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Abstract. The length-constrained cycle partition problem (LCCP) is
a graph optimization problem in which a set of nodes must be parti-
tioned into a minimum number of cycles. Every node is associated with
a critical time and the length of every cycle must not exceed the critical
time of any node in the cycle. We formulate LCCP as a set partitioning
model and solve it using an exact branch-and-price approach. We use
a dynamic programming-based pricing algorithm to generate improv-
ing cycles, exploiting the particular structure of the pricing problem for
efficient bidirectional search and symmetry breaking. Computational re-
sults show that the LP relaxation of the set partitioning model produces
strong dual bounds and our branch-and-price method improves signifi-
cantly over the state of the art. It is able to solve closed instances in a
fraction of the previously needed time and closes 13 previously unsolved
instances, one of which has 76 nodes, a notable improvement over the
previous limit of 52 nodes.
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1 Introduction

A cycle partition of an undirected graph G = (V,E) is a partition of the set
of nodes V into disjoint cycles. In the length-constrained cycle partition problem
(LCCP) introduced in [9], we are additionally given a critical time qi > 0 for
every node i ∈ V and a travel time ti,j ≥ 0 for every edge {i, j} ∈ E. We call a
cycle C = (i0, i1, . . . , iK = i0) length-feasible if it satisfies the length constraint

t(C) := ti0,i1 + ti1,i2 + . . .+ tiK−1,iK ≤ q(C) := min{qi0 , qi1 , . . . , qiK}, (1)

i.e., the total time to traverse the edges of the cycle must not exceed the critical
time of any node in the cycle. In other words an agent that continuously travels
along the cycle will visit each node i of the cycle with frequency at least qi.
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The LCCP then amounts to computing the smallest number of disjoint, length-
feasible cycles that cover all nodes.

The setting of LCCP is found to be useful, e.g., in applications where the
objective is to find the smallest number of agents to conduct periodic surveillance
or maintenance actions [10]. Similar types of length constraints can be found in
the literature on minimizing cycle length in kidney exchange programmes [14],
where the length is simply the number of nodes in the cycle.

In [9], Hoppmann-Baum et al. show that the LCCP is NP-hard by reduc-
tion from the traveling salesman problem (TSP), and that no polynomial-time
approximation algorithm exists. They present a compact mixed-integer program-
ming (MIP) formulation based on the Miller, Tucker, and Zemlin (MTZ) [18]
formulation of the TSP. This compact model was able to solve instances with
up to 29 nodes to proven optimality. In [11], the same authors introduced a MIP
formulation based on subtour elimination constraints (SEC), valid inequalities
derived from cliques in conflict hypergraphs, and an efficient primal heuristic.
A branch-and-cut implementation of the SEC model based on a state-of-the-art
commercial MIP solver was able to solve instances with up to 52 nodes. De-
spite the mentioned improvements, the proposed models suffer from symmetry,
leading to a weak linear relaxation and ineffective branching.

The goal of our work is to try and overcome several bottlenecks of the previous
approaches by considering a set partitioning formulation based on cycle variables.
LetΩ denote the set of all length-feasible cycles, and let aCi ∈ {0, 1} be a constant
equal to 1 iff node i is contained in cycle C. Introducing binary variables λC

to indicate whether cycle C ∈ Ω is used in the solution, we arrive at the set
partitioning formulation

min
∑

C∈Ω λC

s.t.
∑

C∈Ω aCi λC = 1 for all i ∈ V,

λC ∈ {0, 1} for all C ∈ Ω.

(2)

This reformulation of LCCP is inspired by formulations for the cardinality-
constrained multi-cycle problem in kidney exchange [14], where a maximum-
value packing of cycles is required, and by exact methods in many logistics
applications such as vehicle routing, see, e.g., [4]. As in these applications, it
is not viable to solve (2) explicitly due to the exponential number of variables.
Instead, we apply column generation in order to solve the linear programming
(LP) relaxation of (2) dynamically, and integrate this into an exact branch-and-
price algorithm enabling us to solve LCCP instances to proven optimality, see,
e.g., [5, 24] for a general overview of this methodology.

