operations Research 40.2, pp. 342–354.

Desrochers, M. and G. Laporte (1991). ‘Improvements and extensions to theMiller-Tucker-Zemlin
subtour elimination constraints’. In: Operations Research Letters 10.1, pp. 27–36.

Desrosiers, J. and M. E. Lübbecke (2010). ‘Branch-Price-and-Cut Algorithms’. In: Wiley Encyclo-
pedia of Operations Research and Management Science. John Wiley & Sons, Inc.

Desrosiers, J., F. Soumis and M. Desrochers (1984). ‘Routing with time windows by column
generation’. In: Networks 14.4, pp. 545–565.

Drexl, M. (2007). ‘On some generalized routing problems’. PhD thesis. RWTH Aachen University.
Drexl, M. (2012). ‘Synchronization in Vehicle Routing—A Survey of VRPs with Multiple Syn-

chronization Constraints’. In: Transportation Science 46.3, pp. 297–316.
Drexl, M. (2013). ‘Applications of the vehicle routing problem with trailers and transshipments’.

In: European Journal of Operational Research 227.2, pp. 275–283.
Drexl, M. (2014). ‘Branch-and-cut algorithms for the vehicle routing problem with trailers and

transshipments’. In: Networks 63.1, pp. 119–133.
Drexl, M. et al. (2013). ‘Simultaneous Vehicle and Crew Routing and Scheduling for Partial- and

Full-Load Long-Distance Road Transport’. In: BuR - Business Research 6.2, pp. 242–264.

174 Bibliography

Dreyfus, S. E. (1969). ‘An Appraisal of Some Shortest-Path Algorithms’. In: Operations Research
17.3, pp. 395–412.

Dumas, Y., J. Desrosiers and F. Soumis (1991). ‘The pickup and delivery problem with time
windows’. In: European Journal of Operational Research 54.1, pp. 7–22.

Eén, N. and N. Sörensson (2004). ‘An Extensible SAT-solver’. In: Theory and Applications of
Satisfiability Testing: 6th International Conference, SAT 2003, Santa Margherita Ligure, Italy,
May 5-8, 2003, Selected Revised Papers. Ed. by E. Giunchiglia and A. Tacchella. Springer Berlin
Heidelberg, pp. 502–518.

El Hachemi, N., M. Gendreau and L.-M. Rousseau (2013). ‘A heuristic to solve the synchronized
log-truck scheduling problem’. In: Computers & Operations Research 40.3, pp. 666–673.

Feillet, D. (2010). ‘A tutorial on column generation and branch-and-price for vehicle routing
problems’. In: 4OR: A Quarterly Journal of Operations Research 8.4, pp. 407–424.

Feillet, D., M. Gendreau and L.-M. Rousseau (2007). ‘New Refinements for the Solution of Vehicle
Routing Problems with Branch and Price’. In: INFOR: Information Systems and Operational
Research 45.4, pp. 239–256.

Feydy, T. and P. J. Stuckey (2009). ‘Lazy Clause Generation Reengineered’. In: Principles and
Practice of Constraint Programming – CP 2009: 15th International Conference, CP 2009 Lisbon,
Portugal, September 20-24, 2009 Proceedings. Ed. by I. P. Gent. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 352–366.

Focacci, F., A. Lodi and M. Milano (1999). ‘Cost-Based Domain Filtering’. In: Principles and
Practice of Constraint Programming – CP’99: 5th International Conference, CP’99, Alexandria,
VA, USA, October 11-14, 1999. Proceedings. Ed. by J. Jaffar. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 189–203.

Focacci, F., A. Lodi and M. Milano (2000). ‘Cutting Planes in Constraint Programming: An Hybrid
Approach’. In: Principles and Practice of Constraint Programming – CP 2000. Ed. by R. Dechter.
Vol. 1894. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 187–201.

Focacci, F., A. Lodi and M. Milano (2002). ‘Optimization-Oriented Global Constraints’. In: Con-
straints 7.3-4, pp. 351–365.

Focacci, F., A. Lodi and M. Milano (2004). ‘Exploiting Relaxations in CP’. In: Constraint and
Integer Programming. Ed. by M. Milano. Vol. 27. Operations Research/Computer Science
Interfaces Series. Springer US, pp. 137–167.

Fontaine, D., L. Michel and P. Van Hentenryck (2014). ‘Constraint-based Lagrangian Relaxation’.
In: Principles and Practice of Constraint Programming: 20th International Conference, CP 2014,
Lyon, France, September 8-12, 2014. Proceedings. Ed. by B. O’Sullivan. Vol. 8656. Lecture Notes
in Computer Science. Springer International Publishing, pp. 324–339.

