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Abstract. Traditional vehicle routing problems implicitly assume only
one crew operates a vehicle for the entirety of its journey. However, this
assumption is violated in many applications arising in humanitarian and
military logistics. This paper considers a Joint Vehicle and Crew Routing
and Scheduling Problem, in which crews are able to interchange vehicles,
resulting in space and time interdependencies between vehicle routes and
crew routes. It proposes a constraint programming model that overlays
crew routing constraints over a standard vehicle routing problem. The
constraint programming model uses a novel optimization constraint that
detects infeasibility and bounds crew objectives. Experimental results
demonstrate significant benefits of using constraint programming over
mixed integer programming and a vehicle-then-crew sequential approach.

1 Introduction

A vehicle routing problem (VRP) aims to design routes for a fleet of vehicles that
minimize some cost measure, and perhaps, while adhering to side constraints,
such as time windows, or pickup and delivery constraints. In practice, however,
VRPs are not solved in isolation; they typically arise in a sequential optimization
process that first optimizes vehicle routes and then crew schedules given the
vehicle routes [33]. This sequential methodology has the advantage of reducing
the computational complexity. However, by assigning vehicle routes first, this
approach may lead to suboptimal, or even infeasible, crew schedules since decisions
in the first stage ignore crew constraints and objectives. Hence it is imperative to
simultaneously consider vehicle and crew constraints and objectives, particularly
in industries in which crew costs outstrip vehicle costs.

This paper considers a Joint Vehicle and Crew Routing and Scheduling
Problem (JVCRSP) motivated by applications in humanitarian and military
logistics. In these settings, vehicles (e.g., airplanes) travel long routes, and
serve a variety of pickup and delivery requests under various side constraints.
Vehicles must be operated by crews who have limitations on their operating times.
Crews are also able to interchange vehicles at different locations and to travel
as passengers before and after their operating times. JVCRSPs are extremely
challenging computationally since vehicle and crew routes are now interdependent.
In addition, vehicle interchanges add an additional time complexity, since two
vehicles must be synchronized to allow for the exchange to proceed. It is thus



necessary to decide whether vehicles wait, and the waiting duration, since both
vehicles must be present at the same location for an interchange to take place.

This paper proposes a constraint programming formulation of the JVCRSP
that jointly optimizes vehicle and crew routing in the hope of remedying some
limitations of a multi-stage model. The formulation overlays crew routing con-
straints over a traditional vehicle routing problem, and also adds a number of
synchronization constraints to link vehicles and crews. In addition, the formula-
tion includes a novel optimization constraint that checks feasibility and bounds
crew costs early in the search while the focus is on vehicle routing. The constraint
programming model is solved using a large neighborhood search (LNS) that
explores both vehicle and crew neighborhoods.

The constraint program is compared to a mixed integer program and a two-
stage method that separates the vehicle routing and crew scheduling problems.
Experimental results on instances with up to 96 requests and different cost
functions indicate that (1) the joint optimization of vehicle and crew routing
produces considerable benefits over the sequential method, (2) the constraint
program scales significantly better than the mixed integer program, and (3) vehicle
interchanges are critical in obtaining high-quality solutions. These preliminary
findings indicate that it is now in the realm of optimization technology to
jointly optimize vehicle and crew routing and scheduling, and that constraint
programming has a key role to play in this promising direction.

The rest of this paper is organized as follows. Section 2 describes the Joint
Vehicle and Crew Routing and Scheduling Problem and some high-level modeling
decisions. Section 3 outlines the two-stage methodology, while Section 4 describes
the mixed integer formulation of the JVCRSP. Section 5 details the constraint
programming formulation, two novel global constraints, and the search procedure.
Section 6 reports the experimental results. Section 7 reviews related work and
Section 8 concludes this paper.

2 Problem Description

The traditional vehicle routing problem with pickup and delivery and time
windows (VRPPDTW) [30] consists of a fleet of vehicles, stationed at a common
depot, that services pickup and delivery requests before returning to the depot.
Every pickup request has one associated delivery request, with an equal but
negated demand, that must be served after the pickup and by the same vehicle.
In addition, every request has a time window, within which service must begin.
Vehicles can arrive earlier than the time window, but must wait until the time
window opens before starting service. Given a route, fixed travel times dictate
the arrival and departure times of requests along the route.

The JVCRSP considered in this paper overlays, on top of the VRPPDTW,
crew routing constraints that explicitly capture the movements of crews. The
JVCRSP groups requests by location, and defines travel times between locations,
thereby removing the one-to-one mapping between requests and locations found
in many routing problems. Vehicles require a crew when moving between two
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Fig. 1. A location at which vehicle interchange occurs. Nodes 3 to 8 belong to the same
location. A vehicle (solid line) and a crew (dotted line) travel from node 1 to node 3,
and another vehicle and crew travel from node 2 to node 4. The two vehicles service
nodes 3 to 8, while the crews travel to nodes 7 and 8 to depart on a different vehicle.
The movements into nodes 3 and 4, and out of nodes 7 and 8 must be synchronized
between the vehicles and crews, but movements within the location are independent.

locations, but require no crew when servicing requests within a location. Similarly,
crews require a vehicle to move between two locations, but can move independently
of vehicles within a location. Crews are restricted to at most one driving shift,
which has a maximum duration. No distance or time limitations are placed on
crews before and after the driving shift.