A major computational bottleneck in this approach is the so-called pricing
problem which needs to be solved repeatedly in order to dynamically add vari-
ables with negative reduced cost to the LP relaxation of (2). Given travel times
ti,j ≥ 0 for {i, j} ∈ E and both critical times qi > 0 and weights πi ∈ R for i ∈ V ,
the pricing problem amounts to computing a cycle C that satisfies the length
constraint (1) and maximizes the sum of node weights. We call this the length-
constrained prize-collecting cycle problem (LCPCCP). Note that problem data
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may be non-metric, i.e., travel times ti,j may violate the triangle inequality, and
that the node weights πi, which are derived as dual multipliers associated with
the partitioning constraint of the node in the LP relaxation, are not restricted
in sign. Even in the metric case and when critical times are assumed to be con-
stant, one can show that LCPCCP is strongly NP-hard by reduction from the
Hamiltonian cycle problem.

The main contributions of this paper are as follows. In Sec. 2 we present a
new dynamic programming algorithm, also known as label setting, for LCPCCP
including dominance rules for reducing the search space and an efficient bidi-
rectional search that allows us to enumerate cycles only half-way. In Sec. 3 we
integrate the resulting column generation scheme into an exact branch-and-price
algorithm enhanced by symmetry breaking, heuristic pricing, parallel pricing,
early branching, and techniques to exploit the triangle inequality for metric in-
put data. In Sec. 4 we describe the results of our computational study to analyze
the performance of the new approach on benchmark instances from the litera-
ture and to quantify the impact of the individual improvement techniques. The
full branch-and-price algorithm is able to solve 13 open instances with up to
76 nodes, and is on average 14.6 times faster than the best previous approach.

2 Dynamic Programming for the Length-Constrained
Prize-Collecting Cycle Problem

Column generation is an advanced technique for solving large linear programs
and is an essential subroutine in branch-and-price algorithms [5,24]. The method
has recently been found to date back to works by Kantorovich and Zalgaller in
1951 [13,23], and was independently developed by Gomory and Gilmore [7].

In order to solve the LP relaxation of (2) by column generation, we first note
that the upper bounds λC ≤ 1 are implied by the partitioning constraints and
can be removed. We call the resulting LP the master problem (MP). Second,
we replace Ω with a subset of columns Ω′ ⊂ Ω to form the restricted master
problem (RMP). Column generation then repeatedly optimizes the RMP, each
time producing a primal-dual pair of solutions (λ, π) and solving the so-called
pricing problem to check whether cycles C with negative reduced cost

c(C) = 1−
∑

i∈V aCi πi = 1−
∑

i∈C πi (3)

exist in Ω \Ω′. If yes, these are added to Ω′ and the RMP is reoptimized; if not,
then (λ, π) is optimal for MP. We refer to [5,24] for details on column generation.

As explained above, the pricing problem of minimizing (3) amounts to the
length-constrained prize-collecting cycle problem. In the following, suppose we
restrict LCPCCP by fixing one node s ∈ V to be contained in the cycle. Then the
resulting problem closely resembles a resource-constrained shortest path problem
(RCSPP) [12] typically solved in vehicle routing applications on a directed graph
to find a path of minimum reduced cost that starts at and returns to a given
node such that resources accumulated along arcs lie within a constant resource
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interval specified for each node. Similarly, we propose to solve LCPCCP for a
fixed start node using dynamic programming as an implicit enumeration scheme
over all length-feasible cycles starting from s.

To this end, we form partial cycles (paths) and iteratively extend these paths
with incident unvisited nodes until s is visited again, essentially closing the cycle.
If at any point a partial cycle becomes infeasible (cannot be extended to a length-
feasible cycle) or is proved to be dominated (would only lead to cycles with same
or larger reduced cost), it is discarded, see Sec. 2.1. This process is repeated
until all non-dominated length-feasible cycles are explored. If there are cycles
with negative reduced cost, the ones with minimum reduced cost are returned.

