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Abstract This paper describes the implementation of Nutmeg, a solver that
hybridizes mixed integer linear programming and constraint programming
using the branch-and-cut style of logic-based Benders decomposition known as
branch-and-check. Given a high-level constraint programming model, Nutmeg
automatically derives a mixed integer programming master problem that omits
global constraints with weak linear relaxations, and a constraint programming
subproblem identical to the original model. At every node in the branch-and-
bound search tree, the linear relaxation computes dual bounds and proposes
solutions, which are checked for feasibility of the omitted constraints in the
constraint programming subproblem. In the case of infeasibility, conflict analysis
generates Benders cuts, which are appended to the linear relaxation to cut off
the candidate solution. Experimental results show that Nutmeg’s automatic
decomposition outperforms pure constraint programming and pure mixed
integer programming on problems known to have successful implementations of
logic-based Benders decomposition, but performs poorly on general problems,
which lack specific decomposable structure. Nonetheless, Nutmeg outperforms
the standalone approaches on one problem with no known decomposable
structure, providing preliminary indications that a hand-tailored decomposition
for this problem could be worthwhile. On the whole, Nutmeg serves as a valuable
tool for novice modelers to try hybrid solving and for expert modelers to quickly
compare different logic-based Benders decompositions of their problems.
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1 Introduction

Combinatorial optimization problems are abstract mathematical problems
with immense practicality. Therefore, solving them quickly is of interest to
both academics and practitioners. Combinatorial optimization problems can be
solved using any one of a variety of methods, including dynamic programming,
Boolean satisfiability (SAT), mixed integer programming (MIP) and constraint
programming (CP), to name just a few. Even though these methods have expo-
nential worst-case time complexity, each has its own strengths and weaknesses,
making some methods faster than others at particular problems. Usually, the
speed difference arises from a method’s ability or inability to exploit certain
substructures within a problem. This paper studies a hybridization of MIP and
CP that decomposes substructures to either MIP or CP in order to exploit
their unique strengths and alleviate their weaknesses.

To solve a problem using either MIP or CP, the problem must be formally
stated as a model. A model consists of unknowns, called variables, and relation-
ships between the variables, called constraints. In an optimization problem, as
opposed to a satisfaction problem, the model also contains an objective function,
which computes a number to be minimized or maximized, called the objective
value. The problem can then be solved by calling a solver, an implementation
of an algorithm, on the model.

CP solvers typically run a tree search algorithm. At every node of the
search tree, the solver maintains a set of values that each variable can take,
called its domain, and calls a sequence of subroutines, called propagators, to
remove inconsistent values from the domains. A solution is found whenever
the domain of every variable is reduced to a singleton. Effective CP models
typically use global constraints for declaring high-level substructures, such as
network flow, bin packing or disjunctive scheduling. A major strength of CP
is that solvers often implement specialized propagators for reasoning over the
entire substructure of a global constraint, allowing domains to be reduced
very quickly. The canonical example is cumulative scheduling, for which CP is
state-of-the-art and has closed many difficult benchmarks [31].

MIP solvers also search a tree but take a different approach. At every node
of the search tree, MIP solvers solve a relaxation; usually, but not always, a
linear programming (LP) relaxation. A relaxation of a problem is identical to
the originating problem but omits some of its constraints. Consequently, the
optimal objective value of a relaxation provides a dual bound to the originating
problem. This value also bounds the optimal objective value of all nodes in the
subtree below the node. High-performance MIP models have a tight relaxation,
i.e., one whose convex hull is close to its integer hull. Some models (e.g.,
those with a totally unimodular matrix and integer right-hand side) can be
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theoretically proven that their LP relaxation is as tight as possible, i.e., its
convex hull and integer hull coincide [10]. A consequence is that the MIP model
is solved in one call to an LP solver, and hence, the problem can be solved in
polynomial time.

Despite CP’s impressive ability to reason within individual substructures
using global constraints, reasoning across multiple substructures/constraints
remains a challenge because each constraint has no knowledge about every
other constraint. CP has considerable difficulty at reasoning across different
constraints to optimize a linear objective function because it has no global
view of the problem and because propagation of linear constraints is weak.
In particular, CP performs especially poorly if many constraints are linear,
i.e., the problem is or nearly is a pure MIP problem. Contrastingly, MIP
problems are stated on a matrix, and solving its LP relaxation is equivalent to
performing elementary row operations, essentially allowing for communication
across constraints. Notably, reasoning over a polytope to optimize a linear
objective function is trivial for LP.

Propagation and relaxation are complementary, and fully exploiting this
complementarity should lead to speed improvements. Logic-based Benders de-
composition (LBBD) formalizes this approach to hybridization [21]. Successful
implementations of LBBD typically use CP to reason about individual sub-
structures and MIP to aggregate this information across various substructures
using linear constraints; also gaining the dual bound in the process.

A major disadvantage of LBBD in the past is that it is always problem-
specific. Recently, two teams independently invented a generic form of LBBD,
enabling LBBD of arbitrary problems with little effort [11,25]. The present
paper, written by the two teams together, further develops these ideas into a
publicly-available solver named Nutmeg. Given a high-level model of a problem,
Nutmeg automatically builds a MIP master problem and a CP checking
subproblem using the LBBD framework. Nutmeg then proceeds to solve the
two problems side-by-side in a single branch-and-bound search tree. The MIP
master problem optimizes a linear objective function while the CP checking
subproblem propagates global constraints to reduce the variable domains. In
addition, dual bounds in the MIP master problem are communicated to the
CP subproblem for propagation, and infeasibilities in the CP subproblem are
transferred to the MIP master problem as Benders cuts. The remainder of this
paper details the method and empirically compares it against pure CP and
pure MIP approaches on a large range of problems.

2 Related Work

Hybridization of MIP and CP is a highly active area of research. SCIP is a
MIP solver that supports many features foundational to CP, such as global
constraints, propagation and conflict analysis [2,1]. Even though SCIP natively
supports global constraints, the key difference is that Nutmeg implements a
decomposition; it does not simply extend a MIP solver with propagation and
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conflict analysis (as in SCIP). Rather, Nutmeg moves complicating variables
and constraints out of a monolithic model into a subproblem, in the hope that
the master problem is smaller and can be solved faster.

The use of MIP methods in CP also has a long history. LP propagators
have long been used within CP solvers [32] in order to better reason about
conjunctions of linear constraints. Similarly, network flow algorithms [30]
and general network flow propagators [33] have been used extensively in CP.
However, the generic use of MIP techniques to find dual bounds is limited.
Problem-specific CP solvers have implemented dual bounds using a variety of
methods, including global optimization constraints [13], Lagrangian relaxation
[14,6], Dantzig-Wolfe reformulation [22] and LBBD [21]. A summary of these
techniques can be found in the short survey in [23].