The JVCRSP allows crews to switch vehicles at any given location. This idea
is illustrated in Fig. 1. Vehicle interchange occurs when a crew moves from a
node that is serviced by one vehicle to a node that is serviced by another vehicle,
provided that the departure of the second vehicle is after the arrival of the first.
Hence vehicle interchange requires explicit modelling of arrival and departure
times. The JVCRSP retains the time windows on service start times and permits
early arrival, but also allows vehicles to wait after service to depart at a later
time. This functionality is necessary to facilitate vehicle interchange.

The objective function of the JVCRSP minimizes a weighted sum of the
number of vehicles and crews used, and the total vehicle and crew travel distances.

3 A Two-Stage Method for the JVCRSP

One of the goals of this paper is to assess the benefits of jointly routing and
scheduling vehicles and crews. A baseline to determine the potential of joint
optimization is a two-stage approach that separates these two aspects by first
solving a vehicle routing problem and then a crew pairing problem. The first
stage can be solved with any appropriate technology, and this paper uses a
large neighborhood search over a constraint programming model (e.g., [29,21,1]).
Arrival and departure times are fixed at their earliest possible starting times
to produce vehicle schedules. The crew pairing problem is modeled with a set
covering problem typical in the airline industry [33]. It is solved using column
generation with a resource-constrained shortest path pricing problem, and then
a mixed integer programming solver to find integer solutions once the column
generation process has converged.



4 A Mixed Integer Program for the JVCRSP

This section sketches a mixed integer programming (MIP) formulation for the
JVCRSP. The model consists of a vehicle component and a crew component.
The vehicle component is the traditional multi-commodity flow model of the
VRPPDTW, which is omitted for familiarity and space reasons. The crew com-
ponent contains similar routing constraints, but omits travel time and request
cover constraints, since these are already included in the vehicle component. The
vehicle and crew components are linked via synchronization constraints, which
are key aspects of the formulation.

Table 1 lists the relevant inputs and decision variables. The usual vehicle flow
variables vehv,i,j are duplicated for crews; the variable crewc,i,j denotes whether
crew c traverses the edge (i, j). Additionally, the driverc,i,j variable indicates
whether crew c drives the vehicle that traverses the arc (i, j), and is used to
synchronize the vehicles and crews in space.

Figure 2 describes the key synchronization constraints that coordinate the
vehicles, crews, and drivers in the MIP model. Equations (1) and (2) state that
when moving from one location to another, a crew requires a vehicle and a vehicle
requires a driver. Equation (3) restricts the driver along an arc to be one of the
crews that traverses that arc. Equations (4) and (5) link the arrival, service, and
departure times. Equation (6) constrains the start and end nodes to a common
arrival and departure time. Equations (7) to (9) synchronize time at request,
start, and end nodes, respectively. For every crew c that drives from a request i
to any request j, Eq. (10) bounds the start of driving to be no later than the
departure time at i. Similarly, Eq. (11) bounds the end of driving. Equation (12)
restricts the driving duration of each crew.

5 A Constraint Program for the JVCRSP

This section introduces the constraint programming (CP) formulation for the
JVCRSP. It describes the instance data, decision variables, and constraints of the
model, and the specifications of two global constraints, and the search procedure.

The data and decision variables are described in Table 2. Like the MIP model,
the CP model is divided into a vehicle component and a crew component.

The vehicle component, described in Fig. 3, is based on the standard constraint
programming modeling for vehicle routing (e.g., [21,28]). Successor variables
succ(·) capture the sequence of requests along vehicle routes. By artificially
joining the end of one route to the start of another (Eqs. (13) and (14)), the
successor variables then describe a Hamiltonian cycle, which enables the use of
the Circuit global constraint for subtour elimination (Eq. (15)). Equations (16)
and (17) track a vehicle along its route, and Eq. (18) determines if a vehicle is
used. Equations (19) and (20) order the arrival, service, and departure times at
each request. Equation (21) restricts the start and end nodes to one common
arrival/departure time. Equation (22) enforces travel times. Symmetry-breaking,
load, and pickup and delivery constraints are omitted due to space limitations.



Table 1. Instance data and decision variables of the MIP model.

Name Description

T > 0 Time horizon.
T = [0, T ] Time interval.
V Set of vehicles.
C Set of crews.