Francis, K. G. and P. J. Stuckey (2014). ‘Explaining circuit propagation’. In: Constraints 19.1,
pp. 1–29.

Franco, J. and J. Martin (2009). ‘A History of Satisfiability’. In: ed. by A. Biere et al. Handbook of
Satisfiability. IOS Press. Chap. 1, pp. 3–74.

Freling, R., D. Huisman and A. P. Wagelmans (2001). ‘Applying an Integrated Approach to
Vehicle and Crew Scheduling in Practice’. In: Computer-Aided Scheduling of Public Transport.

175

Ed. by S. Voß and J. R. Daduna. Vol. 505. Lecture Notes in Economics and Mathematical
Systems. Springer Berlin Heidelberg, pp. 73–90.

Freling, R., D. Huisman and A. P. Wagelmans (2003). ‘Models and Algorithms for Integration of
Vehicle and Crew Scheduling’. In: Journal of Scheduling 6.1, pp. 63–85.

Freling, R., A. P. Wagelmans and J. M. P. Paixão (1999). ‘An Overview of Models and Techniques
for Integrating Vehicle and Crew Scheduling’. In: Computer-Aided Transit Scheduling. Ed. by
N. H. Wilson. Vol. 471. Lecture Notes in Economics and Mathematical Systems. Springer
Berlin Heidelberg, pp. 441–460.

Fukasawa, R. et al. (2006). ‘Robust Branch-and-Cut-and-Price for the Capacitated Vehicle Routing
Problem.’ In: Mathematical Programming 106.3, pp. 491–511.

Gilmore, P. C. and R. E. Gomory (1961). ‘A Linear Programming Approach to the Cutting-Stock
Problem’. In: Operations Research 9.6, pp. 849–859.

Gilmore, P. C. and R. E. Gomory (1963). ‘A Linear Programming Approach to the Cutting Stock
Problem—Part II’. In: Operations Research 11.6, pp. 863–888.

Golden, B. L., A. A. Assad and E. A. Wasil (2001). ‘Routing vehicles in the real world: applications
in the solid waste, beverage, food, dairy, and newspaper industries’. In: ed. by P. Toth and
D. Vigo. The Vehicle Routing Problem. Society for Industrial and Applied Mathematics.
Chap. 10, pp. 245–286.

Gomory, R. E. (1958). ‘Outline of an Algorithm for Integer Solutions to Linear Programs’. In:
Bulletin Of the American Mathematical Society 64, pp. 275–278.

Gomory, R. E. (1960). An algorithm for the mixed integer problem. Tech. rep. Rand Corporation.
Gomory, R. E. (1963). ‘An algorithm for integer solutions to linear programs’. In: Recent Advances

in Mathematical Programming 64, pp. 260–302.
Gondzio, J. (2012). ‘Interior point methods 25 years later’. In: European Journal of Operational

Research 218.3, pp. 587–601.
Gualandi, S. and F. Malucelli (2013). ‘Constraint Programming-based Column Generation’. In:

Annals of Operations Research 204.1, pp. 11–32.
Haase, K., G. Desaulniers and J. Desrosiers (2001). ‘Simultaneous Vehicle and Crew Scheduling

in Urban Mass Transit Systems’. In: Transportation Science 35.3, pp. 286–303.
Harvey, W. D. and M. L. Ginsberg (1995). ‘Limited discrepancy search’. In: Proceedings of the

Fourteenth International Joint Conference on Artificial Intelligence. IJCAI’95, pp. 607–615.
Hempsch, C. and S. Irnich (2008). ‘Vehicle Routing Problems with Inter-tour Resource Con-

straints’. In: The Vehicle Routing Problem: Latest Advances and New Challenges. Ed. by B.
Golden, S. Raghavan and E. Wasil. Vol. 43. Operations Research/Computer Science Interfaces.
Springer US, pp. 421–444.

Hollis, B., M. Forbes and B. Douglas (2006). ‘Vehicle routing and crew scheduling for metropolitan
mail distribution at Australia Post’. In: European Journal of Operational Research 173.1,
pp. 133–150.

Hooker, J. N. (1994). ‘Logic-based methods for optimization’. In: Principles and Practice of Con-
straint Programming: Second International Workshop, PPCP ’94 Rosario, Orcas Island, WA,

176 Bibliography

USA, May 2–4, 1994 Proceedings. Ed. by A. Borning. Vol. 874. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, pp. 336–349.