The two main goals of Nutmeg are to provide better reasoning about
a conjunction of linear constraints (i.e., a polytope) in a CP solver and to
find tighter dual bounds via a linear relaxation. This is accomplished using
LBBD. Classical Benders decomposition splits a monolithic MIP model into a
MIP master problem and an LP subproblem, both of which contain different
variables and constraints [7]. The method then iteratively solves the two
problems. The master problem proposes a candidate solution. The subproblem
checks the solution and communicates infeasibility or superoptimality to the
master problem by adding rows, now known as Benders feasibility cuts and
Benders optimality cuts respectively [34]. Benders cuts are found using LP
duality theory, which has no equivalent for MIP subproblems. LBBD expands
upon LP duality by defining an inference dual to any general optimization
problem [21], enabling MIP subproblems or even general discrete subproblems.
Unlike classical Benders decomposition, there is no exact form that applies to
every problem due to its generality. Every implementation of LBBD requires
the user to analyze the problem and precisely define the Benders cuts added
to the master problem.

An automatic mechanism to generate Benders cuts applicable to all CP
problems was independently invented by [11] and [25]. The method relies
on conflict analysis of lazy clause generation CP solvers, which themselves
are hybrids of SAT and traditional finite-domain CP solvers [28,12]. Conflict
analysis generates a clause (i.e., a disjunction of Boolean variables) explaining
an infeasibility. The clause is then translated into a Benders cut in the MIP
master problem.

In [11], the method is implemented by adapting the MiniZinc modeling
system [27]. The MiniZinc controller iterates between a MIP solver and a CP
solver. It finds an optimal MIP solution, which is passed to the CP solver to
check. Their results showed that the hybrid method outperformed pure MIP
and pure CP models on a variety of problems with known successful LBBD
implementations.

In [25], a specialized branch-and-cut solver is built for the Vehicle Routing
Problem with Time Windows. It passes every LP solution in the branch-and-
bound tree to the CP solver. Borrowing terminology from earlier works [35,4],
the algorithm was named branch-and-check with explanations. The solver found
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cuts identical to problem-specific cuts previously proposed in the literature.
Consequently, these cuts are lifted using existing techniques by recognizing the
form of the cuts. The solver also found problem-specific cuts that have never
before appeared in the literature.

Even though the results of [11,25] are peer-reviewed, their codes are not
intended for general use. The solver of [25] is problem-specific, and the system
from [11] requires hand-tuning for each problem. The present paper, authored
by both teams, develops these concepts into a fully-working solver available
for public use. This paper does not present significant advances in the theory
of hybridization, but rather, describes a new implementation in the definitive
journal version of the earlier conference works.

3 Preliminaries

This section presents several concepts necessary for the discourse in the re-
mainder of the paper.

3.1 Logic-based Benders Decomposition

LBBD is a method for solving combinatorial problems with substructures
suited to MIP and substructures suited to CP. It is defined using an inference
dual in the general case, but this paper only introduces a special case relevant
to hybridizing MIP and CP.

An assumption of many CP approaches is that every variable takes integer
values and has a finite domain. Hence, CP models are bounded. Consider a
general bounded problem P that has variables partitioned into two groups
x = (x1, . . . , xn) and y = (y1, . . . , ym), each with finite domains Dx ⊆ Zn

and Dy ⊆ Zm. Without loss of generality, the problem minimizes x1 over the
intersection of some linear constraints A1x ≤ b1 on the x variables and some
general constraints S ⊆ Dx ×Dy on both the x and y variables. For example,
S can contain global constraints or channeling constraints between multiple
modelings. The problem P can be stated as follows:

min x1

subject to A1x ≤ b1,

(x,y) ∈ S,

x ∈ Dx,

y ∈ Dy.

Define the MIP master problem M of P as:

min x1

subject to A1x ≤ b1,

A2x ≤ b2,

x ∈ Dx,
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1. MIP master problem: Solve M to optimality. If it is infeasible, report infeasibility
and exit. Otherwise, retrieve its solution x̂.

2. CP checking subproblem: Temporarily fix x to x̂ in C. Solve C. If it is infeasible,
create one or more of Constraint (1), add them to M and go back to Step 1.

3. Optimal: The problem is solved to optimality. Return the solution (x̂, ŷ) from C.

Fig. 1 The basic LBBD algorithm.

where {x ∈ Dx|y ∈ Dy, (x,y) ∈ S} ⊆ {x ∈ Dx|A2x ≤ b2}. Then, the
constraints A2x ≤ b2 are said to be a relaxation of S. Since Dx is finite, M is
bounded. Clearly, M is a MIP relaxation of P. Next, define the CP checking
subproblem C of P as the satisfiability version of P:

min 0

subject to A1x ≤ b1,

(x,y) ∈ S,

x ∈ Dx,

y ∈ Dy.

Notice that A1x ≤ b1 also appears in C, even though it already exists inM. As
explained later in Section 4.3, including it in C can lead to more propagation
when dealing with fractional solutions from the LP relaxation of M.

In some sense, this decomposition delegates the optimization parts to the
MIP problem and the satisfiability parts to the CP problem. Such a decompo-
sition – one that includes all the original constraints in the CP subproblem –
is rare in the literature.

The LBBD methodology iterates between the master problem M and the
subproblem C, but exactly when to solve them is a choice in the implementation.
The basic LBBD algorithm is summarized in Figure 1. (Nutmeg implements
the branch-and-cut form of LBBD, called branch-and-check, as described later.)
Step 1 solves the MIP master problem optimally. If it is infeasible, the algorithm
immediately exits. Otherwise, anM-feasible solution x̂ exists since the problem
is bounded. In Step 2, x̂ is fed into the CP checking subproblem to check for
feasibility of the omitted constraints S. If the subproblem finds that x̂ is
infeasible with respect to S, one or more linear constraints

Ax̂x ≤ bx̂ (1)

are added to the master problem to remove x̂. The LBBD algorithm then
solves the master problem again, iterating between the two problems until the
subproblem declares that x̂ is feasible. The first feasible solution (x̂, ŷ) in the
checking subproblem is optimal for the original problem P.

As in standard CP models, the objective function is equated to a variable.
Hence, there is no need to distinguish between feasibility cuts and optimality
cuts. Constraint (1) is simply referred to as a Benders cut. Unlike classical
Benders decomposition, a general template of Constraint (1) does not exist
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in LBBD; its exact form is problem-specific. The remainder of this section
presents an example.

Example 1 (Cumulative Scheduling with Optional Tasks) The global constraint
CumulativeOptional optionally schedules tasks on machines. Machines
can be thought of as replenishing resources. Given a set I = {1, . . . , I} of
I ∈ Z+ tasks, the constraint CumulativeOptional(x, s,d, r, C) takes a
vector x = (x1, . . . , xI) ∈ {0, 1}I of binary variables indicating whether a task
is scheduled or ignored, a vector s = (s1, . . . , sI) ∈ ZI

+ of integer variables
representing the starting time of the active tasks (i.e., every task i ∈ I with
xi = 1), a constant vector d = (d1, . . . , dI) ∈ ZI

+ of the duration of each
task, a constant vector r = (r1, . . . , rI) ∈ ZI

+ for the number of machines
simultaneously required for each task, and a scalar C ∈ Z+ representing the
total number of machines available. The constraint attempts to schedule the
tasks {i ∈ I|xi = 1} on C machines, where each task i uses ri machines from
time si to time si + di − 1 (inclusive).