T ∈ T Maximum driving duration of a crew.
s Start node.
e End node.
R Set of all requests.
N = R ∪ {s, e} Set of all nodes, including the start and end nodes.
A Arcs to be traversed by the vehicles and crews, excluding

the arc (s, e) representing an unused vehicle/crew.
L Set of locations, including one depot location.
li ∈ L Location of i ∈ N .
ai ∈ T Earliest start of service at i ∈ N .
bi ∈ T Latest start of service at i ∈ N .
ti ∈ T Service duration of i ∈ N .

vehv,i,j ∈ {0, 1} 1 if vehicle v ∈ V traverses (i, j) ∈ A ∪ {(s, e)}.
crewc,i,j ∈ {0, 1} 1 if crew c ∈ C traverses (i, j) ∈ A ∪ {(s, e)}.
driverc,i,j ∈ {0, 1} 1 if crew c ∈ C drives on (i, j) ∈ A, li 6= lj .
arrv,i ∈ T Arrival time of vehicle v ∈ V at i ∈ N .
servv,i ∈ [ai, bi] Start of service by vehicle v ∈ V at i ∈ N .
depv,i ∈ T Departure time of vehicle v ∈ V at i ∈ N .
crewTimec,i ∈ T Arrival/departure time of crew c ∈ C at i ∈ N .
driveStartc ∈ T Start time of driving for crew c ∈ C.
driveEndc ∈ T End time of driving for crew c ∈ C.
driveDurc ∈ [0, T ] Driving duration of crew c ∈ C.

crewc,i,j ≤
∑
v∈V

vehv,i,j , ∀c ∈ C, (i, j) ∈ A, li 6= lj , (1)

∑
v∈V

vehv,i,j =
∑
c∈C

driverc,i,j , ∀(i, j) ∈ A, li 6= lj , (2)

driverc,i,j ≤ crewc,i,j , ∀c ∈ C, (i, j) ∈ A, li 6= lj , (3)

arrv,i ≤ servv,i, ∀v ∈ V, i ∈ R, (4)

servv,i + ti ≤ depv,i, ∀v ∈ V, i ∈ R, (5)

arrv,i = servv,i = depv,i, ∀v ∈ V, i ∈ {s, e}, (6)

arrv,i ≤ crewTimec,i ≤ depv,i, ∀v ∈ V, c ∈ C, i ∈ R, (7)

crewTimec,s − depv,s ≤M1(2− vehv,s,j − crewc,s,j), ∀v ∈ V, c ∈ C, j : (s, j) ∈ A, (8)

arrv,e − crewTimec,e ≤M2(2− vehv,i,e − crewc,i,e), ∀v ∈ V, c ∈ C, i : (i, e) ∈ A, (9)

driveStartc − crewTimec,i ≤M3

1−
∑

j:(i,j)∈A

driverc,i,j

, ∀c ∈ C, i ∈ R ∪ {s}, (10)

crewTimec,i − driveEndc ≤M4

1−
∑

h:(h,i)∈A

driverc,h,i

, ∀c ∈ C, i ∈ R ∪ {e}, (11)

driveDurc = driveEndc − driveStartc, ∀c ∈ C. (12)

Fig. 2. Core constraints of the MIP formulation.



Table 2. Instance data and the decision variables of the CP model.

Name Description

T ∈ {1, . . . ,∞} Time horizon.
T = {0, . . . , T} Set of time values.
V ∈ {1, . . . ,∞} Number of vehicles.
V = {1, . . . , V } Set of vehicles.
C = {1, . . . , |C|} Set of crews.
C0 = C ∪ {0} Set of crews, including a 0 value indicating no crew.

T ∈ T Maximum driving duration of a crew.
R ∈ {1, . . . ,∞} Total number of requests.
R = {1, . . . , R} Set of all requests.
S = {R + 1, . . . , R + V } Set of vehicle start nodes.
E = {R + V + 1, . . . , R + 2V } Set of vehicle end nodes.
N = R ∪ S ∪ E Set of all nodes.
N0 = N ∪ {0} Set of all nodes, including a dummy node 0.
s(v) = R + v Start node of vehicle v ∈ V.
e(v) = R + V + v End node of vehicle v ∈ V.
L Set of locations, including one depot location.
l(i) ∈ L Location of i ∈ N .
d(i, j) ∈ T Distance and travel time from i ∈ N to j ∈ N .
a(i) ∈ T Earliest start of service at i ∈ N .
b(i) ∈ T Latest start of service at i ∈ N .
t(i) ∈ T Service duration of i ∈ N .
w1 Cost of using one vehicle.
w2 Cost of using one crew.
w3 Cost of one unit of vehicle distance.
w4 Cost of one unit of crew distance.

vehUsed(v) ∈ {0, 1} Indicates if vehicle v ∈ V is used.
succ(i) ∈ N Successor node of i ∈ N .
veh(i) ∈ V Vehicle that visits i ∈ N .
arr(i) ∈ T Arrival time at i ∈ N .
serv(i) ∈ {a(i), . . . , b(i)} Start of service at i ∈ N .
dep(i) ∈ T Departure time at i ∈ N .
crewUsed(c) ∈ {0, 1} Indicates if crew c ∈ C is used.
crewDist(c) ∈ {0, . . . ,∞} Distance traveled by crew c ∈ C.
crewSucc(c, i) ∈ N0 Successor of i ∈ N0 for crew c ∈ C0.
crewTime(i) ∈ T Arrival/departure time of every crew at i ∈ N .
driveStart(c) ∈ T Start time of driving for crew c ∈ C0.
driveEnd(c) ∈ T End time of driving for crew c ∈ C0.

driveDur(c) ∈ {0, . . . , T} Driving duration of crew c ∈ C.
driver(i) ∈ C0 Driver of vehicle veh(i) from i ∈ R ∪ S to succ(i),

with 0 indicating no driver.