Let P = (i0, i1, . . . , iK) be a path in G = (V,E) with nodes i0, . . . , iK ∈ V
and edges {i0, i1}, . . . , {iK−1, iK} ∈ E. The path P can be represented by a
so-called label ℓ = (N, v, c, t, q) where

– N = N(ℓ) = {i1, . . . , iK} is the (unordered) set of nodes without start node,
– v = v(ℓ) = iK is the last node visited in P ,
– c = c(ℓ) = 1−

∑
i∈N πi is the reduced cost of P ,

– t = t(ℓ) =
∑K

k=1 tik−1,ik is the total travel time taken by P , and
– q = q(ℓ) = mink=0,1,...,K qik is the minimum critical time of all nodes in P .

The initial label for a starting node s is given as ℓs = ({}, s, 1, 0, qs). During
the search, a label ℓ = (N, v, c, t, q) can be extended using any edge {v(ℓ), j}
from the last node to a new node j ∈ V \N. This creates a new label ℓ+ where
N(ℓ+) = N(ℓ) ∪ {j}, v(ℓ+) = j, c(ℓ+) = c(ℓ) − πj , t(ℓ

+) = t(ℓ) + ti,j , and
q(ℓ+) = min{q(ℓ), qj}. We call a label ℓ∗ ̸= ℓs fully-extended if it represents a
cycle, i.e., if v(ℓ∗) = s. Note that LCCP allows singleton cycles (loops) as part
of the solution; these are included here as label ({s}, s, 1− πs, 0, qs). In order to
recover the cycle corresponding to a fully-extended label, we also keep track of
each label’s predecessor, i.e., the label from which it was extended.

2.1 Pruning the Search Space by Feasibility and Dominance

Besides the data structures used to represent and extend labels, the efficiency of
the resulting dynamic programming method largely depends on how much of the
search space needs to be explored in order to terminate with a provably optimal
cycle. Clearly, a label ℓ can be discarded if it can be proven to only lead to
length-infeasible cycles. This is the case if t(ℓ) > q(ℓ). Then for any extension ℓ+

of label ℓ, we have t(ℓ+) ≥ t(ℓ) > q(ℓ) ≥ q(ℓ+). By induction, all fully-extended
labels ℓ∗ obtained by successive extensions of label ℓ satisfy t(ℓ∗) > q(ℓ∗), hence
the corresponding cycles violate the length constraint (1).

An effective technique for pruning the search space further is to exploit dom-
inance relations. A label ℓa is said to dominate label ℓb if they have the same
end node v = v(ℓa) = v(ℓb), and all cycles reachable from successive extensions
of ℓa have an equal or lower reduced cost than those reachable from successive
extensions of ℓb. Then again, by induction, we may discard label ℓb in the search,
because at least one minimum reduced cost cycle must remain.



Branch-and-Price for the Length-Constrained Cycle Partition Problem 5

Lemma 1. A label ℓa dominates a label ℓb if v(ℓa) = v(ℓb) and the conditions

c(ℓa) ≤ c(ℓb), (4a)

t(ℓa) ≤ t(ℓb), and (4b)

N(ℓa) ⊆ N(ℓb) (4c)

hold.

Proof. From (4c) we have that the set of possible extensions of label ℓb is a
subset of the set of possible extensions of label ℓa. From (4c) it also follows that
q(ℓa) = mini∈N(ℓa) qi ≥ mini∈N(ℓb) qi = q(ℓb). Together with (4b) this proves
that any feasible extension of ℓb is also feasible for ℓa. Therefore, any cycle
reachable from ℓb is also reachable from ℓa, and from (4a) it has an equal or
lower reduced cost. Therefore, ℓa dominates ℓb.

2.2 Bidirectional Search

Exploring the search space from both forward and backward directions simulta-
neously is another successful technique to reduce the number of explored labels.
For the RCSPP, [21, 22] has shown that bidirectional search can be more effi-
cient than monodirectional search. The efficiency comes from the fact that the
number of non-dominated labels can grow exponentially with the length of the
paths. Hence, if it is possible to explore forward and backward paths only until
a halfway point and merge them to full paths, this can drastically reduce the
total number of labels generated.