Consider this constraint as S in the definition of P and C. A possible linear
relaxation of S is the constraint∑

i∈I
ri · di · xi ≤ C · T,

where T = maxi∈I(max(Dsi) + di − 1) is the time before which all tasks must
be completed and Dsi is the domain of si. This constraint is known as the
energy relaxation because it reasons about the “area under the curve”. Figure 2
illustrates this relaxation for a CumulativeOptional constraint with three
machines and two tasks. Each task i ∈ {1, 2} requires ri = 2 machines, has a
duration of di = 3 and must start between time 1 and 2, i.e., si ∈ {1, 2}. Then,
the time horizon is T = 4. The full constraint, shown on the left, permits at
most one task to be scheduled. The energy relaxation, shown on the right, only
bounds the total number of squares in use.

Example 2 (Planning and Scheduling) The Planning and Scheduling problem
assigns jobs to facilities and then schedules the jobs at each facility on a number
of machines [19,20]. Let T ∈ Z+ be the time horizon before which all jobs must
be completed. Define J = {1, . . . , J} as the set of jobs and F = {1, . . . , F} as
the set of facilities. Let xj,f ∈ {0, 1} be a binary decision variable indicating
whether job j ∈ J is assigned to facility f ∈ F , and let sj,f ∈ Z+ be an integer
decision variable for the start time of job j when j is assigned to facility f , i.e.,
when xj,f = 1. If j is assigned to f , it incurs a cost cj,f ∈ Z+, has a duration
of dj,f ∈ Z+ units of time, uses rj,f ∈ Z+ machines at f simultaneously, and
must start within some time window {aj,f , . . . , bj,f} ⊆ {1, . . . , T − dj,f + 1}.
Each facility f has a total of Cf ∈ Z+ machines. The problem minimizes the
total cost of assigning jobs to facilities.

The problem P is stated in Figure 3. Each facility f ∈ F is associated
with one CumulativeOptional constraint that schedules all jobs assigned
to f , i.e., the jobs {j ∈ J |xj,f = 1}. The MIP master problem M is shown
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Fig. 2 An example of the energy relaxation of the CumulativeOptional constraint.

min z (2a)

subject to

z =
∑
j∈J

∑
f∈F

cj,f · xj,f (2b)

∑
f∈F

xj,f = 1 ∀j ∈ J , (2c)

CumulativeOptional((xj,f |j ∈ J ), (sj,f |j ∈ J ), (dj,f |j ∈ J ), (rj,f |j ∈ J ), Cf )

∀f ∈ F , (2d)

xj,f ∈ {0, 1} ∀j ∈ J , f ∈ F , (2e)

sj,f ∈ {aj,f , . . . , bj,f} ∀j ∈ J , f ∈ F . (2f)

Fig. 3 The Planning and Scheduling problem.

min z (3a)

subject to

z =
∑
j∈J

∑
f∈F

cj,f · xj,f (3b)

∑
f∈F

xj,f = 1 ∀j ∈ J , (3c)

∑
j∈J

rj,f · dj,f · xj,f ≤ Cf · T ∀f ∈ F , (3d)

xj,f ∈ {0, 1} ∀j ∈ J , f ∈ F . (3e)

Fig. 4 The MIP master problem in an LBBD of the Planning and Scheduling problem.
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in Figure 4. Constraint (3d) is the energy relaxation of Constraint (2d). The
CP checking subproblem is exactly the original problem without the objective
function, and hence, is not shown here.

For any candidate solution x̂ in the MIP master problem, define 1x̂ =
{(j, f)|x̂j,f = 1} as the set of job-facility pairs taking value 1. Whenever the
CP subproblem detects that x̂ is infeasible, Constraint (1) is realized as the
inequality ∑

(j,f)∈1x̂

xj,f ≤ |1x̂| − 1. (4)

This Benders cut forces the MIP solver to choose another set of assignments
by prohibiting at least one of the selected assignments.

3.2 Bound Disjunction Constraints

Benders cuts over binary variables are simple to add to a MIP model (e.g.,
Constraint (4)). Nutmeg supports Benders cuts over integer variables, which
are non-trivial to capture in MIP. Benders cuts over integer variables can be
implemented using bound disjunction constraints, which generalize a disjunction
of binary variables (i.e., a clause) to a disjunction of bound tightenings of
integer variables.

For any integer variable x ∈ Z, define a binary variable named Jx = kK
that takes value 1 if and only if x takes value k ∈ Z in the same solution and
takes value 0 otherwise. Similarly, define binary variables Jx 6= kK, Jx ≥ kK and
Jx ≤ kK that respectively indicate whether x 6= k, x ≥ k and x ≤ k. These
binary indicator variables are called literals. Notice that Jx 6= kK = 1− Jx = kK
and Jx ≤ kK = 1− Jx ≥ k + 1K. Therefore, only some of these literals need to
be considered explicitly.

For a problem with I ∈ Z+ integer variables x1, . . . , xI , a bound disjunction
constraint is a disjunction of literals of the form:∨

(i,k)∈L≥

Jxi ≥ kK ∨
∨

(i,k)∈L≤

Jxi ≤ kK, (5)

where L≥, L≤ ⊆ {1, . . . , I} × Z are sets of pairs of variable indices and values
that specify the literals of the constraint. If all the xi variables in Constraint (5)
are binary, the constraint can be trivially linearized. Otherwise, there are three
common ways of implementing a bound disjunction constraint in MIP.

Propagation Constraint (5) can simply be propagated exactly like in CP. Upon
selecting the next node to solve in the branch-and-bound tree, the node is
preprocessed to remove inconsistent values in the variable domains. Even
though the propagator is domain consistent, it does not filter the domains
much since it is an extremely weak constraint. The only propagation that occurs
is that whenever all but one of the literals are assigned 0, the remaining literal
is fixed to 1, satisfying the constraint; and whenever all literals are assigned 0,
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infeasibility of the constraint is detected. Since the constraint does not appear
in the LP relaxation, this approach suffers from many of the same weaknesses as
CP. For example, the constraint could be infeasible in the LP relaxation (called
rationally infeasible), but this fact cannot be detected because propagation
only reasons about one constraint at a time.

Indicator Constraints Constraint (5) can be explicitly added to the model as:∑
(i,k)∈L≥

Jxi ≥ kK +
∑

(i,k)∈L≤

Jxi ≤ kK ≥ 1. (6)

The literals Jxi ≥ kK and Jxi ≤ kK must also appear in the model. They are
added as binary variables, together with the indicator constraints:

Jxi ≥ kK = 1→ xi ≥ k,

Jxi ≥ kK = 0→ xi ≤ k − 1,

Jxi ≤ kK = 1→ xi ≤ k,

Jxi ≤ kK = 0→ xi ≥ k + 1.

Indicator constraints themselves can be implemented using either a big-M
constraint or an inequality and an SOS1 constraint. Indicator constraints are
well-established in modern MIP solvers, so we do not discuss them in detail.

Linking Constraints Under this approach, the entire unary encoding of the
domain Dxi of every integer variable xi in Constraint (6) is added as equality
literals, along with constraints that link the literals to the originating integer
variable:

xi =
∑

k∈Dxi

k · Jxi = kK,

∑
k∈Dxi

Jxi = kK = 1.