Hooker, J. N. (2006). ‘Operations Research Methods in Constraint Programming’. In: Handbook
of Constraint Programming. Ed. by P. v. B. Francesca Rossi and T. Walsh. Vol. 2. Foundations
of Artificial Intelligence. Elsevier. Chap. 15, pp. 527–570.

Hooker, J. N. (2007). Integrated Methods for Optimization. Springer.
Hooker, J. N. (2010). ‘Formulating Good MILP Models’. In: Wiley Encyclopedia of Operations

Research and Management Science. John Wiley & Sons, Inc.
Hooker, J. N. and W.-J. van Hoeve (2018). ‘Constraint programming and operations research’. In:

Constraints 23.2, pp. 172–195.
Ibaraki, T. (1973). ‘Algorithms for Obtaining Shortest Paths Visiting Specified Nodes’. In: SIAM

Review 15.2, pp. 309–317.
IBM (2015). IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual (Version 12, Release

6). url: https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.3/ilog.
odms.studio.help/pdf/usrcplex.pdf (visited on 12/04/2018).

Irnich, S. (2008). ‘A Unified Modeling and Solution Framework for Vehicle Routing and Local
Search-Based Metaheuristics’. In: INFORMS Journal on Computing 20.2, pp. 270–287.

Irnich, S. and G. Desaulniers (2005). ‘Shortest Path Problems with Resource Constraints’. In: ed.
by G. Desaulniers, J. Desrosiers and M. M. Solomon. Column generation. Springer. Chap. 2.

Irnich, S., P. Toth and D. Vigo (2014). ‘The Family of Vehicle Routing Problems’. In: ed. by D. Vigo
and P. Toth. Second Edition. Vehicle Routing: Problems, Methods, and Applications. Society
for Industrial and Applied Mathematics. Chap. 1, pp. 1–33.

Jaffar, J. and J.-L. Lassez (1987). ‘Constraint Logic Programming’. In: Proceedings of the 14th ACM
Symposium on Principles of Programming Languages. ACM, pp. 111–119.

Jaffar, J., S. Michaylov et al. (1992). ‘The CLP(R) Language and System’. In: ACM Transactions on
Programming Languages and Systems 14.3, pp. 339–395.

Jepsen, M. et al. (2008). ‘Subset-Row Inequalities Applied to the Vehicle-Routing Problem with
Time Windows’. In: Operations Research 56.2, pp. 497–511.

Jünger, M. et al. (2009). 50 years of integer programming 1958-2008: From the early years to the
state-of-the-art. Springer Science & Business Media.

Junker, U. et al. (1999). ‘A Framework for Constraint Programming Based Column Generation’.
In: Principles and Practice of Constraint Programming – CP’99: 5th International Conference,
CP’99, Alexandria, VA, USA, October 11-14, 1999. Proceedings. Ed. by J. Jaffar. Springer, pp. 261–
274.

Jussien, N. and O. Lhomme (2002). ‘Local search with constraint propagation and conflict-based
heuristics’. In: Artificial Intelligence 139.1, pp. 21–45.

Kallehauge, B., N. Boland and O. B. G. Madsen (2007). ‘Path inequalities for the vehicle routing
problem with time windows’. In: Networks 49.4, pp. 273–293.

Karmarkar, N. (1984). ‘A new polynomial-time algorithm for linear programming’. In: Proceedings
of the Sixteenth Annual ACM Symposium on Theory of Computing. ACM, pp. 302–311.

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.3/ilog.odms.studio.help/pdf/usrcplex.pdf
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.3/ilog.odms.studio.help/pdf/usrcplex.pdf

177

Khachiyan, L. G. (1979). ‘A polynomial algorithm in linear programming’. In: vol. 20. Soviet
Mathematics Doklady, pp. 191–194.

Kianfar, K. (2010). ‘Branch-and-Bound Algorithms’. In:Wiley Encyclopedia of Operations Research
and Management Science. John Wiley & Sons, Inc.

Kilby, P., P. Prosser and P. Shaw (2000). ‘A Comparison of Traditional and Constraint-based
Heuristic Methods on Vehicle Routing Problems with Side Constraints’. In: Constraints 5.4,
pp. 389–414.

Kim, B.-I., J. Koo and J. Park (2010). ‘The combined manpower-vehicle routing problem for
multi-staged services’. In: Expert Systems with Applications 37.12, pp. 8424–8431.

Koné, O. et al. (2011). ‘Event-based MILP models for resource-constrained project scheduling
problems’. In: Computers & Operations Research 38.1. Project Management and Scheduling,
pp. 3–13.