For LCPCCP, we can apply bidirectional search even more effectively than for
the general RCSPP. Since the graph is undirected and the resource consumption
by travel times is symmetric, only extensions from one direction are needed.
Specifically, in bidirectional search for a fixed start node s, we only extend labels ℓ

with t(ℓ) < q(ℓ)
2 . We then merge non-dominated labels as follows.

Let labels ℓa and ℓb both start at s, end at v = v(ℓa) = v(ℓb), and be otherwise
disjoint, i.e., N(ℓa) ∩N(ℓb) = {v}. Then we create a cycle by concatenating the
path represented by ℓa and, in reverse order, the path represented by ℓb. We
denote the newly merged label by ℓa||ℓb, given by N(ℓa||ℓb) = N(ℓa)∪N(ℓb)∪{s},
v(ℓa||ℓb) = s, c(ℓa||ℓb) = c(ℓa) + c(ℓb)− πs + πv(ℓa) − 1, t(ℓa||ℓb) = t(ℓa) + t(ℓb),
and q(ℓa||ℓb) = min{q(ℓa), q(ℓb)}, see Fig. 1 for an example.

1ℓa 3 5 1 ℓb45

1ℓa||ℓb 3 5 4 1

Fig. 1: Example of merging two partial cycles.
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Lemma 2. Dynamic programming with dominance and bidirectional search finds
two labels ℓa and ℓb such that ℓa||ℓb represents a length-feasible cycle with mini-
mum reduced cost.

Proof. Let C = (i0, i1, . . . , iK) be a cycle with minimum reduced cost that is
found by some version of full, monodirectional forward search with dominance
checks. Suppose L⃗C = (ℓ⃗0, ℓ⃗1, . . . , ℓ⃗K) is the sequence of labels leading to C in

this search, then choose ℓ⃗k to be the first label in L⃗C where t(ℓ⃗k) ≥ q(ℓ⃗k)/2

is satisfied. Hence, label ℓa := ℓ⃗k is also explored in bidirectional search. It
represents the path (i0, i1, . . . , ik).

Next, consider a sequence of labels that would generate the same cycle, but
in reverse order, i.e., (iK , iK−1, . . . , i0). Denote this sequence of labels by ⃗LC =

( ⃗ℓK , ⃗ℓK−1, . . . , ⃗ℓ0), then ⃗ℓk represents the path (iK , iK−1, . . . , ik). From t(C) =

t(ℓ⃗k) + t( ⃗ℓk) ≤ q(C) and t(ℓ⃗k) ≥ q(ℓ⃗k)/2 it follows that

t( ⃗ℓk) = t(C)− t(ℓ⃗k) ≤ q(C)− q(ℓ⃗k)

2
≤ q(C)− q(C)

2
=

q(C)

2
≤ q( ⃗ℓk)

2
,

hence ⃗ℓk is length-feasible and within the halfway point. Therefore, unless it is
dominated, ⃗ℓk is found by bidirectional search, and we can choose ℓb := ⃗ℓk, since
ℓa||ℓb represents C. If ⃗ℓk is discarded due to dominance, then (by transitivity of

dominance) bidirectional search must find another label that dominates ⃗ℓk. By
the conditions of Lem. 1 we show that ℓb can be chosen as this dominating label.

Labels ℓa and ℓb trivially start at the same node s = i0, and due to v(ℓb) =

v( ⃗ℓk) = ik, they also end at the same node ik. Due to N(ℓb) ⊆ N( ⃗ℓk), we have

N(ℓa)∩N(ℓb) ⊆ N(ℓa)∩N( ⃗ℓk) = {ik}, i.e., they do not overlap otherwise. Hence,
they can be merged to ℓa||ℓb. It remains to show that this merged label is length-

feasible and has the same reduced cost as C. This follows from the fact that ℓa|| ⃗ℓk
is feasible and optimal, and t(ℓb) ≤ t( ⃗ℓk), q(ℓb) ≥ q( ⃗ℓk), and c(ℓb) ≤ c( ⃗ℓk) hold
by domination.