Constraint (6) is added to the model after substituting:

Jxi ≤ kK =
∑

j∈Dxi
∩{−∞,...,k}

Jxi = jK,

Jxi ≥ kK =
∑

j∈Dxi
∩{k,...,∞}

Jxi = jK.

This approach makes the matrix much denser and explodes the size of the
matrix with many more auxiliary variables. However, for integer variables
with small domains, linking constraints are faster than indicator constraints in
practice [5,29].
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3.3 Conflict Analysis

In all modern SAT solvers, every change to a domain is recorded in a graph
called the implication graph. Whenever a propagation is infeasible, the search
algorithm calls a subroutine, called conflict analysis, that inspects the chain of
propagations that led to the infeasibility and then creates a constraint, called
a nogood, that prevents the infeasibility from occurring again in the remainder
of the search tree [26]. This is because any subtree that contains the same
propagations will always violate the nogood, and hence, the entire subtree can
be discarded. Conflict analysis dramatically improves the solving speed and is
the defining feature of contemporary SAT solvers.

Lazy clause generation CP solvers make use of SAT conflict analysis [28].
Every change to the domain of an integer variable is implicitly or explicitly
associated with a literal. In CP problems with only integer variables (e.g., no
set variables or graph variables), conflict analysis generates nogoods in the
form of bound disjunction constraints. Nutmeg uses conflict analysis to find
nogoods, which are translated into bound disjunction Benders cuts.

3.4 Assumptions Interface

Many decomposition-based solving techniques solve a sequence of closely-related
subproblems as a subroutine. In SAT and lazy clause generation CP solvers,
this can be facilitated by an assumptions interface. Rather than solving a
base problem C, C can be solved subject to assumptions A = a1 ∧ . . . ∧ an,
where a1, . . . , an are additional constraints. The solver then produces a solution
satisfying both C and A, or returns an assumptions nogood N defined by a
subset A′ of A such that C ∧A′ is infeasible. The nogood N takes the form

¬
∧

a∈A′
a

or equivalently, ∨
a∈A′
¬a.

The advantage of the assumptions approach is that the problem C can
be re-solved under different assumptions, while preserving the rest of the
solver state. In an arbitrary solver, this could be achieved by solving each
instance from scratch and then returning A if C ∧ A is infeasible. SAT and
lazy clause generation CP solvers can do better. By preserving the database of
learnt clauses, the solver can avoid re-exploring the same infeasible subtrees
in multiple calls to the solver. By using conflict analysis, the solver can also
trim A down to a smaller (though not necessarily minimal) set of assumptions
that caused the failure. Nutmeg makes use of the assumptions interface in an
underlying CP solver when repeatedly solving C. Doing so enables Nutmeg to
benefit from efficiencies in the implementation.
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4 Branch-and-check in Nutmeg

This section presents the implementation of Nutmeg.

4.1 Underlying Solvers

Nutmeg is a meta-solver that implements a generalization of the branch-
and-check ideas of [25,11]. It is simply a thin layer that calls an underlying
MIP solver and CP solver, and communicates information from one solver
to the other. At present, the MIP solver is SCIP 6.0.2 [18]. The CP solver
is a forthcoming lazy clause generation solver named Geas [17], which is the
successor of the experimental but state-of-the-art solver Chuffed [9].

4.2 Modeling and Automatic Decomposition

Nutmeg provides a C++ programming interface and a MiniZinc modeling
interface. Using either interface, users can declare variables and add constraints
to build a model in the form of either P, or M and C.

Users can declare a model in the form of P and defer the decomposition
of P into M and C to Nutmeg’s automatic decomposition mechanism. To do
this, users simply create variables and add constraints as usual. Nutmeg uses
a pre-defined library of rewritings to add linear constraints A2x ≤ b2 to M
and general constraints (x,y) ∈ S to C. The library of rewritings defines a
linearization or linear relaxation in M and global constraints augmented with
redundant constraints to assist propagation in C. The following example shows
how the rewriting proceeds.

Example 3 (Planning and Scheduling) Consider the Planning and Schedul-
ing problem in Example 2. Users can input P as shown in Figure 3. Given
P, Nutmeg builds C by dropping the objective from P. Nutmeg builds M
by substituting global constraints for linear constraints obtained from its li-
brary of rewritings. The library currently contains the energy relaxation of
CumulativeOptional from Example 1. Therefore, Nutmeg buildsM exactly
as presented in Figure 4.

The library of rewritings is made transparent; fully exposing how an input
constraint is rewritten into linear constraints in M and general constraints
in C. Instead of adding a high-level P-constraint, users can directly add (a
subset of) the M- and C-rewritings. Users can also completely ignore the
library of rewritings and add any constraint they desire directly to M and C.
In effect, users can precisely specify M and C, bypassing Nutmeg’s automatic
decomposition of P.

The linearization or linear relaxation of some global constraints, such as
CumulativeOptional, are easy to implement. Other global constraints are
much more difficult to implement, even if they have simple linearizations.
Example 4 describes one such constraint.
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1. Node Selection: Select an open node. Terminate if no open nodes remain.
2. Feasibility Check: For every variable xi with local bounds âi ≤ xi ≤ b̂i, add assump-

tions xi ≥ âi and xi ≤ b̂i to A. Propagate C ∧A. If any variable bounds were tightened
in C ∧A, tighten them in M. In the case of an empty domain, the node is infeasible, so
perform conflict analysis, add the resulting nogood to both C and M, and go back to
Step 1.

3. Suboptimality Check: Solve the LP relaxation. If the objective value is worse than
the incumbent solution, go back to Step 1. Otherwise, retrieve its solution x̂.

4. Candidate Solution Check: For every variable xi with value x̂i in the LP solution,
add assumptions xi ≥ bx̂ic and xi ≤ dx̂ie to A. Solve C ∧A. If it fails, perform conflict
analysis, add the nogood to both C and M, and go back to Step 3. If it succeeds, store
the CP solution (x̂, ŷ) as the incumbent.

5. Branch: Select a variable xi with fractional value x̂i in the LP solution, if any. Then,
create a child node with xi ≤ bx̂ic and another child with xi ≥ dx̂ie. Go to Step 1.

Fig. 5 The branch-and-check algorithm.

Example 4 (Assignment Problem) The AllDifferent global constraint cap-
tures the Assignment Problem substructure. Given a vector x = (x1, . . . , xI)
of I ∈ Z+ integer variables, AllDifferent(x) permits each value to be as-
signed to at most one of x1, . . . , xI . Let I = {1, . . . , I}. The linearization of
AllDifferent(x) is∑

i∈I
Jxi = kK ≤ 1 ∀k ∈

⋃
i∈I

Dxi ,

where Dxi is the domain of xi. Since this linearization is very tight, it is likely
worthwhile to include the entire linearization in M. Nutmeg creates every
literal Jxi = kK as a binary variable in M. These literals are then connected
to the originating variable xi in C. If the integer variable xi exists in M (e.g.,
because another linearization or linear relaxation requires the integer value),
Nutmeg also adds a linking constraint. The implementation of all these concepts
is highly non-trivial.

