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Abstract

The Electric Vehicle Routing Problem with Time Windows, Piecewise-Linear Recharging

and Capacitated Recharging Stations aims to design minimum-cost routes for a fleet of electric

vehicles subject to intra-route and inter-route constraints. Every vehicle is equipped with a

rechargeable battery that depletes while it transports goods along its route. A vehicle must

detour to a recharging station to recharge before draining its battery. To approximate a real

recharging process, the amount of energy restored is modeled as a piecewise-linear function

of the time spent recharging. Furthermore, each station has a small number of chargers, and

hence, when and where a vehicle can recharge must be scheduled around the availability

of a charger. This interaction between vehicles does not appear in classical vehicle routing

problems and motivates the development of new methods that can exploit the joint routing

and scheduling structure. This paper proposes a branch-and-cut-and-price algorithm that

designates the routing to integer programming using Dantzig-Wolfe decomposition and the

scheduling to constraint programming using logic-based Benders decomposition. Experimental

results indicate that this hybrid method solves 34% of the instances with 100 customers.

Keywords:

vehicle routing problem, synchronization, scheduling, Dantzig-Wolfe decomposition,
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1. Introduction

This paper proposes the Electric Vehicle Routing Problem with Time Windows, Piecewise-

Linear Recharging and Capacitated Recharging Stations (EVRPTW-PLR-CRS). The EVRPTW-

PLR-CRS adds two complications to the Electric Vehicle Routing Problem with Time Windows

(EVRPTW) which is itself based on the classical Vehicle Routing Problem with Time Windows

(VRPTW).

The VRPTW appoints a fleet of identical vehicles to deliver packages from a central depot

to customers before returning to the depot at the end of their routes (see Vigo and Toth,
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2014; Costa et al., 2019). Every package is associated with a quantity of load. Each vehicle

can carry packages up to a maximum total load called the vehicle capacity. The customer of

every package is given a time frame, called the time window, within which the package will

be delivered. Vehicles can arrive at a customer prior to the time window but must wait until

the window opens before commencing delivery. Performing a delivery requires an amount of

time called its service duration. The goal of the VRPTW is to compute routes that deliver

every package while minimizing the total travel distance.

The EVRPTW extends the VRPTW to electric vehicles, each equipped with a rechargeable

battery (Desaulniers et al., 2016). The battery of a vehicle is initially fully charged at the

depot and depletes while the vehicle travels along its route. The battery must maintain a

minimum amount of energy, denoted as 0, at all times. Vehicles must detour to a recharging

station to recharge before draining their battery. The recharge rate is assumed to be constant.

Therefore, the energy replenished is a linear function of the time spent recharging.

In practice, the recharge rate progressively slows to avoid damaging the battery. It can

be accurately modeled as a piecewise-constant function (Montoya et al., 2017), which leads

to a piecewise-linear function for representing the energy restored. The EVRPTW-PLR-CRS

includes this piecewise-linear recharging function absent in the EVRPTW.

Much of the literature on routing electric vehicles assumes that the recharging stations can

simultaneously recharge an unlimited number of vehicles. In practice, the stations are often

equipped with only a few chargers. Hence, a vehicle may arrive at a recharging station to

find that all chargers are already in use by other vehicles and, consequently, has to wait until

a charger becomes available. The issue of waiting is exacerbated by the slow recharging of

batteries today. The EVRPTW-PLR-CRS supplements the routing structure of the EVRPTW

with a novel scheduling structure at each recharging station that both determines when a

vehicle should recharge and bounds the total number of vehicles simultaneously recharging.

This type of scheduling is seen at privately-owned recharging facilities where the operator has

full control of the chargers. Appendix A presents an example that illustrates the combined

routing and scheduling.

The scheduling structure in the EVRPTW-PLR-CRS substantially complicates the

VRPTW. Every vehicle in the VRPTW can be considered independent: as long as the

packages delivered along a route fit within the vehicle capacity and can be delivered on-time,

delaying the route does not impact the routes of the other vehicles. In the EVRPTW, adding

the energy constraints retains the independence of the vehicles: as long as a vehicle does not

completely drain its battery, the routes of the other vehicles remain unaffected. However, the

recharging station scheduling of the EVRPTW-PLR-CRS makes the problem much more

difficult. The vehicles are no longer independent as they interact at the charging stations.

To deliver the on-board packages on time, the vehicles are required to self-organize at the

stations to determine the order in which the vehicles recharge.