Note that bidirectional search may produce more cycles than monodirectional
search. The reason is that many of the labels at the halfway point, could be dom-
inated by labels found later in monodirectional search. Adding these potentially
sub-optimal cycles to the RMP can aid the convergence of column generation
but it can make re-optimizing much harder. We try to safe-guard against this
effect by sorting the cycles by reduced cost and returning at most a fixed number
(50 in our implementation) of the ones with lowest reduced cost.

3 Branch-and-Price for the Length-Constrained Cycle
Partition Problem

In the following, we discuss different aspects of how we extend the column gen-
eration method entailed by Sec. 2 into an exact branch-and-price algorithm.
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Branch and Bound. We use a standard branching strategy based on implicit
edge variables as described in [4]. We branch on the most used edge variable
that does not belong to a singleton cycle. The rationale is that the most used
edge would create the biggest disturbance in the subproblem, leading to an early
fathoming of the subproblem due to infeasibility or finding a feasible integer
solution. For branch-and-bound node selection, we employ the best-estimate
rule with plunging described in [1]. After selecting a branch-and-bound node,
we solve the LP relaxation using column generation. In each pricing iteration
the dynamic programming algorithm from Sec. 2 is called from each node starting
node s ∈ V . As these calls are independent they are run in parallel.

Symmetry Breaking. For each call to the dynamic program, i.e., from a fixed
starting node s, the search can safely ignore all nodes with an index less than the
starting node. Since each cycle contains a unique node with the lowest index, this
restriction prevents the generation of an equivalent cycle with a different starting
node. A further improvement on this restriction is to sort the node indices by
their critical time, such that the pricing problem that explores the most nodes
starts from the smallest critical time, allowing earlier pruning due to feasibility.

Heuristic and Exact Pricing. We start each pricing call with a faster, incom-
plete dynamic programming algorithm that relaxes the subset conditions in the
dominance rule (4c). If this fails to find a cycle with negative reduced cost, then
exact pricing is performed. From exact pricing we always compute a Lagrangian
lower bound [6]. Let z∗s be the optimal objective value of the pricing problem
for a fixed starting node s, and let z∗MP , z

∗
RMP be the optimal objective value

of MP and RMP, respectively, then z∗MP ≥ z∗RMP +
∑

s∈V z∗s =: LBlg. From
integrality of the objective function, we can use ⌈LBlg⌉ as a valid lower bound.

Early Branching. Another acceleration idea based on integrality, inspired by
the technique in [17], is to skip pricing in some branch-and-bound node Q by
looking at the lower bound ⌈LBlg⌉ of the parent node. Let z∗RMP be the first
RMP objective value for Q obtained after removing columns due to branching.
If ⌈z∗RMP ⌉ = ⌈LBlg⌉, then computing z∗MP exactly will not improve over the
lower bound of the parent node. Therefore, we can skip pricing in this subproblem
and perform early branching.

Farkas Pricing and RMP Initialization. If the RMP at a subproblem becomes
infeasible due to branching and removal of columns, we use Farkas pricing [3,19]
to generate new columns that render the RMP feasible again, or to prove that
the MP is infeasible. The root node RMP is always feasible, because we initialize
it with the trivially feasible singleton cycles and the cycles in the primal solution
generated by the Most-Critical-Vertex-Based Heuristic (MCV) from [11].

Exploiting the Triangle Inequality. The algorithm developed up to this point
works for any choice of nonnegative travel times. For many real-world applica-
tions, such as in aerial vehicle routing where distances are Euclidean, we know
additionally that the triangle inequality holds, i.e., that ti,j ≤ ti,k + tk,j for
all {i, j}, {i, k}, {j, k} ∈ E. Under this assumption, the set partitioning formu-
lation can be turned into a set covering formulation, which is easier to solve
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because the dual solution π becomes nonnegative. A solution for the set par-
titioning formulation can always be retrieved from a set covering solution by
removing nodes that appear in more than one cycle from all but one cycle. This
is guaranteed to be feasible since removing a node could only decrease the total
travel time and increase the minimum critical time of the cycle. By the same
arguments, we can prove the following lemma that show that nodes i ∈ V with
πi = 0 can be temporarily ignored during dynamic programming.