4.3 The Branch-and-Check Algorithm

Nutmeg solves M and C using the branch-and-cut form of LBBD known
as branch-and-check [35,4]. The key difference to branch-and-cut is that cut
separation is performed automatically by conflict analysis within a CP solver,
rather than implemented specifically for one family of cuts, and that the
cuts can span all variables, rather than one class of variables (e.g., subtour
elimination cuts in the Traveling Salesman Problem only concern arc variables).

The branch-and-check algorithm is sketched in Figure 5. The main difference
to the basic LBBD algorithm in Figure 1 is that it calls the CP subproblem on
every LP solution, instead of only onM-optimal solutions, i.e., P-superoptimal
solutions.

A subtlety here is that primal and dual bounds are applied to the objective
variable (i.e., x1 from Section 3.1) in the Feasibility Check and Candidate
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Solution Check. Therefore, (x̂, ŷ) in the Candidate Solution Check is always
an improving solution.

Recall from Section 3.1 that A1x ≤ b1 is included in the CP subproblem
even though it already exists in the MIP master problem. Consider the con-
straint 2x1 + x2 ≤ 1 with a fractional solution x̂1 = x̂2 = 1/3. The Candidate
Solution Check transfers this fractional solution to the CP subproblem as the
bounds 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1. Explicitly including the constraint in the
CP subproblem will propagate x1 ≤ 0, and hence, fix x1 = 0.

As defined, the branch-and-check algorithm eagerly runs the Candidate
Solution Check after every LP solve. This provides for the most interaction
between the two problems and prunes nodes at the earliest opportunity. How-
ever, in highly fractional LP solutions, this scheme requires more computation
time since the CP subproblems could be very difficult to solve.

Calling the Candidate Solution Check only at MIP integral solutions leads
to less interaction and less time spent in the CP subproblem but at the expense
of a larger search tree. However, this CP subproblem is much easier to solve
since the x variables have integer values, and hence, are fixed by assumptions.
Alternatively, the Candidate Solution Check can be run on fractional solutions
with a limited computation budget. If running the check on a fractional solution
takes too long, aborting the check and continuing with processing the node
has no adverse effects. Of course, checking an integer solution cannot be
terminated early since it could be a leaf node. The decision about when to call
the Candidate Solution Check and with what budget are parameters in the
implementation.

4.4 Nogoods

By making assumptions consisting of only bound changes, all resultant nogoods
are guaranteed to be bound disjunction constraints that only contain literals
concerning variables that appear in the master problem. The procedure for
upgrading a nogood and then adding it to the master problem is shown in
Figure 6.

The nogoods are not necessarily minimal; i.e., they may contain excess
literals not necessary for explaining a failure. Nutmeg begins with a prepro-
cessing step that temporarily removes one literal from the nogood and makes
new assumptions on those literals. If the CP subproblem reports the new
assumptions are infeasible, then the literal did not contribute to the failure and
is permanently removed. Otherwise, the literal is reinstated and the process
continues to the next literal. This occurs until every literal is examined. A
time limit and conflict limit, given as parameters, are placed on this optional
strengthening phase.

If the improved nogood is empty, then the problem is globally infeasible, so
the solver exits. If the nogood contains exactly one literal, the bound change is
enacted globally. If the nogood only contains literals over binary variables, it
can be easily added as a cut. Otherwise, the nogood contains integer variables
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1. Preprocess: Temporarily remove each literal from the nogood in turn. Make new
assumptions using the literals in the nogood. Recheck using the CP subproblem. If
feasible, reinstate the literal into the nogood.

2. Empty Nogood: If the nogood is empty, the problem is infeasible. Terminate.
3. Singleton Nogood: If the nogood contains exactly one literal, the bound change is set

globally.
4. Binary Nogood: If the nogood only contains literals of binary variables, it is added to

the MIP master problem as the cut∑
i∈L1

xi +
∑
i∈L0

(1− xi) ≥ 1,

where L1 = {i|(i, 1) ∈ L≥} and L0 = {i|(i, 0) ∈ L≤}.
5. Integer Nogood: If the nogood contains integer variables, a bound disjunction con-

straint is added.

Fig. 6 The procedure for adding a nogood to the MIP master problem.

and cannot be simplified. Nutmeg uses SCIP as the MIP solver, which natively
supports bound disjunction by propagation. It runs a SAT-style propagator
but also branches on one of the disjuncts in certain cases. If a different MIP
solver is used, any one of the three approaches mentioned in Section 3.2 for
implementing bound disjunction constraints can be used.

Example 5 (Planning and Scheduling) Consider an instance of the Planning
and Scheduling problem from Example 2 with time horizon T = 4, a single
facility 1 with capacity 3 and two jobs 1 and 2. Each job must start between
time 1 and 2, has a duration of 3 and uses 2 resources. Activating both jobs
satisfies the relaxation (Constraint (3d)) but does not satisfy the original
constraint (Constraint (2d)), as illustrated in Figure 2. Given this candidate
solution, the CP subproblem will detect an infeasibility and create the nogood

Jx1,1 = 0K ∨ Jx2,1 = 0K,

which is added to the MIP master problem as the row

(1− x1,1) + (1− x2,1) ≥ 1,

or equivalently, as the clique constraint

x1,1 + x2,1 ≤ 1.

This constraint is incompatible with Constraint (3c), enabling the MIP solver
to declare that the problem is infeasible.

4.5 Block-diagonal Structure

In mathematical programming decompositions (e.g., Dantzig-Wolfe or Benders),
block-diagonal structure can be decomposed into one independent subproblem
per block. Nutmeg takes a different approach: all “blocks” are contained within
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the singular subproblem C. The reason for this is that conflict analysis will
never generate a nogood spanning multiple blocks because they are independent
by definition.

5 Experimental Results

The experiments compare branch-and-check against pure CP and pure MIP.
Two variants of branch-and-check are tested: (1) B&C-LP runs the CP checking
subproblem at every fractional and integer solution with a limit of 0.3 seconds
and 300 conflicts for fractional solutions, and (2) B&C-MIP runs the CP
checking subproblem only at integer solutions. The standalone approaches use
the same solvers, specifically, Geas and SCIP. All solvers are single-threaded
and are run for ten minutes on an Intel Xeon E5-2660 V3 CPU at 2.6 GHz.
The four methods are evaluated on four experiments that explore Nutmeg’s
performance on different problem classes. The findings are presented below.

5.1 Known Successful Problems

The first experiment runs the four methods on three problems recognized to
have successful implementations of LBBD. The purpose of this experiment is
to verify that the decomposition, and especially the automatic decomposition,
is indeed faster than the standalone approaches. This experiment evaluates the
solvers on the following three problems:

– Planning and Scheduling (P&S): This problem is introduced in Exam-
ple 2. There are a total of 335 instances.

– Capacity- and Distance-constrained Plant Location Problem (CD-
CPLP): This problem, formalized in the appendix, is a variation on the
classical Facility Location problem [3]. The problem allocates customers to
facilities at some cost. All facilities are initially closed and can be opened
at some cost if assigned customers. The problem also contains a fleet of
distance-limited vehicles stationed at the facilities to serve the customers.
The number of vehicles in use also contributes to the total cost. At each
facility, customers are assigned to a particular vehicle using a BinPacking
constraint, which is a special case of the CumulativeOptional constraint.
There are 300 instances.