Kuhn, H. W. (1955). ‘The Hungarian method for the assignment problem’. In: Naval Research
Logistics (NRL) 2.1‐2, pp. 83–97.

Lahyani, R., M. Khemakhem and F. Semet (2015). ‘Rich vehicle routing problems: From a
taxonomy to a definition’. In: European Journal of Operational Research 241.1, pp. 1–14.

Land, A. H. and A. G. Doig (1960). ‘An automatic method of solving discrete programming
problems’. In: Econometrica: Journal of the Econometric Society, pp. 497–520.

Laporte, G., H. Mercure and Y. Norbert (1984). ‘Optimal tour planning with specified nodes’. In:
RAIRO-Operations Research 18.3, pp. 203–210.

Lodi, A. (2010). ‘Mixed Integer Programming Computation’. In: 50 Years of Integer Program-
ming 1958-2008: From the Early Years to the State-of-the-Art. Ed. by M. Jünger et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 619–645.

Lübbecke, M. E. (2010). ‘Column Generation’. In: Wiley Encyclopedia of Operations Research and
Management Science. John Wiley & Sons, Inc.

Lübbecke, M. E. and J. Desrosiers (2005). ‘Selected topics in column generation’. In: Operations
Research 53.6, pp. 1007–1023.

Lysgaard, J., A. N. Letchford and R. W. Eglese (2004). ‘A new branch-and-cut algorithm for the
capacitated vehicle routing problem’. In: Mathematical Programming 100.2, pp. 423–445.

Mak, V. (2001). ‘On the Asymmetric Travelling Salesman Problem with Replenishment Arcs’.
PhD thesis. University of Melbourne.

Marques Silva, J. P. and K. A. Sakallah (1996). ‘GRASP–A New Search Algorithm for Satisfiability’.
In: Proceedings of the 1996 IEEE/ACM International Conference on Computer-aided Design.
ICCAD ’96. San Jose, California, USA: IEEE Computer Society, pp. 220–227.

Mercier, A., J.-F. Cordeau and F. Soumis (2005). ‘A computational study of Benders decomposition
for the integrated aircraft routing and crew scheduling problem’. In: Computers & Operations
Research 32.6, pp. 1451–1476.

Mercier, A. and F. Soumis (2007). ‘An integrated aircraft routing, crew scheduling and flight
retiming model’. In: Computers & Operations Research 34.8, pp. 2251–2265.

178 Bibliography

Mesquita, M. and A. Paias (2008). ‘Set partitioning/covering-based approaches for the integrated
vehicle and crew scheduling problem’. In: Computers & Operations Research 35.5, pp. 1562–
1575.

Michel, L. and P. Van Hentenryck (2010). ‘Basic CP Theory: Search’. In: Wiley Encyclopedia of
Operations Research and Management Science. John Wiley & Sons, Inc.

Milano, M. (2010). ‘Constraint Programming Links with Math Programming’. In: Wiley Encyclo-
pedia of Operations Research and Management Science. John Wiley & Sons, Inc.

Miller, C. E., A. W. Tucker and R. A. Zemlin (1960). ‘Integer Programming Formulation of
Traveling Salesman Problems’. In: Journal of the ACM 7.4, pp. 326–329.

Mitchell, J. E. (2010). ‘Branch and Cut’. In: Wiley Encyclopedia of Operations Research and
Management Science. John Wiley & Sons, Inc.

Moskewicz, M. W. et al. (2001). ‘Chaff: Engineering an efficient SAT solver’. In: Proceedings of
the 38th annual Design Automation Conference. ACM, pp. 530–535.

Murty, K. G. (2010). ‘History of LP Development’. In: Wiley Encyclopedia of Operations Research
and Management Science. John Wiley & Sons, Inc.

Naddef, D. and G. Rinaldi (2002). ‘Branch-and-Cut Algorithms for the Capacitated VRP’. In: The
Vehicle Routing Problem. Ed. by P. Toth and D. Vigo. The Vehicle Routing Problem. Society
for Industrial and Applied Mathematics. Chap. 3, pp. 53–84.

Nemani, A. K. and R. K. Ahuja (2011). ‘Shortest Path Problem Algorithms’. In:Wiley Encyclopedia
of Operations Research and Management Science. John Wiley & Sons, Inc.

Nemhauser, G. L. and L. A. Wolsey (1999). Integer and Combinatorial Optimization. Wiley-
Interscience.

Ohrimenko, O., P. J. Stuckey and M. Codish (2009). ‘Propagation via lazy clause generation’. In:
Constraints 14.3, pp. 357–391.