The main contributions of this paper are an exponential-size formulation of the EVRPTW-

PLR-CRS and an accompanying exact optimization algorithm that elegantly decomposes

the joint routing and scheduling structure to the best technologies available for exploiting
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these structures. It is well-known that integer programming and particularly branch-and-

cut-and-price (BCP) power the state-of-the-art exact methods for many vehicle routing

problems including the VRPTW (see Vigo and Toth, 2014; Costa et al., 2019) and the

EVRPTW (Desaulniers et al., 2020). It is also well-known that constraint programming

generally outperforms integer programming at scheduling problems (Schutt et al., 2010; Heinz,

2018). This paper introduces a hybrid BCP algorithm that uses integer programming for

routing via a Dantzig-Wolfe decomposition (see Lübbecke and Desrosiers, 2005; Desaulniers

et al., 2005) and defers the scheduling to a constraint programming subproblem using the

generic form (Lam and Van Hentenryck, 2017; Davies et al., 2017; Lam et al., 2020) of

logic-based Benders decomposition (Hooker and Ottosson, 2003). The paper also presents

an ad-hoc technique to strengthen the Benders cuts and a polyhedral analysis to further lift

the Benders cuts. Experimental results indicate that the BCP algorithm solves 34% of the

instances with 100 customers.

The remainder of the paper is organized as follows. Section 2 reviews related problems and

solution methods. Section 3 presents a mathematical formulation of the EVRPTW-PLR-CRS

and describes the hybrid BCP algorithm. Section 4 compares the empirical performance of

the algorithm on different variants of the problem. Section 5 concludes this paper.

2. Background and Related Work

This section reviews background material and surveys relevant studies.

2.1. Constraint Programming and Job Scheduling Problems

Constraint programming is a technology developed in the field of artificial intelligence for

combinatorial optimization. Constraint programming is widely used across many application

domains but it is especially successful at scheduling, at which it generally outperforms integer

programming. Most notably, Schutt et al. (2010) close many benchmark instances of the

Resource-Constrained Project Scheduling Problem using constraint programming. Integer

programming and constraint programming hybrids are only starting to challenge standalone

constraint programming on a limited number of benchmark instances (Heinz, 2018). The

poor performance of integer programming arises from the disjunctive nature of job scheduling

problems since the jobs are often scheduled before or after another.

High-performance constraint programming models often use global constraints, which are

high-level declarations that encapsulate an entire combinatorial structure and are implemented

by specialized algorithms. The DiffN global constraint is one of several workhorses for

scheduling. It enforces rectangle packings and is used for scheduling jobs that cannot be

paused and resumed (i.e., no preemption) and that cannot switch between different machines

once started. Consider N ∈ N jobs and let N = {1, . . . , N} be the set of jobs. Given the

vectors s,d,m, r ∈ ZN+ of variables respectively representing the start time of each job, the

duration of each job, the index of the first machine assigned to each job and the number of

machines simultaneously required by each job, all of which are bounded, the DiffN(s,d,m, r)
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Figure 1: The DiffN global constraint is used to pack smaller rectangles into a larger rectangle. The constraint
is unsatisfiable because jobs 1 and 2 require four machines simultaneously.

constraint ensures that the rectangles with corners (si,mi), (si + di − 1,mi), (si,mi + ri − 1)

and (si + di − 1,mi + ri − 1), i ∈ N , do not overlap. Formally, it requires

di = 0 ∨ dj = 0 ∨ ri = 0 ∨ rj = 0 ∨ si + di ≤ sj ∨ sj + dj ≤ si ∨mi + ri ≤ mj ∨mj + rj ≤ mi

∀i ∈ {1, . . . , n− 1}, j ∈ {i+ 1, . . . , n}.

In the general case, s, d, m and r are vectors of variables. However, in many scheduling

problems, the job durations d and resource consumptions r are known and fixed. Then, the

DiffN constraint only needs to find feasible start times s and machine allocations m, given

the constants d and r. Figure 1 shows an example with three machines and three such jobs.

Notice that job 2 cannot be scheduled on the three machines as it would exceed the capacity.

2.2. Logic-based Benders Decomposition

Hooker and Ottosson (2003) devise Logic-based Benders decomposition which generalizes

the linear programming subproblem in the common Benders decomposition to any type of

subproblem for which an inference dual can be defined. This includes discrete problems such

as integer programming and constraint programming. Due to its generality, the Benders cuts

in logic-based Benders decomposition do not have a specific form, such as the one dictated by

the dual variables in standard Benders decomposition. Instead, the form of the Benders cuts

must be carefully derived for every different problem. For many problems, naive combinatorial

Benders cuts (i.e., cuts that allow at most n− 1 binary variables to be used given a set of

n variables) are applicable (Codato and Fischetti, 2006) but results in an extremely weak

linear relaxation.

Lam and Van Hentenryck (2017) and Davies et al. (2017) independently invent a generic

mechanism that can derive combinatorial Benders cuts stronger than the naive cuts. Using the

proof system borrowed from Boolean satisfiability known as conflict analysis or conflict-driven

clause learning (Marques Silva and Sakallah, 1996; Ohrimenko et al., 2009; Feydy and Stuckey,

2009), their system tracks the sequence of propagations (i.e., the changes to the domain of

the variables) in the subproblem and upon detecting infeasibility, traces these propagations

backward to generate a combinatorial Benders cut in the master problem. The cut concerns
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a small, but not necessarily minimal, set of master problem variables that implicate the

infeasibility in the subproblem. A detailed walk-through of the procedure for the VRPTW is

given by Lam and Van Hentenryck (2017). The use of conflict analysis to find combinatorial

Benders cuts was recently developed into an automatic decomposition solver named Nutmeg

by the two teams together (Lam et al., 2020), on which this work is based.