– Vehicle Routing Problem with Location Congestion (VRPLC):
This problem, formalized in the appendix, routes vehicles to various sites
to deliver goods subject to travel time, time windows and vehicle capacity
constraints [24]. Each site features a Cumulative constraint that schedules
the deliveries around the availability of equipment for unloading the vehicles.
The MIP master problem contains the base Vehicle Routing Problem and the
empty relaxation of the Cumulative constraints. The objective minimizes
the total travel distance. There are 450 instances.
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Fig. 7 Cumulative number of instances solved over time for each problem in the first
experiment. Higher is better.

All these problems have similar structure: they contain the Assignment Problem
plus some side constraints and either Cumulative or CumulativeOptional
global constraints. This problem structure is ideally suited to LBBD because
MIP easily solves the base Assignment Problem since it possesses the integrality
property (i.e., it can be solved in one call to an LP solver [10]), and CP excels
at cumulative scheduling but has difficulty at reasoning over linear constraints.
Given this problem structure, LBBD follows naturally.

Figure 7 plots the number of instances solved to proven optimality or
infeasibility. On CDCPLP, B&C-MIP solves the most instances, followed by
MIP. B&C-LP solves one-third the number of instances solved by B&C-MIP.
On the instances with feasible but not provably optimal solutions, B&C-MIP,
B&C-LP and MIP achieve an average optimality gap of 8.9%, 15.5% and 19.1%
respectively. (Since CP does not solve a relaxation, dual bounds and gaps are
not available.)

On P&S, the two branch-and-check methods are essentially identical, solving
many more instances than the standalone methods. B&C-MIP, B&C-LP and
MIP obtain an average optimality gap of 19.9%, 22.3% and 1.9% on the
instances with feasible but not optimal solutions. There are several instances
in which branch-and-check gets stuck within the CP subproblem, resulting in
a 100% optimality gap, which skews these statistics in favor of MIP.

On VRPLC, the two branch-and-check methods solve substantially more
instances than standalone CP and MIP. The optimality gap of feasible but
not provably optimal instances are 21.5%, 45.7% and 53.9% for B&C-MIP,
B&C-LP and MIP.

These results suggest that B&C-MIP dominates B&C-LP. Presumably,
this is due to the large number of calls asking the subproblem to check frac-
tional solutions that are CP-feasible; resulting in no cut being generated but
time wasted on checking them. Overall, these results indicate that Nutmeg’s
automatic decomposition succeeds on problems with structure suited to LBBD.
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Fig. 8 Cumulative number of instances solved over time for each problem in the second
experiment. Higher is better.

5.2 Makespan Objective Function

The previous experiment consists of problems with linear constraints, scheduling
constraints and a linear objective function, which is natural for MIP but difficult
for CP. The second experiment swaps the cost objective for the makespan
objective, which appears frequently in scheduling problems. This objective
function minimizes the time at which the last task is completed. This kind
of minimax objective is known to perform poorly in MIP because it has a
weak linear relaxation, but perform well in CP because optimizing a minimax
objective is essentially equivalent to solving a sequence of progressively tighter
satisfiability problems. The goal of the second experiment is to determine
whether the MIP master problem can optimize a CP-preferred objective solely
via the subproblem.

This experiment compares the four methods on P&S and VRPLC from the
previous experiment but with the makespan objective. CDCPLP is excluded
because it uses the BinPacking constraint, which has no meaning in the
context of scheduling, despite being implemented by the same propagator as
CumulativeOptional.

Figure 8 clearly shows that the minimax objective sufficiently destroys the
nice structure, allowing pure CP to outperform the other approaches. For P&S,
the average optimality gap of feasible but not provably optimal instances are
40.0%, 39.3% and 18.0% for B&C-MIP, B&C-LP and MIP. Again, MIP finds
bounds tighter than branch-and-check on average because branch-and-check
gets trapped within the CP subproblem on some instances, resulting in a gap
of 100%. For VRPLC, the instances are trivial for CP. B&C-MIP, B&C-LP and
MIP find an average optimality gap of 50.4%, 63.6% and 67.3% on feasible but
not optimal instances. These results demonstrate that the branch-and-check
master problem has little information for optimizing the objective after moving
the scheduling constraints into the subproblem.
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Fig. 9 Cumulative number of instances solved over time in the third experiment. Higher is
better.

5.3 MiniZinc Challenge

The next experiment comprises problems from the 2013 to 2019 MiniZinc
Challenges. This experiment, the first of its kind, evaluates the main contribu-
tion of Nutmeg; that is, the automatic LBBD of arbitrary problems, including
those for which decomposable structure is either not known or not explicitly
programmed. Six problems (35 instances) are excluded because they contain
global constraints whose propagator is not yet implemented in Geas. In total,
this experiment consists of 667 instances across 94 problems. These problems
are highly varied: while several problems contain simple structure that could
be suitable for LBBD after some manual manipulation, many problems are
clearly unstructured.

Figure 9 shows that branch-and-check performs poorly without appropri-
ate structure. Branch-and-check solves significantly fewer instances than CP
and MIP because the master problem has little or no knowledge about the
constraints moved into the subproblem, and hence, continually searches for
solutions that do not exist. Even though MIP solves many more instances, the
average optimality gaps of B&C-MIP, B&C-LP and MIP on feasible instances
are 68.3%, 70.9% and 218.8%. These numbers are skewed against MIP because
there are outliers with a very high optimality gap (one as high as 10200%).

5.4 Spot5

Analyzing the results to each problem in the MiniZinc Challenges reveals
that Nutmeg does perform well on one of these problems, namely, the Spot5
problem. This problem, formalized in the appendix, only contains Table global
constraints, which currently has no linear relaxation. That is, the MIP master
problem has no constraints at all.
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Fig. 10 Cumulative number of instances solved over time in the fourth experiment. Higher
is better.

Contributors to the MiniZinc Challenge submit a model together with a
large number of instances to the organizers, who shortlist a few instances
based on their difficulty. Ten instances of Spot5 are included in the MiniZinc
Challenge but a total of 21 instances are submitted. The final experiment runs
all 21 instances in order to confirm results suggesting that Nutmeg performs
well on the initial ten instances.

Figure 10 indicates that B&C-LP outperforms the other methods on this
problem, solving one more instance than B&C-MIP. The average optimality
gap of B&C-MIP, B&C-LP and MIP on the instances with feasible but not
optimal solutions are 58.1%, 43.4% and 60.4%.

This experiment demonstrates that Nutmeg does indeed have a purpose.
In general, decomposable structure is necessary for Nutmeg to perform well.
However, even when that structure is not declared, there are problems (albeit
few) where the automatic decomposition is useful. These findings suggest that
a hand-tailored implementation of branch-and-check could be worthwhile for
the Spot5 problem.

6 Conclusions and Future Work

LBBD is an important framework for separating a problem into a master
problem and one or more subproblems that can be tackled using any technology
for which an inference dual is available. The master problem is often MIP and
the subproblems CP. Unlike standard Benders decomposition in mathematical
programming, LBBD is much more general, and hence, its Benders cuts have no
exact form; their form must be invented for every problem, essentially making
re-use impossible.