Padberg, M. and G. Rinaldi (1991). ‘A Branch-and-Cut Algorithm for the Resolution of Large-
Scale Symmetric Traveling Salesman Problems’. In: SIAM Review 33.1, pp. 60–100.

Pecin, D. et al. (2014). ‘Improved Branch-Cut-and-Price for Capacitated Vehicle Routing’. In:
Integer Programming and Combinatorial Optimization: 17th International Conference, IPCO
2014, Bonn, Germany, June 23-25, 2014. Proceedings. Ed. by J. Lee and J. Vygen. Springer
International Publishing, pp. 393–403.

Peng, J. and M. Salahi (2011). ‘Interior Point Methods for Nonlinear Programs’. In: Wiley Encyc-
lopedia of Operations Research and Management Science. John Wiley & Sons, Inc.

Pesant, G. et al. (1998). ‘An Exact Constraint Logic Programming Algorithm for the Traveling
Salesman Problem with Time Windows’. In: Transportation Science 32.1, pp. 12–29.

Poggi, M. and E. Uchoa (2014). ‘New Exact Algorithms for the Capacitated Vehicle Routing
Problem’. In: ed. by D. Vigo and P. Toth. Second Edition. Vehicle Routing: Problems, Methods,
and Applications. Society for Industrial and Applied Mathematics. Chap. 3, pp. 59–86.

Prabhu, N. (2010). ‘The Simplex Method and Its Complexity’. In:Wiley Encyclopedia of Operations
Research and Management Science. John Wiley & Sons, Inc.

Puchinger, J. et al. (2011). ‘Dantzig-Wolfe decomposition and branch-and-price solving in G12’.
In: Constraints 16.1, pp. 77–99.

179

Rader, D. J. (2010). Deterministic operations research: models and methods in linear optimization.
John Wiley & Sons.

Røpke, S. (2012). The Solomon instances are solved! Presentation at the International Workshop
on Column Generation 2012.

Røpke, S. and J.-F. Cordeau (2009). ‘Branch and Cut and Price for the Pickup and Delivery
Problem with Time Windows’. In: Transportation Science 43.3, pp. 267–286.

Røpke, S., J.-F. Cordeau and G. Laporte (2007). ‘Models and branch-and-cut algorithms for pickup
and delivery problems with time windows’. In: Networks 49.4, pp. 258–272.

Rossi, F., P. Van Beek and T. Walsh (2006). Handbook of constraint programming. Elsevier.
Rousseau, L.-M., M. Gendreau and G. Pesant (2002). ‘Using Constraint-Based Operators to Solve

the Vehicle Routing Problem with Time Windows’. In: Journal of Heuristics 8.1, pp. 43–58.
Rousseau, L.-M., M. Gendreau, G. Pesant and F. Focacci (2004). ‘Solving VRPTWs with Constraint

Programming Based Column Generation’. In: Annals of Operations Research 130.1, pp. 199–
216.

Schutt, A. et al. (2009). ‘Why Cumulative Decomposition Is Not as Bad as It Sounds’. In: Principles
and Practice of Constraint Programming - CP 2009. Ed. by I. P. Gent. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 746–761.

Schutt, A. et al. (2010). ‘Explaining the cumulative propagator’. In: Constraints 16.3, pp. 250–282.
Schutt, A. et al. (2013). ‘Solving RCPSP/max by lazy clause generation’. In: Journal of Scheduling

16.3, pp. 273–289.
Sellmann, M. (2004). ‘Theoretical Foundations of CP-Based Lagrangian Relaxation’. In: Principles

and Practice of Constraint Programming – CP 2004: 10th International Conference, CP 2004,
Toronto, Canada, September 27 - October 1, 2004. Proceedings. Ed. by M. Wallace. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 634–647.

Semet, F., P. Toth and D. Vigo (2014). ‘Classical Exact Algorithms for the Capacitated Vehicle
Routing Problem’. In: ed. by D. Vigo and P. Toth. Second Edition. Vehicle Routing: Problems,
Methods, and Applications. Society for Industrial and Applied Mathematics. Chap. 2, pp. 37–
57.

Solomon, M. M. (1987). ‘Algorithms for the Vehicle Routing and Scheduling Problems with Time
Window Constraints’. In: Operations Research 35.2, pp. 254–265.

Stuckey, P. J. et al. (2014). ‘The MiniZinc challenge 2008–2013’. In: AI Magazine 35.2, pp. 55–60.
Terlaky, T. (2010). ‘Introduction to Polynomial Time Algorithms for LP’. In: Wiley Encyclopedia

of Operations Research and Management Science. John Wiley & Sons, Inc.
Thorsteinsson, E. (2001). ‘Branch-and-Check: A Hybrid Framework Integrating Mixed Integer

Programming and Constraint Logic Programming’. In: Principles and Practice of Constraint
Programming – CP 2001. Ed. by T. Walsh. Vol. 2239. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 16–30.