2.3. Electric Vehicle Routing Problems

Electric vehicle routing problems and green vehicle routing problems append constraints

to classical vehicle routing problems to model issues relevant to a low-carbon society.

Desaulniers et al. (2016) design BCP algorithms for four variants of the EVRPTW: with

or without partial recharges and with or without a maximum of one recharge per route.

They propose pricing algorithms that include sophisticated resource extension functions

for connecting the current battery level to the future energy needs of a route. They also

develop dominance rules that can handle the interconnected time and charge resources. Their

algorithms can solve instances with 100 customers. Desaulniers et al. (2020) then improve

these algorithms by using reduced cost variable fixing to disable routes containing sequences

of two arcs.

Montoya et al. (2017) study an electric vehicle routing problem with piecewise-linear

recharging. They examine a common recharging process called constant current-constant

voltage and conclude that it closely follows a piecewise-linear function. They then design a

mixed integer linear programming model that could solve instances with 20 customers as well

as a bespoke heuristic solver. They conclude that ignoring the non-linearity of recharging

leads to infeasible or overly expensive solutions. They also notice that the literature up to this

point ignore the capacity of stations and propose to extend the study to capacitated stations

in future work. Based on the work by Montoya et al. (2017), Froger et al. (2019) develop two

improved formulations and a heuristic approach that find the best-known solutions.

Lee (2020) develop a branch-and-price algorithm for an electric vehicle routing problem

that uses a network whose nodes are recharging stations and arcs correspond to segments

of a route. They include the exact non-linear recharging function without resorting to

approximations but conclude that the method cannot yet handle other time constraints, such

as time windows, because of the interaction with the non-linear recharging function.

Green vehicle routing problems include constraints relevant to vehicles running on alter-

native fuels such as hydrogen vehicles and electric vehicles. Bruglieri et al. (2019) propose

exact methods for a green vehicle routing problem without time windows but with capacity

constraints at the refueling stations. All vehicles are assumed to refuel for a fixed amount of

time to its maximum capacity upon visiting a station. They develop two integer programming

models: an arc-based model and a path-based model that couples together segments of

the routes. They complement the path-based model with a cutting plane algorithm that

first relaxes some of the constraints and iteratively adds them if they are violated. Their

results indicate that the cutting plane approach over the huge path-based model is superior

by solving the hardest instances with 15 vehicles, 15 customers and one refueling station.

Noticing that the practicality of this model is limited to two refueling pumps at the station,
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Bruglieri et al. (2021) later improve their cutting plane technique to handle more pumps by

instead modeling the number of simultaneous refueling operations. This new algorithm can

solve instances with up to 30 customers and five pumps. There are a few differences to our

problem setting (e.g., no time windows) but the key difference is that we do not assume that

the vehicles recharge to its full capacity in a constant amount of time but rather incorporate

decisions on the amount to recharge and the duration to recharge, which is complicated by

the non-linear recharging rate.

Froger et al. (2021) consider a problem similar to the EVRPTW-PLR-CRS that excludes

time windows but includes stations equipped with different technologies, each with a different

piecewise-linear recharging rate. They propose a very elaborate path-based mixed integer

linear programming model and a two-phase local search matheuristic. Using the mixed integer

linear programming model, they could exactly solve instances with up to 10 customers and

2 stations, each with 1 or 2 chargers. In contrast, the heuristic finds feasible solutions to

instances with up to 320 customers. They conclude that explicitly considering the recharging

station scheduling is crucial as ignoring the scheduling can lead to infeasible solutions in the

presence of a limited number of chargers.

To simulate a limited capacity at the charging stations, several other studies (e.g., Kullman

et al., 2021; Keskin et al., 2021, 2019) propose models and solution methods that include

waiting queues at charging stations. There appears to be no other literature that develop

exact solution methods to the EVRPTW-PLR-CRS, presumably due to the difficulty in

handling the joint routing and scheduling structure.

2.4. Vehicle Routing Problems with Synchronization

The vehicles in classical vehicle routing problems can be considered independent as

delaying a route has little impact on the other routes. However, in rich vehicle routing

problems, modifying a route can have severe and detrimental effects on other routes. For

instance, some problems require the vehicles to co-operate to rendezvous or share resources.

This interaction is called synchronization. The EVRPTW-PLR-CRS falls into this category.

Vehicles are interdependent due to the interaction at the recharging stations. Vehicle routing

problems with synchronization are extremely difficult due to the consequences of one decision

on another. Three studies with similar routing and scheduling structure are mentioned below.

Drexl (2012) survey other vehicle routing problems with synchronization.

El Hachemi et al. (2011) investigate a joint routing and scheduling problem for scheduling

vehicles in the timber industry. They develop an ad-hoc decomposition technique somewhat

similar to logic-based Benders decomposition. They acknowledge that integer programming is

inadequate at scheduling and propose a constraint programming master problem for scheduling

and an integer programming subproblem for routing. Information on route infeasibility is

communicated back to the constraint programming master problem using global constraints.