Recently, two teams independently developed CP conflict analysis into a
generic procedure for separating Benders cuts in LBBD. The present paper,
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authored by both teams together, further advances these ideas in a definitive
journal version of the earlier conference works. This paper describes the imple-
mentation of a new MIP and CP hybrid meta-solver named Nutmeg. The solver
hybridizes MIP and CP using branch-and-check, a method based on LBBD
that tightly connects a MIP master problem and a CP checking subproblem
within a single branch-and-bound search tree. Given an arbitrary high-level
CP problem, Nutmeg automatically derives a MIP relaxation that omits global
constraints with weak linear relaxations, and uses the LP relaxation to compute
dual bounds, enabling earlier pruning of suboptimal subtrees in comparison to
pure CP solvers. Reasoning about individual substructures embedded within
global constraints is handled using CP, which generates Benders cuts via con-
flict analysis. Information about domains and bounds are also passed in both
directions.

Nutmeg is evaluated on a variety of problem classes. The results indicate that
branch-and-check performs well on problems with decomposable structure that
can be nicely separated into MIP-preferred portions and CP-preferred portions
(e.g., an Assignment Problem with cumulative scheduling). However, in general,
branch-and-check performs poorly on problems lacking this structure. The
master problem repeatedly proposes solutions that are simply infeasible because
it has no knowledge about the omitted constraints. Nevertheless, Nutmeg solves
more instances of the Spot5 problem from the MiniZinc Challenge than pure
MIP and pure CP, even though no decomposable structure is available. This
result indicates that studying the problem to find a decomposable structure and
then developing a hand-tailored problem-specific solver could be worthwhile.

Calling the checking subproblem on every fractional solution in the branch-
and-bound tree is often slower than calling it only on integer solutions. Pre-
sumably, this is because of the large number of fractional solutions feasible
in the subproblem and also because every cutting plane internally added by
SCIP during the branch-and-cut search also induces another round of calling
the checking subproblem. This leads to an excessive number of calls, which
may not generate useful nogoods. Future work should devise better strategies
of when to solve the subproblem and for how long.

Nutmeg does not currently divide block-diagonal structure into multiple
independent subproblems, but rather, uses a single monolithic subproblem.
Even though there is no benefit in theory due to conflict analysis, solving
multiple smaller subproblems is likely to be faster than solving one large
subproblem in practice. A low-priority improvement to the implementation is
to add the ability to split the subproblem into several easier subproblems.

Nutmeg’s automatic decomposition relies on its pre-defined library of rewrit-
ings, which is fairly basic at this stage and remains a topic of continuing work.
Many of the global constraints currently use an empty linear relaxation, and
hence, the MIP master problem receives no information at all, leaving the
entire constraint to be considered in the CP subproblem. For the approach to
perform well, the number of constraints in the linear relaxation of a difficult
global constraint must be few and these constraints must be reasonably tight.
One ongoing challenge is to find a good balance between a relaxation that
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closely resembles the original global constraint and one that does not introduce
too many new columns and/or rows into the MIP master problem.

Strengthening cuts is a common technique of branch-and-cut models of
many MIP problems. Usually, the strengthening relies on problem-specific
polyhedral analysis absent in general. Problem-specific cuts can be strengthened
by recognizing the form of the nogoods and then lifting them as in the existing
approaches [25]. A general mechanism to strengthen cuts for arbitrary problems
remains an important unanswered question.

Cuts separated by SCIP during the solution process (e.g., knapsack cover
cuts) are not transferred to the CP checking subproblem. Since linear constraints
do not propagate strongly in CP, these cuts are not expected to have large
impact. Future work can consider transferring these cuts and investigating new
types of generic (global) constraints that will propagate strongly in CP.

A branch-and-check option can be considered within a parallel portfolio
of solvers that includes standalone CP and MIP. Run-time information from
the independent runs of the CP and MIP solvers may be able to guide the
search towards a better trade-off, or indeed decide that all effort should be
concentrated on a pure CP or pure MIP approach.

It will also be interesting to implement automatic LBBD within other
automatic decomposition solvers, such as GCG [16,15]. GCG can seamlessly
reformulate a problem using Dantzig-Wolfe decomposition and solve it using
branch-and-cut-and-price. The two main benefits of Dantzig-Wolfe reformu-
lation are that it achieves a tighter linear relaxation and that it completely
eliminates symmetries arising from permuting the index of variables. For these
two reasons, state-of-the-art methods for many Vehicle Routing Problems are
based on branch-and-cut-and-price. Conversely, state-of-the-art methods for
problems with cumulative scheduling are based on CP because their linear
relaxations are weak. Connecting Nutmeg with GCG will allow a combination
of automatic Dantzig-Wolfe reformulation and automatic LBBD of high-level
models. This should benefit problems like the VRPLC by removing symmetry
in the index of the vehicles using Dantzig-Wolfe reformulation and by reasoning
across the timing of all routes using propagation.

In conclusion, Nutmeg adds the first hybrid solving option to the many
choices of singular-approach solvers available within the MiniZinc modeling
system. For inexperienced modelers, Nutmeg enables effortless hybrid solv-
ing with one click. For expert modelers, Nutmeg serves as a useful tool for
quickly evaluating different structures for LBBD within a user-friendly modeling
language.
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6. Benchimol, P., van Hoeve, W.J., Régin, J.C., Rousseau, L.M., Rueher, M.: Improved
filtering for weighted circuit constraints. Constraints 17(3), 205–233 (2012)

7. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems.
Numerische mathematik 4(1), 238–252 (1962)

8. Bensana, E., Lemaitre, M., Verfaillie, G.: Earth observation satellite management.
Constraints 4(3), 293–299 (1999)

9. Chu, G.G.: Improving combinatorial optimization. Ph.D. thesis, University of Melbourne
(2011). URL http://hdl.handle.net/11343/36679
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Appendix

This appendix presents several models used in the experiments.

Capacity- and Distance-constrained Plant Location Problem

The Capacity- and Distance-constrained Plant Location Problem (CDCPLP) is
proposed in [3]. This problem considers a set F of facilities. Every facility f ∈ F
is initially closed but can be opened at a cost wopen

f ∈ Z+. Let of ∈ {0, 1} be a
binary variable indicating whether facility f ∈ F is opened.

Let C be the set of customers, each of which must be assigned to an opened
facility. Assigning customer c ∈ C to facility f ∈ F incurs a cost wassign

c,f ∈ Z+.
Let xc,f ∈ {0, 1} be a binary variable indicating whether customer c ∈ C is
assigned to facility f ∈ F . Every customer c ∈ C requires dc ∈ Z+ of demand.
Each facility f ∈ F can support up to Df ∈ Z+ of demand.