Van Hentenryck, P. (1989). Constraint satisfaction in logic programming. MIT Press Cambridge.
Van Hentenryck, P. and T. Graf (1992). ‘Standard forms for rational linear arithmetic in constraint

logic programming’. In: Annals of Mathematics and Artificial Intelligence 5.2, pp. 303–319.

180 Bibliography

Van Hentenryck, P. and L. Michel (2013). ‘The Objective-CP Optimization System’. In: Principles
and Practice of Constraint Programming: 19th International Conference, CP 2013, Uppsala,
Sweden, September 16-20, 2013. Proceedings. Ed. by C. Schulte. Vol. 8124. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, pp. 8–29.

Van Hentenryck, P. and M. Milano (2011). Hybrid Optimization: The Ten Years of CPAIOR. Vol. 45.
Springer Optimization and Its Applications. Springer.

Vanderbei, R. J. (2014). Linear Programming: Foundations and Extensions. 4th. Vol. 196. Interna-
tional Series in Operations Research & Management Science. Springer.

Vigo, D. and P. Toth (2014). Vehicle Routing: Problems, Methods, and Applications. Second Edition.
Society for Industrial and Applied Mathematics.

Volgenant, T. and R. Jonker (1987). ‘On Some Generalizations of the Travelling-Salesman Prob-
lem’. In: The Journal of the Operational Research Society 38.11, pp. 1073–1079.

Winston, W. L. (2004). Operations Research: Applications and Algorithms. 4th. Duxbury Press.
Wright, S. J. (1997). Primal-Dual Interior-Point Methods. Society for Industrial and Applied

Mathematics.
Zhang, L. et al. (2001). ‘Efficient Conflict Driven Learning in a Boolean Satisfiability Solver’.

In: Proceedings of the 2001 IEEE/ACM International Conference on Computer-aided Design.
ICCAD ’01. San Jose, California: IEEE Press, pp. 279–285.

Appendix A

Supplementary Results for
Branch-and-Check with
Explanations

Tables A.1 and A.2 on the next two pages contain additional experimental results for shorter runs
(1 minute and 5 minutes respectively) of the Branch-and-Check with Explanations algorithm
seen in Table 5.3. These results show that there is no significant change to the conclusions made
in Chapter 5 for shorter time-outs.

181

182
A
ppendix

A
.
Supplem

entary
Results

for
Branch-and-C

heck
w
ith

Explanations

Branch-and-Check – Most-Fractional Branch-and-Check – Activity-based

No Strengthening With Strengthening No Strengthening With Strengthening Branch-and-Cut

Instance LB UB Time LB UB Time LB UB Time LB UB Time LB UB Time

R201 1055.5 1211.6 – 1114.3 1160.5 – 1053.4 1181.5 – 1114.3 1149.9 – 1132.7 1155.6 –
R202 763.6 1254.3 – 825.2 1302.4 – 764.6 1133.4 – 812.3 1112.8 – 888.6 4980.0 –
R203 659.3 1273.7 – 683.6 1416.4 – 659.2 1025.2 – 688.8 1058.3 – 748.1 4980.0 –
R204 624.7 1236.7 – 633.7 1193.3 – 625.3 868.2 – 633.5 949.8 – 661.9 4980.0 –
R205 796.7 1229.1 – 859.1 1207.1 – 794.2 1091.3 – 852.6 1096.2 – 900.0 4980.0 –
R206 684.9 1237.4 – 737.3 1338.7 – 684.4 1040.1 – 726.3 1068.0 – 783.6 4980.0 –
R207 646.9 1193.8 – 665.6 1260.6 – 648.4 940.7 – 669.1 957.1 – 714.8 4980.0 –
R208 623.2 1113.8 – 628.6 1246.5 – 623.4 855.0 – 629.3 852.4 – 651.8 4980.0 –
R209 685.1 1302.9 – 726.5 1313.3 – 685.8 1049.4 – 718.9 1073.8 – 785.8 4980.0 –
R210 680.1 1318.0 – 729.2 1246.7 – 679.0 1108.9 – 728.8 1036.4 – 798.3 4980.0 –
R211 621.2 1335.5 – 630.6 1529.8 – 621.6 1004.2 – 630.2 1068.8 – 645.1 4980.0 –