Lam and Van Hentenryck (2016) study a routing and scheduling problem that models

airplanes parking in a limited number of bays while loading or unloading goods. The problem

schedules the arrival and departure of the airplanes in consideration of the scarce parking

bays. They develop a path-based integer programming master problem solved using column

6



generation for routing the vehicles, which are then scheduled using constraint programming.

They enforce the scheduling constraints using naive combinatorial Benders cuts, which simply

state that at most n− 1 of n binary decisions can be chosen. They do not attempt to lift or

strengthen these cuts.

Jungwirth et al. (2020) consider a scheduling problem in the healthcare domain. The

problem is modeled as a vehicle routing problem with scheduling constraints. They develop a

column generation algorithm for the problem and handle the scheduling structure using two

methods: one based on branching and the other based on naive combinatorial Benders cuts.

They also do not attempt to lift these cuts and conclude that branching performs better

experimentally.

3. The Branch-and-Cut-and-Price Algorithm

This section presents an exponential-size model of the EVRPTW-PLR-CRS and an

accompanying BCP algorithm for solving it.

3.1. Simplifying Assumptions

The following assumptions are imposed to simplify the problem.

Electric vehicles are not yet used for long-distance deliveries that require more than

one recharge between two customers. Therefore, a route is prevented from containing a

subsequence of two or more consecutive recharging stations. That is, a vehicle must arrive at

a station from the depot or a customer and depart the station to a customer or the depot.

A vehicle is assumed to conduct exactly one recharge between the time that it arrives

and departs a station. This prevents a vehicle from sharing its charger with another vehicle

by pausing its recharge. In the terminology of scheduling, preemption is prohibited.

Every vehicle begins its day fully charged. In addition, vehicles can return to the depot

with zero energy remaining as there is ample time overnight to recharge before beginning

the next day. With a further assumption that energy costs are proportional to the recharge

amount, then energy costs can be ignored since the costs are incurred either along a route or

after returning to the depot.

The energy consumed while in motion is assumed to be proportional to the distance

traveled. In reality, energy consumption is a non-linear function of the speed of the vehicle,

the load on-board and the slope of the road, among others.

Montoya et al. (2017) analyze the recharging characteristics of real batteries and propose

to model the recharging as a piecewise-linear function. They acknowledge that the recharging

process is described by differential equations but argue that piecewise-linear functions are an

accurate approximation. The same three-piece piecewise-linear function, as shown in Figure 2,

is considered for the EVRPTW-PLR-CRS. Note that a battery level of 0 does not mean that

the battery is fully depleted but rather represents a minimal state of charge.

3.2. The Model

Consider K ∈ N available vehicles, where K can be set to an arbitrarily large value if the

number of vehicles is unlimited. Let R∗ be the set of all possible routes. Let C be the set of
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Figure 2: The piecewise-linear function governing the amount of energy restored as a function of the duration
spent recharging according to Montoya et al. (2017).

customers and let Acr ∈ Z+ be a constant representing the number of times that route r ∈ R∗

visits customer c ∈ C. Associate a cost tcostr ∈ Z+ with every route r ∈ R∗ and a variable

xr ∈ {0, 1} that indicates whether r is chosen. A formulation of the EVRPTW-PLR-CRS is

then given as follows:

min
∑
r∈R∗

tcostr xr (1a)

subject to∑
r∈R∗

Acrxr = 1 ∀c ∈ C, (1b)∑
r∈R∗

Br
bxr ≥ Bb ∀b ∈ B∗, (1c)∑

r∈R∗
xr ≤ K, (1d)

xr ∈ Z+ ∀r ∈ R∗. (1e)

Objective Function (1a) minimizes the total cost of all chosen routes. Constraints (1b)

ensure that every customer is visited exactly once. Constraints (1c) indirectly enforce the

capacity of the recharging stations by requiring combinations of routes that have a feasible

recharging schedule. The set B∗ is the Benders cuts and every Benders cut b ∈ B∗ is associated

with a coefficient Br
b ∈ Z for every route r ∈ R∗ and a constant Bb ∈ Z. Constraint (1d)

bounds the number of routes. Constraints (1e) define the domain of the variables. Together,

Constraints (1b) and (1e) ensure that 0 ≤ xr ≤ 1 for all r ∈ R∗.
As R∗ and B∗ are exponential in the number of vertices, the model is simply too large

to be declared upfront and solved in a static manner using an integer programming solver.
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Instead, the variables and constraints are dynamically constructed using a BCP algorithm.

In the context of this algorithm, the above formulation is referred to as the integer master

problem.