The crew component, depicted in Fig. 4, overlays the vehicle component to
upgrade the VRP into a JVCRSP. Crew successor variables crewSucc(c, ·) model
a path for every crew c from any start node to any end node via a sequence of
arcs that cover the vehicle movements. To allow crews to start and end on any
vehicle, the model includes a dummy node 0; crews start and end at this dummy
node, whose successor must be a start node and whose predecessor must be an
end node. Equations (23) to (27) formalize this idea. The modeling uses the
Subcircuit constraint [14] to enforce subtour elimination, since a crew does not
visit all nodes. The Subcircuit constraint differs from the Circuit constraint
seen in the vehicle component by allowing some nodes to be excluded from the
Hamiltonian cycle. The successor of an excluded node is the node itself.

Every node i has an associated driver(i) variable that denotes the driver of
vehicle veh(i) when it moves from i to its successor succ(i) at a different location,



succ(e(v)) = s(v + 1), ∀v ∈ {1, . . . , V − 1}, (13)

succ(e(V )) = s(1), (14)

Circuit(succ(·)), (15)

veh(s(v)) = veh(e(v)) = v, ∀v ∈ V, (16)

veh(succ(i)) = veh(i), ∀i ∈ R ∪ S, (17)

vehUsed(v)↔ succ(s(v)) 6= e(v), ∀v ∈ V, (18)

arr(i) ≤ serv(i), ∀i ∈ R, (19)

serv(i) + t(i) ≤ dep(i), ∀i ∈ R, (20)

arr(i) = serv(i) = dep(i), ∀i ∈ S ∪ E , (21)

dep(i) + d(i, succ(i)) = arr(succ(i)), ∀i ∈ R ∪ S. (22)

Fig. 3. Key constraints of the vehicle component of the CP model.

crewSucc(c, 0) ∈ S ∪ {0}, ∀c ∈ C, (23)

crewSucc(c, i) ∈ R ∪ {i}, ∀c ∈ C, i ∈ S, (24)

crewSucc(c, i) ∈ R ∪ E , ∀c ∈ C, i ∈ R, (25)

crewSucc(c, i) ∈ {0, i}, ∀c ∈ C, i ∈ E , (26)

Subcircuit(crewSucc(c, ·)), ∀c ∈ C, (27)

l(succ(i)) = l(i)↔ driver(i) = 0, ∀i ∈ R ∪ S, (28)

crewSucc(driver(i), i) = succ(i), ∀i ∈ R ∪ S, (29)

crewUsed(c)↔
∨

i∈N0

crewSucc(c, i) 6= i↔
∨

i∈R∪S

driver(i) = c, ∀c ∈ C, (30)

crewUsed(c) ≥ crewUsed(c + 1), ∀c ∈ {1, . . . , C − 1}, (31)

l(crewSucc(c, i)) = l(i) ∨ crewSucc(c, i) = succ(i), ∀c ∈ C, i ∈ R ∪ S, (32)

CrewShortcut(succ(·), crewSucc(·, ·), arr(·),dep(·), C,R,S, E , l(·)), (33)

arr(i) ≤ crewTime(i) ≤ dep(i), ∀i ∈ N , (34)

crewTime(i) ≤ crewTime(crewSucc(c, i)), ∀c ∈ C, i ∈ R ∪ S, (35)

CrewBound(crewDist(c), crewSucc(c, ·), crewTime(·),R,S, E , d(·, ·)), ∀c ∈ C, (36)

driveStart(driver(i)) ≤ dep(i), ∀i ∈ R ∪ S, (37)

driveEnd(driver(i)) ≥ arr(succ(i)), ∀i ∈ R ∪ S, (38)

driveDur(c) = driveEnd(c)− driveStart(c), ∀c ∈ C. (39)

Fig. 4. Crew component of the CP model.
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Fig. 5. A partial solution obtained at some stage during search. A crew is known to
traverse the arcs (1, 2) and (3, 4), but it is not yet known whether the start node S
connects (directly or via a path) to node 1 or node 3, and whether node 4 or node 2
connects to the end node. It is also not known whether such a path exists.

and takes the value 0 when the successor is at the same location, indicating that
no driver is necessary (Eq. (28)). Equation (29) requires drivers to move with
their vehicles. Equation (30) determines whether a crew is used. Equation (31)
is a symmetry-breaking constraint. Equation (32) is a space synchronization
constraint that requires crews to move to a node at their current location, or move
with a vehicle (to a different location). The CrewShortcut global constraint
in Eq. (33) enforces the crew shortcut property, and is detailed in Section 5.2.
Equation (34) synchronizes time between vehicles and crews. The time window
in this constraint allows a crew to switch vehicle by moving to another node
at the same location, provided that this vehicle departs later than this crew.
Equation (35) forces crews to only move forward in time. Equation (36) is an
optimization constraint, described in Section 5.1, that bounds crew distances and
checks whether crews can return to the depot. Equations (37) to (39) determine
the driving time of each crew.