Lemma 3. Suppose travel times satisfy the triangle inequality, and we are given
a dual solution π ∈ RV , then there exists an optimal cycle C to the pricing
problem maxC∈Ω

∑
i∈C πi such that πi > 0 for all i ∈ C.

4 Computational Results

We implemented the branch-and-price algorithm described in Sec. 3 using the
Python wrapper of the branch-and-price framework SCIP [2, 15], interfacing to
a Rust implementation for solving the pricing problem. It calls the dynamic
programming method from Sec. 2 from each starting node in parallel using the
Rayon Rust library [16]. The rest of SCIP is sequential. All experiments were
run with a time limit of two hours on a cluster of identical machines equipped
with Intel(R) Xeon(R) Gold 5122 processors with 3.6GHz and 96GB of RAM;
each chip had 8 cores, and allowed for 16 threads to run in parallel. The code and
the instance-wise results of the experiments are publicly available on GitHub at
https://github.com/mmghannam/lccp-bnp.

The goal of our experiments was to analyze the performance of our branch-
and-price algorithm, in particular to answer the following questions:

1. How does the new method compare to the previous approach from [11] in
terms of speed and ability to solve instances to optimality?

2. How tight is the linear relaxation of the set partitioning formulation in gen-
eral and in comparison to the compact formulation from [11]?

3. What is the performance impact of the individual acceleration techniques?

Moreover, we were curious whether it matters if the travel times respect the
triangle inequality, and how the performance of the algorithms is affected if we
modify travel times in the above instances to satisfy the triangle inequality.

We use the standard benchmark set from [11], which consists of 84 instances
that have between 14 and 100 nodes. All algorithms evaluated were initialized
with a solution provided by the MCV heuristic from [11]. We compare results
for three major algorithms:

– bnc-sec: branch and cut with subtour elimination constraints from [11]
based on Gurobi 10.0.3 [8]

– bnp-basic: plain branch and price without any improvement technique
– bnp-full: branch and price with all improvement techniques

https://github.com/mmghannam/lccp-bnp
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Additionally, we ran the following variations of bnp-full to quantify the impact
of four components:

– bnp-nobidir: branch and price with monodirectional labeling
– bnp-nopar: branch and price without parallelization
– bnp-nosymbr: branch and price without symmetry breaking
– bnp-noearly: branch and price without early branching

Note that the labeling algorithm in bnp-basic already performs dominance
checks, since otherwise not more than the smallest instances could be solved.

In Tab. 1 we report the shifted geometric mean of the solving times for all
instances solved by at least one algorithm. We use a shift of 1 second; time outs
are included with the time limit. Column “Ratio” states the relative solving
time w.r.t. the fastest solver bnp-full. In Fig. 2 we plot the number of solved
instances over time for each algorithm.

Overall Results. We can first observe that bnp-full drastically outperforms
bnc-sec, on average being more than an order of magnitude (14.6 times) faster.
bnp-full is able to solve 13 more instances to optimality. The largest instance
solved features 76 nodes compared to 52 nodes previously. Notably, all 39 in-
stances solved by bnc-sec are also solved by bnp-full.

LP Relaxations. While bnc-sec could solve the root relaxation (including sub-
tour elimination) on all 84 instances, the column generation loop of bnp-full
converged to an optimal root LP solution for only 56 instances, running into the
memory or time limit in the remaining cases. Nonetheless, whenever computed
successfully, the root dual bound of the set partitioning formulation proves to
be significantly tighter than the root dual bound of bnc-sec. For the instances
where both algorithms could solve the linear relaxation at the root node, the
average gap with respect to the best known primal solution is 1.1% for bnp-
full vs. 23.6% for bnc-sec. In addition, on instances for which the optimal
objective value z∗ is known the root dual bound of the set partitioning formu-
lation (rounded up due to integrality) is at least z∗ − 1. This finding suggests
that the set-partitioning model may have a round-up property similar to that
investigated in [20].