3.3. The Algorithm

Algorithm 1 shows a generic BCP algorithm for solving the integer master problem. The

algorithm begins by creating an initial incumbent solution (Line 1) and a priority queue

(Line 2) to store the open nodes of the branch-and-bound tree. It then adds the root node to

the priority queue (Line 3). Then, for each node in the priority queue (Lines 4 and 5), it

performs column generation (Lines 7 to 21) to solve the linear relaxation of the integer master

problem. In each iteration of column generation, it solves the restricted master problem

(RMP) (Line 11) and the pricing subproblem (Line 19), and may call the checking subproblem

(Line 13). The RMP is a linear program that, given a set of routes, determines the proportion

that each route is selected in a candidate solution. If this solution is integral and can become

the incumbent (Line 12, where routes.obj and incumbent routes.obj denote the cost of this

solution and that of the best solution found so far, respectively), the algorithm proceeds to

the checking subproblem (Line 13), which handles the inter-route constraints, namely the

synchronization between the vehicles at the recharging stations. The checking subproblem

ensures that the routes chosen by the RMP have corresponding schedules that respect the

capacity of every station. If so (Line 14), the routes from the RMP and the schedules from

the checking subproblem constitute a feasible integer solution to the EVRPTW-PLR-CRS

(Line 15). If not (Line 16), the checking subproblem generates a combinatorial Benders cut

that is added to the RMP (Line 17), forcing the RMP to choose a different set of routes

(Lines 9 and 18). Once cuts are not found, the algorithm proceeds to the pricing subproblem

(Line 19), which attempts to find better routes for inclusion in the RMP (Line 21). The

pricing subproblem manages the intra-route constraints, i.e., the load, time window and

piecewise-linear recharging constraints. When the pricing subproblem declares that better

routes are not available, the column generation process stops and the algorithm proceeds

to branching if the RMP solution is fractional and potentially better than the incumbent

(Lines 22 to 25).

The RMP is initially infeasible as it is initialized with no routes. Farkas pricing (e.g.,

Andersen, 2014) is used to bring the RMP to primal feasibility, both initially at the root

node and after branching. The RMP is also augmented with valid inequalities to improve

performance.

3.4. The Restricted Master Problem

The RMP is the linear relaxation of the integer master problem and replaces the huge

sets of routes R∗ and Benders cuts B∗ with smaller but still exponential-size subsets R ⊆ R∗

and B ⊆ B∗, which are initially empty and are progressively filled by the pricing subproblem

and checking subproblem, respectively. The RMP is shown below:

min
∑
r∈R

tcostr xr (2a)
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Algorithm 1 The branch-and-cut-and-price algorithm.

1: (incumbent routes, incumbent schedules)← CreateDummySolution()

2: open← CreatePriorityQueue()

3: open.Add(CreateRootNode())
4: while ¬open.IsEmpty() do
5: node← open.Pop()
6: priced← true
7: while priced do
8: separated← true
9: while separated do

10: separated← false
11: (routes, duals)← SolveRestrictedMasterProblem(node.master)
12: if routes.IsInteger() ∧ routes.obj < incumbent routes.obj then
13: (schedules, cut)← SolveCheckingSubproblem(node.master, routes)
14: if schedules.IsFeasible() then
15: (incumbent routes, incumbent schedules)← (routes, schedules)
16: else
17: node.master.AddCut(cut)
18: separated← true

19: (priced, columns)← SolvePricingSubproblem(node.master, duals)
20: if priced then
21: node.master.AddColumns(columns)

22: if routes.IsFractional() ∧ routes.obj < incumbent routes.obj then
23: (left child, right child)← CreateChildren(node.master, routes)
24: open.Add(left child)
25: open.Add(right child)
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subject to∑
r∈R

Acrxr = 1 ∀c ∈ C, (2b)∑
r∈R

Br
bxr ≥ Bb ∀b ∈ B, (2c)∑

r∈R
xr ≤ K, (2d)

xr ≥ 0 ∀r ∈ R. (2e)

Define αc, βb, γ as the dual variables of Constraints (2b) to (2d), respectively.

3.5. The Pricing Subproblem

The pricing subproblem handles the routing of a single vehicle and has no direct knowledge

about the interactions at the recharging stations. It optimistically assumes that vehicles can

recharge whenever necessary, i.e., that the stations have no capacity. It is the dual variables

βb associated with the generated Benders cuts (Constraints (2c)) that indirectly influence the

choice of the arcs in the routes generated by the pricing subproblem.

Every vehicle is associated with a vehicle capacity T load ∈ Z+. Let T time ∈ Z+ be the time

horizon, at which point all vehicles must have returned to the depot. Every vehicle is equipped

with a battery storing an amount of energy between zero (representing a minimum amount)

and a maximum amount T energy ∈ Z+. The battery is recharged according to a piecewise-linear

function with P ∈ N pieces. Let P = {1, . . . , P} be the set of pieces. Each piece p ∈ P begins

at a battery level σp−1 ∈ Z+ and ends at σp ∈ Z+, where 0 = σ0 ≤ σ1 ≤ . . . ≤ σP = T energy.

Define θp ∈ Q as the recharging rate (energy per timestep) within piece p ∈ P such that

θ1 ≥ θ2 ≥ . . . ≥ θP > 0 and 1/θp ∈ N. To accommodate integrality limitations of constraint

programming, as explained in Section 3.6, 1/θp is required to be integer.