The objective function (Eq. (40)) minimizes a weighted sum of the vehicle
and crew counts, and the total vehicle and crew travel distances.

min w1

∑
v∈V

vehUsed(v) + w2

∑
c∈C

crewUsed(c)+

w3

∑
i∈R∪S

d(i, succ(i)) + w4

∑
c∈C

crewDist(c). (40)

5.1 Feasibility and Bounding of Crew Routes

Since crew routing is superimposed on a vehicle routing problem, it is important
to determine during the search whether each crew has a feasible route and to
compute a lower bound on the crew distance. Consider Fig. 5, which illustrates a
partial solution. Here, the crew has been allocated to travel on some arcs but
it is not known whether there exists a path from a start node to an end node
through these arcs, and how long this path is, if it exists.

To detect infeasibility and to compute lower bounds to crew distances, an
optimization constraint can be used [13,10,12,11]. It needs to find a shortest path



min
∑

i∈R∪S

∑
j∈cSucc(i)

d(i, j) · xi,j , (41)

∑
i∈S

∑
j:(i,j)∈B

xi,j = 1, (42)

∑
i∈E

∑
h:(h,i)∈B

xh,i = 1, (43)

∑
h:(h,i)∈B

xh,i =
∑

j:(i,j)∈B

xi,j , ∀i ∈ R, (44)

∑
j:(i,j)∈B

xi,j ≤ 1, ∀i ∈ R ∪ S, (45)

ti + d(i, j)− tj ≤M(1− xi,j), (i, j) ∈ B, (46)

xi,j ∈ [0, 1], (i, j) ∈ B, (47)

ti ∈ [min(cTime(i)),max(cTime(i))], i ∈ N . (48)

Fig. 6. The linear programming relaxation for optimization constraint CrewBound.

through specified nodes, which is NP-hard [24,20,9,32]. Instead, the CrewBound
constraint solves a linear relaxation, which is presented in Fig. 6.

The set B represents the current set of arcs that can be traversed by the crew.
It is defined as

B = {(i, j) : i ∈ R ∪ S, j ∈ cSucc(i), i 6= j},

where the set cSucc(i) represents the domain of crewSucc(c, i) for every node
i ∈ R ∪ S and the appropriate crew c. The set cTime(i) represents the domain
of crewTime(i) for every node i ∈ N .

The xi,j variables indicate whether the crew traverses the arc (i, j) ∈ B, and
the ti variables represent the arrival time to node i.

The objective function minimizes the total distance (Eq. (41)). Equations (42)
to (44) are the flow constraints, which ensure the existence of a path from a start
node to an end node. Equation (45) is a redundant constraint that strengthens the
linear program. Equation (46) is the time-based subtour elimination constraint,
where M is a big-M constant. Equations (47) and (48) restrict the domains of
the xi,j and ti variables respectively.

5.2 Symmetry-Breaking within Locations

The constraint program also uses the global constraint CrewShortcut to
remove symmetries in the crew routes. The intuition is best explained using
Fig. 1. Recall that, in this example, one crew moves from node 3 to 8 and the other
crew moves from node 4 to 7. Both crews thus shortcut the intermediate nodes,
which are only visited by vehicles. The global constraint CrewShortcut ensures
that crews never visit intermediate nodes, but move directly from incoming to



outgoing nodes at a location. This pruning eliminates symmetric solutions in
which crews visit various sequences of intermediate nodes within a location.

Let pred(i) ∈ N be the predecessor of a node i ∈ N . The constraint imple-
ments simple propagation rules, such as,

l(pred(i)) = l(i) = l(succ(i))↔
∧
c∈C

crewSucc(c, i) = i, ∀i ∈ R, (49)

which ensures that crews never visit a node whose predecessor and successor are
at the same location as the node itself.

5.3 The Search Procedure

This section briefly describes the labeling procedure and the LNS procedure.

The Labeling Procedure The labeling procedure first assigns vehicle routes, and
then crew routes.

To determine vehicle routes, the search procedure considers each vehicle in
turn and assigns the successor variables from the start node to the end node.
The value selection strategy first chooses nodes at the same location ordered by
earliest service time, and then considers nodes at other locations, also ordered by
earliest service time.

To assign crew routes, the labeling procedure begins by ordering all nodes
i ∈ R ∪ S that have an unlabeled driver(i) variable by earliest departure time.
The first of these nodes is assigned a driver, and then a path from this node to
any end node is constructed for this crew by labeling both the crew successor
and the driver variables. This process is repeated until all driver(·) variables are
labeled. The value selection heuristic for crew successor variables favors the node
that is visited next by the current vehicle of the crew, provided that the crew
can drive from this node; otherwise, the successor is chosen randomly.