Primal Bounds. In [11] it is reported that the MCV heuristic is effective in
producing good, and often optimal, solutions. Specifically, it finds the optimal
solution for 21 out of the 39 instances that are solved by both bnc-sec and
bnp-full. For the 13 instances newly solved by bnp-full, the heuristic finds
the optimal solution for only 2 of them, displaying the importance of the exact
branch-and-price run also on the primal side. Interestingly, for instances where
both algorithms time out, the primal bounds imposed by the MCV heuristic are
hard to improve on. Only bnp-full manages to improve the primal bound for
2 of these instances, by a value of 1.

Impact of the Improvement Techniques. Bidirectional labeling is the most ef-
fective amongst the improvement techniques. In comparison, monodirectional
labeling generates substantially more labels and results in a 4.4 times slowdown
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Solver Time [s] Ratio Solved

bnc-sec 142.8 14.6 39
bnp-basic 189.1 19.3 30
bnp-full 9.8 1.0 52

bnp-nobidir 43.1 4.4 40
bnp-nopar 12.5 1.3 50
bnp-nosymbr 19.6 2.0 45
bnp-noearly 16.0 1.6 45

Tab. 1: Aggregated results.

1 10 1000
3600

7200
0

10

20

30

40

50 BNP-FULL
BNP-NOPAR
BNP-NOSYMBR
BNP-NOEARLY
BNP-NOBIDIR
BNC-SEC
BNP-BASIC

Fig. 2: Instances solved over time.

overall. The remaining improvement techniques also contribute significantly to
the performance, although to a lesser degree. While disabling symmetry breaking
and early branching each lead to 7 fewer instances solved, parallelization only
helps to solve two more instances to optimality. Last but not least, the impor-
tance of the improvement techniques is underlined by the fact that bnp-basic,
the algorithm without any improvement techniques, solves significantly fewer
instances and is slower than bnc-sec.

Triangle Inequality. Finally, we modified the 84 instances from [11] in order to
create a new set of instances that respect the triangle inequality by replacing
the travel time on each by the distance of the shortest paths between its nodes.
Curiously, this change makes the instances harder to solve for both approaches.
On the new benchmark set imposing the triangle inequality, the mean solving
time is increased to 15.0 seconds for bnp-full and 187.1 seconds for bnc-sec.
bnp-full solves 4 instances less and bnc-sec solves 1 instance more than on the
original test set. These slowdowns may be explained by the shorter edge lengths
leading to a larger number of length-feasible cycles.

Note that the above results for bnp-full do not yet exploit the triangle
inequality. The improvements described in Sec. 3, i.e., to use a set covering
formulation and to remove nodes with zero duals during labeling, enable it to
solve 7 more instances (55 in total) and reduce the average solving time to
7.5 seconds. This is less than on the original test set, and around 25.2 times
faster than bnc-sec.

Conclusion. To summarize, our branch-and-price algorithm for the length-
constrained cycle partition problem proves to outperform the state of the art
significantly, but the results also show that this is only possible with the help
of some nontrivial improvement techniques. These allow us to close 13 open in-
stances from the standard benchmarks, and to scale to larger instances with
up to 76 nodes, compared to 52 nodes for the previous branch-and-cut method.
Future work should investigate whether the use of cutting planes can improve
the performance of the branch-and-price algorithm even further, and whether
the improvement techniques developed for LCCP are also valuable for similar
problems such as kidney exchange.
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3. Ceselli, A., Gatto, M., Lübbecke, M.E., Nunkesser, M., Schilling, H.: Optimizing
the cargo express service of Swiss Federal Railways. Transportation Science 42(4),
450–465 (2008). https://doi.org/10.1287/trsc.1080.0246

4. Costa, L., Contardo, C., Desaulniers, G.: Exact Branch-Price-and-Cut Algo-
rithms for Vehicle Routing. Transportation Science 53(4), 946–985 (2019).
https://doi.org/10.1287/trsc.2018.0878

5. Desaulniers, G., Desrosiers, J., Solomon, M.: Column Generation. Springer New
York, NY (2005). https://doi.org/10.1007/b135457
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