C201 589.1 589.1 0.0 589.1 589.1 0.0 589.1 589.1 0.0 589.1 589.1 0.0 589.1 589.1 11.5
C202 549.8 764.6 – 583.8 642.2 – 548.7 629.9 – 589.1 589.1 10.0 589.1 589.1 202.9
C203 524.4 1122.8 – 560.6 722.6 – 524.8 704.9 – 553.2 610.2 – 586.0 632.3 –
C204 514.2 1012.1 – 534.2 1112.4 – 515.6 884.5 – 533.4 661.2 – 584.4 597.1 –
C205 543.8 783.1 – 586.4 586.4 0.2 546.0 613.1 – 586.4 586.4 15.8 586.4 586.4 334.4
C206 539.9 851.7 – 586.0 586.0 12.2 539.2 702.6 – 586.0 586.0 10.5 586.0 586.0 419.0
C207 539.2 867.8 – 585.8 585.8 19.7 538.3 637.1 – 585.8 585.8 8.4 585.8 585.8 527.5
C208 535.6 867.0 – 585.8 585.8 54.2 532.5 665.8 – 585.8 585.8 10.4 585.8 585.8 569.7

RC201 1080.2 1458.2 – 1242.5 1262.9 – 1080.4 1338.3 – 1261.8 1261.8 45.5 1250.1 1288.2 –
RC202 702.5 1508.1 – 885.2 1550.0 – 699.2 1204.2 – 862.0 1152.3 – 940.1 6609.4 –
RC203 615.7 1473.8 – 695.3 1444.6 – 611.3 1149.0 – 691.1 1151.5 – 781.6 6609.4 –
RC204 582.6 1420.8 – 645.2 1645.7 – 582.2 1007.1 – 628.9 937.0 – 692.7 6609.4 –
RC205 823.0 1621.3 – 1035.9 1366.6 – 819.0 1249.8 – 996.3 1300.3 – 1081.7 6609.4 –
RC206 784.1 1551.5 – 926.6 1392.7 – 785.4 1270.2 – 909.7 1258.1 – 974.8 6609.4 –
RC207 644.7 1522.3 – 758.8 1686.0 – 642.8 1193.5 – 762.6 1172.1 – 832.4 6609.4 –
RC208 572.7 1779.6 – 621.7 1799.7 – 574.0 1065.8 – 613.5 1080.3 – 647.7 6609.4 –

Table A.1: Experimental results for 1-minute runs of Branch-and-Check Explanations. The table reports the lower bound, upper bound and time to
prove optimality for each of the solvers. The best upper bound for each instance is shown in bold.

183

Branch-and-Check – Most-Fractional Branch-and-Check – Activity-based

No Strengthening With Strengthening No Strengthening With Strengthening Branch-and-Cut

Instance LB UB Time LB UB Time LB UB Time LB UB Time LB UB Time

R201 1055.4 1198.0 – 1117.6 1143.3 – 1055.9 1177.6 – 1115.4 1149.9 – 1132.7 1155.6 –
R202 763.3 1224.0 – 845.1 1251.1 – 764.0 1133.4 – 847.3 1109.3 – 888.6 4980.0 –
R203 659.4 1244.8 – 706.5 1283.2 – 658.9 1025.2 – 703.6 1052.2 – 748.1 4980.0 –
R204 625.3 1166.7 – 637.7 1193.3 – 625.6 858.4 – 637.0 899.1 – 661.9 4980.0 –
R205 797.2 1222.7 – 878.0 1161.5 – 794.3 1091.3 – 874.2 1076.9 – 900.0 4980.0 –
R206 687.1 1214.9 – 749.6 1157.4 – 684.2 1040.1 – 741.8 1031.3 – 783.6 4980.0 –
R207 647.2 1193.8 – 678.8 1178.0 – 647.5 940.7 – 682.8 951.0 – 714.8 4980.0 –
R208 622.6 1097.4 – 633.1 1214.5 – 623.4 855.0 – 633.9 832.5 – 651.8 4980.0 –
R209 687.5 1249.3 – 749.8 1172.5 – 685.4 1046.6 – 745.9 1073.8 – 785.8 4980.0 –
R210 682.1 1225.6 – 745.4 1240.3 – 679.6 1105.6 – 742.9 1024.9 – 798.3 4980.0 –
R211 621.2 1335.5 – 632.5 1355.9 – 620.7 1004.2 – 632.2 1065.1 – 645.1 4980.0 –