The LNS Procedure The LNS procedure randomly explores two neighborhoods:

– Request Neighborhood: This neighborhood relaxes a collection of pickup
and delivery requests for insertion, in addition to all crew routes;

– Crew Neighborhood: This neighborhood fixes all vehicle routes, and re-
laxes a number of crew routes.

6 Experimental Results

This section compares the solution quality and features of the MIP and CP
models, and the two-stage procedure.

The Instances The instances are generated to capture the essence of applications
in humanitarian and military logistics. These problems typically feature fewer
locations than traditional vehicle routing applications, but comprise multiple
requests at each location. Both the locations and the time windows are generated
randomly. Table 3 describes the size of the instances. The maximum number of
vehicles and crews are not limited in the instances.



Table 3. The number of locations and requests in each of the ten JVCRSP instances.

A B C D E F G H I J

|L| 7 7 7 11 11 12 11 11 5 6
|R| 12 16 20 40 46 46 40 80 54 96

The Algorithms As mentioned previously, the two-stage method uses a constraint
programming model for its first step. The model is solved using a large neighbor-
hood search with a time limit of one minute, and the first step takes the best
VRP solution out of ten runs. The crew pairing problem is solved optimally using
the output of the first stage. All instances are solved to optimality in under 0.02
seconds. Hence the two-stage method requires a total of ten minutes. Obviously,
the VRP runs can be performed in parallel.

The MIP model is solved using Gurobi 6.0.0 on an eight-core CPU for twelve
hours with default parameters. The linear programming relaxation is rather weak
and the dual bounds are not informative, which is why they are not reported here.
An alternative MIP model that folds Eqs. (8) and (9) into Eq. (7) by modifying
the network is also tested, but is inferior to the one presented.

The CP model is implemented in Objective-CP [31], and initialized with
the same VRP solution as in the two-stage approach. This allows us to assess
the benefits of the joint optimization reliably, since the second stage and the
CP model are seeded with the same vehicle routes. The LNS procedure over
the constraint model is then performed ten times for five minutes each. The
model essentially requires a total of sixty minutes, which includes ten minutes
to produce the initial VRP solution. Of course, all these computations can be
executed in parallel in six minutes of wall clock time.

Table 4. Solutions found by the three models with equal vehicle and crew costs
(w1 = w2 = 1000, w3 = w4 = 1). The objective value columns separate vehicle and crew
costs in parenthesis. Time (in seconds) is provided for the MIP model. The last column
lists the percentage improvement of the CP model compared against the two-stage
method.

Two-Stage MIP CP

Objective Value Objective Value Time Objective Value %

A 8328 (2086 + 6242) 8318 (2086 + 6232) 5 8318 (2086 + 6232) -0.1%
B 7198 (2065 + 5133) 6154 (2063 + 4091) 27132 6167 (2068 + 4099) -16.7%
C 8216 (2079 + 6137) 6192 (2088 + 4104) 37254 6200 (2079 + 4121) -32.5%
D 14879 (3298 + 11581) - - 13855 (3302 + 10553) -7.4%
E 18105 (2275 + 15830) - - 17181 (2278 + 14903) -5.4%
F 26334 (4406 + 21928) - - 24570 (4412 + 20158) -7.2%
G 14110 (3351 + 10759) - - 13074 (3355 + 9719) -7.9%
H 25617 (6585 + 19032) - - 24975 (6587 + 18388) -2.6%
I 8894 (2316 + 6578) - - 7795 (2309 + 5486) -14.1%
J 16932 (3710 + 13222) - - 13877 (3710 + 10167) -22.0%



Table 5. Best solutions from the three models with higher crew costs (w1 = 1000,
w2 = 5000, w3 = w4 = 1).

Two-Stage MIP CP

Objective Value Objective Value Time Objective Value %

A 32328 (2086 + 30242) 32318 (2086 + 30232) 5 32318 (2086 + 30232) 0.0%
B 27198 (2065 + 25133) 22154 (2056 + 20098) 8352 22167 (2068 + 20099) -22.7%
C 32216 (2079 + 30137) 28198 (3086 + 25112) 4869 22200 (2079 + 20121) -45.1%
D 58879 (3298 + 55581) - - 53905 (3317 + 50588) -9.2%
E 78105 (2275 + 75830) - - 73175 (2280 + 70895) -6.7%
F 110334 (4406 + 105928) - - 100502 (4413 + 96089) -9.8%
G 54110 (3351 + 50759) - - 43996 (3353 + 40643) -23.0%
H 97617 (6585 + 91032) - - 92928 (6585 + 86343) -5.0%
I 32894 (2316 + 30578) - - 27817 (2326 + 25491) -18.3%
J 64932 (3710 + 61222) - - 49930 (3710 + 46220) -30.0%

Table 6. Best solutions from the three models with higher vehicle costs (w1 = 5000,
w2 = 1000, w3 = w4 = 1).