To implicitly model all feasible routes in the pricing subproblem, consider a directed

graph GPS = (V,APS), with vertex set V and arc set APS, that is customized for handling the

duals of Constraints (2c). The vertex set V = C ∪ S ′ ∪ D+ ∪ D− is the union of the customer

set C, a set S ′ of station vertices expanded from an original set S of stations, a set D+ of

source vertices corresponding to the depot at which the vehicles begin their routes and a set

D− of sink vertices corresponding to the depot at which the vehicles end their routes. Note

that we use sets D+ and D− to denote the depot vertices to be consistent with the notation

used in the next section, even if they each contain a single vertex.

Instantiate C = {0, . . . , C − 1} and S = {0, . . . , S − 1} where C ∈ N is the number of

customers and S ∈ N is the number of stations. Each station s ∈ S has Ms ∈ N chargers. Let

the set of expanded station vertices S ′ = S+ ∪S− where the post-customer station vertices in

S+ = {C, . . . , C+C ·S−1} are the station vertices accessible only immediately after a customer

and the pre-customer station vertices in S− = {C +C · S, . . . , C + 2C · S − 1} are the station

vertices accessible only immediately before a customer, but as we will see later, accessible only

immediately before any customer is visited. The vertex i = C + C · s+ c ∈ S+ is associated

with station s ∈ S and is only accessible immediately after visiting customer c ∈ C, i.e., i has
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Figure 3: Two routes illustrating the network GPS. Each node and arc is labeled with the set that it is
contained in.

only one incoming arc (c, i). Similarly, the set S− clones the stations for visits only before one

particular customer. The vertex i = C+C ·S+C ·s+ c ∈ S− is associated with station s ∈ S
and is only accessible immediately before visiting customer c ∈ C, i.e., i has only one outgoing

arc (i, c). Also let S ′s = {C+C ·s+c : c ∈ C}∪{C+C ·S+C ·s+c : c ∈ C} ⊂ S ′ be the set of

station vertices expanded from the original station s ∈ S. Only the expanded station vertices

appear within the graph; the original stations never appear as vertices. Denote the vertices

in the singleton depot vertex sets as D+ = {C + 2C · S} and D− = {C + 2C · S + 1}. Even

though this expansion leads to a large number of vertices, the arc set is highly constrained,

as explained below.

A route r = (r1, r2, . . . , rn) of length n ∈ N is represented in GPS as a sequence of n

vertices beginning at a source vertex (i.e., r1 ∈ D+), through a number of unique customer

and station vertices (i.e., r2, . . . , rn−1 ∈ C ∪ S ′ and ri 6= rj for i ∈ {2, . . . , n − 2} and

j ∈ {i+1, . . . , n−1}) and then ending at a sink vertex (i.e., rn ∈ D−) such that (ri, ri+1) ∈ APS

for all i ∈ {1, . . . , n− 1}. Route r is said to visit the vertices r1, . . . , rn and traverse the arcs

(r1, r2), . . . , (rn−1, rn).

We introduce more notation before describing the arc set APS. Every vertex i ∈ V is

associated with a load tloadi ∈ {0, . . . , T load}, time window opening topeni ∈ {0, . . . , T time} and

time window closing tclosei ∈ {0, . . . , T time}, where topeni ≤ tclosei . For every non-customer

vertex i ∈ V \ C, assume that the load tloadi = 0, the time window opening topeni = 0 and the

time window closing tclosei = T time.

For every pair of vertices i, j ∈ V, let tcosti,j ∈ Z+ be the distance from i to j, ttraveli,j ∈
{0, . . . , T time} be the travel time from i to j, including the service time at i if any, and

tenergyi,j ∈ {0, . . . , T energy} be the amount of energy discharged while traveling from i to j. For

a route r = (r1, . . . , rn), associate with it a cost tcostr =
∑n−1

i=1 t
cost
ri,ri+1

.

Recall from Section 3.1 the assumption that a route cannot contain a subsequence of two

or more consecutive stations. This limitation is enforced by requiring all arcs incoming to S−

to be outgoing from a source vertex. That is, if a pre-customer station vertex j ∈ S− appears

in a route, it must be the first vertex immediately after a source vertex (i.e., r3, . . . , rn 6∈ S−).

Hence, a vehicle cannot visit a post-customer station vertex i ∈ S+ associated with a customer

c1 ∈ C and followed immediately by a pre-customer station vertex j ∈ S− associated with a

different customer c2 ∈ C, c2 6= c1.

Figure 3 summarizes the network with two routes. All routes begin at a source vertex

(D+). Arcs outgoing from a source vertex (D+) only lead to a customer (C) or a pre-customer

station vertex (S−). Arcs outgoing from a customer (C) lead to other customers (C), post-

12



customer stations (S+) or sink vertices (D−). Pre-customer stations (S−) have exactly one

arc leading to their associated customer (C). Arcs outgoing from the post-customer stations

(S+) lead to customers (C) or the sink vertices (D−).