C201 589.1 589.1 0.0 589.1 589.1 0.0 589.1 589.1 0.0 589.1 589.1 0.0 589.1 589.1 11.5
C202 550.0 687.9 – 589.1 589.1 124.2 548.2 629.9 – 589.1 589.1 11.6 589.1 589.1 202.9
C203 526.4 1007.3 – 563.2 680.0 – 524.7 686.5 – 562.6 605.3 – 586.0 632.3 –
C204 514.3 946.7 – 553.2 1106.7 – 514.7 884.5 – 552.2 660.9 – 584.4 597.1 –
C205 545.3 724.1 – 586.4 586.4 0.2 546.3 613.1 – 586.4 586.4 14.7 586.4 586.4 334.4
C206 538.8 806.0 – 586.0 586.0 12.2 538.2 702.6 – 586.0 586.0 9.8 586.0 586.0 419.0
C207 538.2 851.1 – 585.8 585.8 18.7 538.3 635.2 – 585.8 585.8 7.1 585.8 585.8 527.5
C208 534.1 867.0 – 585.8 585.8 52.1 532.5 652.4 – 585.8 585.8 12.5 585.8 585.8 569.7

RC201 1083.7 1421.1 – 1245.2 1261.8 – 1081.0 1338.3 – 1261.8 1261.8 56.9 1250.1 1288.2 –
RC202 702.8 1480.0 – 902.0 1452.5 – 699.2 1204.2 – 905.7 1152.3 – 940.1 6609.4 –
RC203 616.1 1408.2 – 742.9 1359.6 – 611.3 1149.0 – 740.6 1125.7 – 781.6 6609.4 –
RC204 583.4 1419.9 – 656.0 1352.4 – 582.2 1007.1 – 652.1 926.6 – 692.7 6609.4 –
RC205 823.1 1511.6 – 1071.8 1321.2 – 818.8 1249.8 – 1054.3 1245.3 – 1081.7 6609.4 –
RC206 789.4 1485.4 – 959.9 1309.6 – 784.9 1270.2 – 947.1 1204.5 – 974.8 6609.4 –
RC207 646.5 1496.7 – 786.7 1606.1 – 642.8 1193.5 – 797.4 1172.1 – 832.4 6609.4 –
RC208 576.0 1737.3 – 624.0 1776.1 – 573.9 1039.5 – 624.2 1078.4 – 647.7 6609.4 –

Table A.2: Experimental results for 5-minutes runs of Branch-and-Check Explanations.

	Abstract
	Declaration
	Preface
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Mixed Integer Programming Models
	Constraint Programming Models
	Hybrid Models
	Preview of the Thesis

	Background
	Constrained Optimization Problems
	Linear Programming
	Solutions to Linear Programs
	Solution Methods

	Mixed Integer Programming
	Branch-and-Bound
	Branch-and-Cut
	Branch-and-Price
	Branch-and-Cut-and-Price

	Boolean Satisfiability
	The Davis-Putnam-Logemann-Loveland Algorithm
	Conflict Analysis

	Constraint Programming
	Branch-and-Prune
	Conflict Analysis

	Hybridization Techniques
	Global Optimization Constraints
	Constraint-based Lagrangian Relaxation
	Constraint-based Column Generation
	Logic-based Benders Decomposition and Branch-and-Check

	Vehicle Routing Problems
	Models of Vehicle Routing Problems
	Mixed Integer Programming Models
	Constraint Programming Models

	The Joint Vehicle and Crew Routing and Scheduling Problem
	Literature Review
	Problem Description
	High-Level Modeling Concepts
	The Mixed Integer Programming Model
	The Constraint Programming Model
	Breaking Crew Subpath Symmetries within Locations
	Feasibility and Bounding of Crew Routes
	The Search Procedures

	The Large Neighborhood Search
	Experimental Results
	The Instances
	The Methods
	Feasible Solutions
	The Impacts of Rescheduling Vehicles
	The Impacts of Rerouting Vehicles
	The Impacts of Rerouting and Rescheduling Vehicles
	Detailed Analysis

	Conclusion

	The Vehicle Routing Problem with Location Congestion
	Literature Review
	The High-Level Description
	The Mixed Integer Programming Model
	The Constraint Programming Model
	The Branch-and-Price-and-Check Model
	The Master Problem
	The Pricing Subproblem
	The Separation Subproblem
	The BPC Search Algorithm

	Experimental Results
	Conclusion

	Branch-and-Check with Explanations
	The Branch-and-Check Model of the VRPTW
	Nogood Strengthening
	Experimental Results
	Future Research Directions
	Conclusion

	Conclusion
	Bibliography
	Supplementary Results for Branch-and-Check with Explanations