Two-Stage MIP CP

Objective Value Objective Value Time Objective Value %

A 16328 (10086 + 6242) 16318 (10086 + 6232) 7 16318 (10086 + 6232) -0.1%
B 15198 (10065 + 5133) 14154 (10056 + 4098) 2327 14167 (10068 + 4099) -7.3%
C 16216 (10079 + 6137) 14200 (10091 + 4109) 32135 14200 (10079 + 4121) -14.2%
D 26879 (15298 + 11581) - - 24946 (15303 + 9643) -7.7%
E 26105 (10275 + 15830) - - 25172 (10278 + 14894) -3.7%
F 42334 (20406 + 21928) - - 40597 (20412 + 20185) -4.3%
G 26110 (15351 + 10759) - - 24008 (15353 + 8655) -8.8%
H 49617 (30585 + 19032) - - 48911 (30585 + 18326) -1.4%
I 16894 (10316 + 6578) - - 15800 (10326 + 5474) -6.9%
J 28932 (15710 + 13222) - - 25930 (15710 + 10220) -11.6%

Solution Quality Tables 4 to 6 depict the experimental results for various vehicle
and crew costs. The tables only report the CPU time for the MIP model, since
the two-stage and CP models have been given short execution times, as explained
above. The experimental results highlight a few important findings:

1. Jointly optimizing vehicle and crew routing and scheduling achieves significant
benefits. On the above instances, the average benefit of the CP model over
the two-stage approach is 12%. When crew costs are higher, the benefits can
exceed 45%.

2. The benefits obviously increase when the crew costs increase. However, even
when vehicle costs are five times as large as crew costs, the benefits are still
substantial and exceed 5% in more than half of the instances.

3. On the smaller instances, the MIP marginally outperforms the CP model
when run over a significantly longer period of time.

4. The MIP model contains numerous big-M synchronization constraints that
weaken its linear relaxation, making it difficult to solve. It can only prove



optimality on the trivial instance A, and it also fails to scale to large instances,
contrary to the CP model, which quickly finds high-quality solutions.

The Impact of Vehicle Interchanges One of the main advantages of jointly
optimizing vehicle and crew routing and scheduling is the additional flexibility
for vehicle interchanges. For example, instance C in Tables 4 to 6 highlight some
of the benefits of this flexibility. The CP model is able to delay vehicles to favor
interchanges, thereby decreasing crew costs significantly.

Table 7 quantifies vehicle interchanges for the instances with equal vehicle
and crew costs. It reports the total number of crews required in the solution, the
number of crews participating in vehicle interchanges, the total number of vehicle
interchanges, and the average number of interchanges per crew that switches
vehicle. These results indicate that the constraint programming model allows
more vehicle interchanges on average. For the larger instances, each crew travels
on almost three vehicles on average. The total number of vehicle interchanges
is roughly the same for the CP model and the two-stage approach, but the CP
model produces solutions with fewer crews.

Table 7. Statistics on vehicle interchange in the solutions to the runs with equal vehicle
and crew costs. For both the two-stage and the CP models, this table provides the
number of crews used in the solution, the number of crews that participates in vehicle
interchange, the total number of interchanges, and the average number of interchanges
for each crew that undertakes interchange.

Two-Stage CP

Crews Intchng Vehicle Average Crews Intchng Vehicle Average
Used Crews Intchngs Intchngs Used Crews Intchngs Intchngs

A 6 2 2 1.0 6 3 3 1.0
B 5 2 2 1.0 4 3 3 1.0
C 6 3 3 1.0 4 4 4 1.0
D 11 8 12 1.5 10 7 7 1.0
E 15 9 14 1.6 14 12 21 1.8
F 21 20 35 1.8 19 19 36 1.9
G 10 8 9 1.1 9 8 11 1.4
H 18 17 28 1.6 17 16 29 1.8
I 6 5 5 1.0 5 3 5 1.7
J 12 11 15 1.4 9 8 15 1.9

The Impact of the Joint Vehicle and Crew Routing and Scheduling It is also
interesting to notice in Tables 4 to 6 that the CP model often prefers vehicle
routes whose costs are higher than those of the two-stage approach. This is the
case despite the fact that the CP search is initialized with the first-stage VRP
solution. This indicates that the CP model trades off crews costs for vehicle
costs. Running a two-stage version of the CP model, in which the vehicle routes
(but not the vehicle schedules) are fixed, also confirms these benefits. The CP
model significantly outperforms this two-stage CP approach on a number of



instances. These results indicate that both the flexibility in interchanges and the
joint optimization are key benefits of the CP model.

7 Related Work

JVCRSPs have not attracted very much interest in the literature at this point,
probably due to their inherent complexity [5]. This contradicts with the numerous
studies of VRPs and related problems (e.g., [30,23,2]). This section reviews the
most relevant work.