Customers assigned to a facility receive deliveries from trucks stationed
at the facility. Allow up to T ∈ Z+ trucks to be stationed at a facility, and
let T = {1, . . . , T} be the set of trucks. Let tc ∈ T be an integer variable for
the number of the truck assigned to customer c ∈ C. Define qc,f ∈ Z+ as the
distance from facility f ∈ F to customer c ∈ C and back. Each truck can carry
the goods of only one customer at a time, and can travel up to Q ∈ Z+ in
total distance. Let nf ∈ T be an integer variable for the total number of trucks
required at facility f ∈ F . Every truck kept at facility f ∈ F incurs a cost
wtruck

f ∈ Z+.
The model is shown in Figure 11. Objective Function (7a) minimizes the

total cost of (1) opening facilities, (2) assigning customers to facilities and (3)
keeping trucks at facilities. Constraint (7b) opens a facility if it is assigned
customers. This constraint also limits the number of customers assigned to a
facility according to its maximum demand. Constraint (7c) assigns customers
to trucks stationed at a facility while considering the total travel distance of
each truck. Constraint (7d) calculates the number of trucks used at a facility.

Constraint (7e) and (7f) are redundant constraints, which improve the
propagation. Constraint (7e) bounds the number of trucks required at a fa-
cility. Constraint (7f) limits the number of customers assigned to a facility.
Constraints (7g) to (7j) give the variable domains.

Vehicle Routing Problem with Location Congestion

The Vehicle Routing Problem with Location Congestion (VRPLC) is introduced
in [24]. The problem tasks a set of vehicles to deliver goods from a central depot
to various locations subject to vehicle constraints and location constraints.

Let R be the set of requests to be delivered. Let ⊥ denote the depot, and
let N = R∪ {⊥}. Let L be the set of locations. Every request i ∈ R must be
delivered to location li ∈ L. Let Rl = {i ∈ R|li = l} be the requests to be
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min
∑
f∈F

wopen
f · of +

∑
c∈C

∑
f∈F

wassign
c,f · xc,f +

∑
f∈F

wtruck
f · nf (7a)

subject to∑
c∈C

dc · xc,f ≤ Df · of ∀f ∈ F , (7b)

BinPacking((xc,f |c ∈ C), (tc|c ∈ C), (qc,f |c ∈ C), Q) ∀f ∈ F , (7c)

xc,f → nf ≥ tc ∀f ∈ F , c ∈ C, (7d)

nf ≤
∑
c∈C

xc,f ∀f ∈ F , (7e)

∑
c∈C

qc,f · xc,f ≤ Q · nf ∀f ∈ F , (7f)

of ∈ {0, 1} ∀f ∈ F , (7g)

xc,f ∈ {0, 1} ∀c ∈ C, f ∈ F , (7h)

tc ∈ T ∀c ∈ C, (7i)

nf ∈ T ∀f ∈ F . (7j)

Fig. 11 The high-level model of the CDCPLP.

delivered to location l ∈ L. The key difference to standard Vehicle Routing
Problems is the inclusion of location scheduling constraints. Every location l
has a limited number Cl ∈ Z+ of equipment for unloading a vehicle. Therefore,
deliveries must be scheduled around the availability of the equipment.

Let T ∈ Z+ be the time horizon. All deliveries must be completed and
all vehicles must return to the depot before T . The problem also considers
the usual vehicle capacity and time window constraints. Every request i ∈ N
has weight qi ∈ Z+ (q⊥ = 0) and every vehicle can carry up to Q ∈ Z+ in
weight. Delivery i ∈ N must begin after ai ∈ Z+ (a⊥ = 0) and before bi ∈ Z+

(b⊥ = T ). Performing delivery i ∈ R uses one piece of equipment at li for
si ∈ Z+ time.

Let A = N × N \ {(i, i)|i ∈ N} denote the arcs. Define xi,j as a binary
variable indicating whether a vehicle travels along arc (i, j) ∈ A. Traveling along
(i, j) consumes ci,j ∈ Z+ time. Define a variable wi for the total weight delivered
after i ∈ N along a route, and define a variable ti for the time of starting
delivery i ∈ N . The model is presented in Figure 12. Objective Function (8a)
minimizes the total travel time. Constraints (8b) and (8c) requires every request
to be delivered. Constraint (8d) limits the total weight on-board a vehicle.
Constraint (8e) enforces the travel time between two deliveries. Constraint (8f)
schedules the requests at locations. Constraints (8g) to (8i) give the variable
domains.
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min
∑

(i,j)∈A
ci,j · xi,j (8a)

subject to∑
h:(h,i)∈A

xh,i = 1 ∀i ∈ R, (8b)

∑
j:(i,j)∈A

xi,j = 1 ∀i ∈ R. (8c)

xi,j → wj ≥ wi + qj ∀(i, j) ∈ A, (8d)

xi,j → tj ≥ ti + ci,j ∀(i, j) ∈ A, (8e)

Cumulative((ti|i ∈ Rl), (si|i ∈ Rl), (1|i ∈ Rl), Cl) ∀l ∈ L, (8f)

xi,j ∈ {0, 1} ∀(i, j) ∈ A, (8g)

wi ∈ {qi, . . . , Q} ∀i ∈ N , (8h)

ti ∈ {ai, . . . , bi} ∀i ∈ N . (8i)

Fig. 12 The high-level model of the VRPLC.

Spot5

The Spot5 problem is proposed in [8]. The problem concerns one of the SPOT
commercial imaging satellites; specifically, the fifth satellite. Given a set of
images purchased by clients, the Spot5 problem decides on a subset of images
to capture in the next day, subject to operational constraints, such as the
availability of imaging instruments and sufficient transition time between two
successive images.

The satellite has three imaging instruments labeled 1, 2 and 3 from left
to right. Let I be the set of purchased images, and let xi be an integer
variable storing the instruments that will capture image i ∈ I. An image
i can be postponed (xi = 0) or captured using a predetermined subset of
compatible instruments: left only (xi = 1), middle only (xi = 2), right only
(xi = 3) or both left and right (xi = 13) for stereoscopic images. Let D =
{{0, 2}, {0, 13}, {0, 1, 2, 3}}, and let Di ∈ D be the set of possible instruments
for capturing image i, i.e., the domain of xi. Every image i not captured is
penalized by a cost ci ∈ Z+.

The problem uses the Table global constraint. Given a vector p ∈ Zn with
length n and a set P ⊂ Zn of vectors with length n, the constraint Table(p, P )
states that p ∈ P . Put simply, the constraint requires p to be equal to a row
in a table with rows P .

The problem contains Table constraints that define compatibility between
two images, called binary constraints, and constraints stating compatibility
between three images, called ternary constraints. Let A be the set of binary
constraints, where each constraint a ∈ A is associated with two images ua, va ∈
I and a compatibility table Ta ⊂ D×D. Let B be the set of ternary constraints,
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min
∑
i∈I

ci · Jxi = 0K (9a)

subject to

Table((xua , xva ), Ta) ∀a ∈ A, (9b)

Table((xub , xvb , xwb ), Tb) ∀b ∈ B, (9c)

xi ∈ Di ∀i ∈ I. (9d)

Fig. 13 The high-level model of the Spot5 problem.

where each constraint b ∈ B is associated with three images ub, vb, wb ∈ I and
a compatibility table Tb ⊂ D ×D ×D.

The model is now presented in Figure 13. Objective Function (9a) penal-
izes postponed images. Constraints (9b) and (9c) define compatible images.
Constraint (9d) give the variable domains.
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