The arc set APS = (A1 ∪ . . . ∪ A8) \ (A9 ∪ . . . ∪ A14) is constructed as follows. First, the

arcs are built from the union of the following subsets:

• A1 = {(i, j) : i ∈ D+, j ∈ S−} contains the arcs from the start depot to the pre-customer

stations.

• A2 = {(i, j) : i ∈ D+, j ∈ C} contains the arcs from the start depot to the customers.

• A3 = {(i, j) : i ∈ S−, j ∈ C, j = i mod C} contains the arcs from each pre-customer

station to its corresponding customer.

• A4 = {(i, j) : i, j ∈ C} contains the arcs between customers.

• A5 = {(i, j) : i ∈ C, j ∈ S+, i = j mod C} contains the arcs from each customer to its

corresponding post-customer stations.

• A6 = {(i, j) : i ∈ C, j ∈ D−} contains the arcs from the customers to the end depot.

• A7 = {(i, j) : i ∈ S+, j ∈ C, j 6= i mod C} contains the arcs from the post-customer

stations to other customers.

• A8 = {(i, j) : i ∈ S+, j ∈ D−} contains the arcs from the post-customer stations to the

end depot.

Next, the following subsets of infeasible or redundant arcs are removed:

• A9 = {(i, i) : i ∈ C} contains the loops at the customers.

• A10 = {(i, j) : i, j ∈ V, tloadi + tloadj > T load} contains the arcs where including the

packages of customers i and j on the same vehicle will exceed its vehicle capacity.

• A11 = {(i, j) : i, j ∈ V, topeni + ttraveli,j > tclosej } contains the arcs that exceed the time

window at j given the earliest possible departure at i.

• A12 = {(i, j) : i, j ∈ V, tenergyi,j > T energy} contains the arcs that discharge more than

the battery capacity.

• A13 = {(i, j) : i ∈ D+, j ∈ S−, tcosti,j = 0} contains the arcs from the start depot to a

station at the same location.

• A14 = {(i, j) : i ∈ S+, j ∈ D−, tcosti,j = 0} contains the arcs from a station at the same

location as the depot to the end depot.

Excluding A13 and A14 is not strictly necessary but reduces some redundancy in the model

because there is no benefit in recharging at the same location as the depot immediately after

starting a route or immediately before ending a route. Some of these subsets are shown in

Figure 3.
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The pricing subproblem is an elementary resource-constrained shortest path problem on

GPS. It is solved using a labeling algorithm (see Irnich and Desaulniers, 2005). The labeling

algorithm is initialized with a partial path both starting and ending at a source vertex and

iteratively extends the partial path forward along all arcs outgoing from the source and the

subsequently visited vertices, generating more partial paths in the process. The algorithm

loops through all partial paths until a stopping criterion is satisfied, such as discovering a

path from the source to the sink with negative reduced cost. Any path found with negative

reduced cost is then added to R in the RMP.

Every partial path from the source to some vertex i is associated with a label, a vector

of the resource consumptions of the partial path, including its reduced cost. If the resource

consumptions of a partial path are infeasible, the path is discarded. In addition, if a path

is dominated, it is also discarded. Given two partial paths r1 and r2 from the source to a

common vertex i, r2 is dominated if every possible extension of r2 to the sink is also a valid

extension of r1 that yields an equal or better reduced cost.

A label li = (lcosti , lloadi , ltime
i , lenergyi , (l

mrtp
i )p∈P , (l

custc
i )c∈C) associated with a partial path

ending at vertex i contains the components:

• lcosti : the reduced cost of the route up to i,

• lloadi : the load delivered up to i,

• ltime
i : the earliest time for starting service at i,

• lenergyi : the battery level at i after minimally recharging the battery along the partial

path,

• l
mrtp
i : the maximum amount of time for recharging at rate θp, p ∈ P, at any station

along the partial path that is still available when reaching i, and

• lcustci : a 0/1 resource indicating whether customer c ∈ C is unreachable (already visited

or necessarily exceeds the vehicle capacity or time window) in the remainder of the

partial path.

The labeling algorithm initially creates a label li representing the source depot vertex

i = C + 2C · S with lcosti = −γ, lloadi = 0, ltime
i = 0, lenergyi = T energy, l

mrtp
i = 0 ∀p ∈ P, and

lcustci = 0∀c ∈ C.
Given a set of existing labels, the labeling algorithm loops through every existing

label li (associated with a partial path ending at vertex i) to extend the partial path

along every outgoing arc (i, j) ∈ APS. The labeling algorithm computes the resource con-

sumptions of the new partial path ending at vertex j and stores them in a new label

lj = (lcostj , lloadj , ltime
j , lenergyj , (l

mrtp
j )p∈P , (l

custc
j )c∈C). The resource consumptions of lj are

calculated using Algorithm 2.