A JVCRSP is considered in [22], in which vehicles transport teams to service
customers, and are able to move without any team on board. The problem
features three types of tasks that must be serviced in order, and all customers
have one task of each type. Each team can only service one compatible type
of task. The MIP formulation has variables indexed by five dimensions, and is
intractable. The paper also develops a simple iterative local search algorithm
embedded within a particle swarm metaheuristic. This approach is very specific
and cannot accommodate side constraints easily.

A JVCRSP modeling a mail distribution application is solved using a two-
stage heuristic column generation approach in [19]. This model features multiple
depots at which vehicle routes begin and end. In the first stage, trips that begin
and end at these depots are computed. The second stage takes a scheduling
approach and assigns vehicles and crews to the trips. Vehicle interchange can only
occur at the depots at the start or end of a trip. In addition, the model features
a 24-hour cyclic time period, and variables indexed by discretized time blocks.
Since the solution method is based on two stages, it cannot jointly optimize
vehicles and crews. Observe also that the CP formulation in our paper does not
require time-indexed variables, and allows for vehicle interchange at all locations.

Another JVCRSP considers European legislation and includes relay stations
where drivers are allowed to rest and interchange vehicles [8]. Upon reaching a
relay station, the vehicle must wait a fixed amount of time. Vehicle interchange
can only occur if other drivers arrive at this relay station during this time interval.
The problem also provides a shuttle service, separate to the fleet of vehicles,
that can be used to move drivers between relay stations. The problem is solved
using a two-stage LNS method. In the first stage, a VRP is solved and the
resulting routes form the customers of a VRP in the second stage, in which the
crews perform the role of vehicles. Observe that this approach also cannot jointly
optimize vehicle and crew routing. The model features several fixed parameters,
such as the duration during which a vehicle waits at a relay station, and a
search procedure that only explores a limited number of nearby relay stations.
Both these restrictions reduce the search space, but negatively impact vehicle
interchange, leading the authors to conclude that allowing for vehicle interchange
does not significantly improve the objective value. Our model proves the contrary
since it does not fix the duration that a crew waits, and can explore all locations
for vehicle interchange.



JVCRSPs belong in the class of problems known as the VRPs with multiple
synchronization constraints [5]. Synchronization is a feature present in certain
VRPs, in which decisions about one object (e.g., vehicle, route, request) imply
actions that may or must be taken on other objects. A complex VRP with
synchronization is the VRP with Trailers and Transshipments (VRPTT) [7,4]. It
features two vehicle classes: lorries which can move independently, and trailers
which must be towed by an accompanying lorry. All lorries begin at a single
depot with or without a trailer. A lorry can detach its trailer at transshipment
locations in order to visit customers who are unable to accommodate a trailer
(e.g., due to size). Lorries can transfer load into and/or attach with any trailer
at any transshipment location. A lorry that has detached its trailer can also
return to the depot without reattaching a trailer, leaving its trailer behind at a
transshipment location to be collected by another lorry at a future time. Several
sophisticated MIP formulations are presented, which are solved using branch-
and-cut on instances with up to eight customers, eight transshipment locations
and eight vehicles. The VRPTT can be reformulated into a JVCRSP by casting
crews as lorries with zero capacity, and vehicles as trailers [6].

The VRPTT is most closely related to our JVCRSP model, since lorry routes
and trailer routes are jointly computed, and the search space is not artificially
limited. However, one major difference is that the VRPTT incorporates load
synchronization, which the JVCRSP does not consider.

Finally, observe that vehicle and crew scheduling problems (VCSPs) are
thoroughly studied (e.g., [18,27,17,15,16,3,25,26]). VCSPs aim to assign vehicles
and crews to a predetermined set of trips, with each trip consisting of a fixed
route, and usually fixed arrival and departure times. Trips in VCSPs correspond
to parts of a route in JVCRSPs, which are not available a priori, but instead, must
be computed during search, thereby increasing the computational challenges.

8 Conclusion

Motivated by applications arising in humanitarian and military logistics, this
paper studied a Joint Vehicle and Crew Routing and Scheduling Problem, in
which crews are able to interchange vehicles, resulting in interdependent vehicle
routes and crew routes. The paper proposed a constraint programming model
that overlays crew routing constraints over a standard vehicle routing problem.
The model uses a novel optimization constraint to detect infeasibility and to
bound crew objectives, and a symmetry-breaking global constraint. The model
is compared to a sequential method and a mixed integer programming model.
Experimental results demonstrate significant benefits of the constraint program-
ming model, which reduces costs by 12% on average compared to the two-stage
method, and scales significantly better than the mixed integer programming
model. The benefits of the constraint programming model are influenced by both
the additional flexibility in vehicle interchanges and in trading crew costs for
vehicle costs. Future work will investigate more sophisticated search techniques
and global constraints to scale to larger instances.



References

1. Bent, R., Van Hentenryck, P.: A two-stage hybrid local search for the vehicle routing
problem with time windows. Transportation Science 38(4), 515–530 (2004)

2. Berbeglia, G., Cordeau, J.F., Gribkovskaia, I., Laporte, G.: Static pickup and
delivery problems: a classification scheme and survey. TOP 15(1), 1–31 (2007)
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