As explained later, the constant Br
b in Constraints (1c) and (2c) can be decomposed into

a weighted sum on the arcs Br
b =

∑
(i,j)∈APS

Bi,j
b A

i,j
r where Bi,j

b ∈ Z is a constant associated

with arc (i, j) ∈ APS and Ai,jr ∈ Z+ is a constant representing the number of times that
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Algorithm 2 Label extension procedure for extending a partial path ending at vertex i along
an arc (i, j)

1: lcostj ← lcosti + tcosti,j − αj −
∑

b∈B βbB
i,j
b

2: if j ∈ C then
3: l

custj
j ← l

custj
i + 1

4: if l
custj
j > 1 then

5: exit (extension is infeasible)

6: lloadj ← lloadi + tloadj

7: ltime
j ← max{ltime

i + ttraveli,j , topenj }
8: if lloadj > T load ∨ ltime

j > tclosej then
9: exit (extension is infeasible)

10: w ← max {topenj − (ltime
i + ttraveli,j ), 0}

11: for p = 1, . . . , P do
12: δmrtp ← min {w −

∑p−1
µ=1 δ

mrtµ , l
mrtp
i }

13: l
mrtp
j ← l

mrtp
i − δmrtp

14: lenergyj ← lenergyi − tenergyi,j +
∑

p∈P θpδ
mrtp

15: if lenergyj < 0 then
16: p← 1
17: while lenergyj < 0 and p ≤ P do

18: δmrtp ← min {lmrtp
j ,−lenergyj /θp}

19: ltime
j ← ltime

j + δmrtp

20: l
mrtp
j ← l

mrtp
j − δmrtp

21: lenergyj ← lenergyj + θpδ
mrtp

22: p← p+ 1

23: if lenergyj < 0 ∨ ltime
j > tclosej then

24: exit (extension is infeasible)

25: if j ∈ S ′ then
26: for p = 1, . . . , P do
27: l

mrtp
j ← min {(σp − σp−1)/θp,max {(σp − lenergyj )/θp, 0}}

28: for p = 1, . . . , P do
29: l

mrtp
j ← min {lmrtp

j , tclosej − ltime
j −

∑p−1
µ=1 l

mrtµ
j }

30: for c ∈ C do
31: if lcustcj = 0 ∧ (lloadj + tloadc > T load ∨ ltime

j + ttravelj,c > tclosec ) then

32: lcustcj ← 1
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route r ∈ R traverses (i, j). Then, Line 1 updates the reduced cost of the partial path as an

accumulation of reduced costs on the arcs. Assume that αj = 0 if j 6∈ C.
If vertex j is a customer (Line 2), Line 3 increments the number of times that j is visited.

If customer j is visited more than once (Line 4), Line 5 exits the algorithm. Line 6 increments

the load. Line 7 computes a lower bound on the service start time ltime
j , which can be the

arrival time but can also be delayed until the time window opens. If extending the partial

path along the arc exceeds the vehicle capacity or the arrival time is later than the closure of

the time window (Line 8), Line 9 exits the algorithm.

A vehicle may arrive at vertex j before the time window opens. Instead of waiting

unproductively for the time window to open, the waiting time may be replaced by additional

recharging time at a station previously visited along the route. This is always possible if (1)

at least one station is visited before vertex j, (2) the battery is not full at one of these visits

and (3) the time window of the customers visited since then are not yet closed. Lines 10 to 14

convert the waiting time into recharging time. Line 10 calculates the waiting time w at vertex

j, if any. For each piece p ∈ P in order (Line 11), Line 12 computes the maximum amount

of time δmrtp that can be used to recharge at an earlier station to make the waiting time

vanish, favoring the faster rates. Line 13 reduces the amount of recharging time available in

piece p by the duration calculated in the previous line. Line 14 discharges the battery due to

traveling on the arc and then recharges the battery using the waiting time, if any.

If the battery holds a negative amount of energy (Line 15), then the vehicle is insufficiently

charged and cannot reach vertex j. Lines 15 to 24 recharge the vehicle until it holds 0 energy

upon arriving at j. Recall that Lines 10 to 14 delay the vehicle until its arrival time at vertex

j is the time window opening, and hence, the recharge has no consequence on the route. In

contrast, Lines 15 to 24 delay the vehicle after the time window opens and may impact the

time window constraints. Line 16 initializes the loop variable. Line 17 loops through each

piece p ∈ P, starting at the pieces representing the lower battery levels. Line 18 computes

the amount of recharging time required in piece p until the battery holds 0 energy, capped at

the amount of time available. Line 19 delays the vehicle by this amount of time. Line 20

reduces the available recharging time of piece p. Line 21 recharges the vehicle for this amount

of time. Line 22 advances to the next piece. If the amount of additional recharging time

required to reach vertex j is unavailable or performing this recharge exceeds its time window

(Line 23), Line 24 exits the algorithm.

Upon reaching a station, Lines 25 to 27 update the amount of time available for recharging.

The amount of time available for recharging in each piece is calculated as either the duration

to recharge the full piece if the battery is in a lower piece, or the duration to reach the end of

the piece if the battery is in the piece.

Lines 28 and 29 ensure that the closure of the time window at vertex j is respected in

later extensions by reducing the time available to recharge in each piece.

If visiting a customer in the future exceeds the vehicle capacity of the vehicle or the time

window of the customer, Lines 30 to 32 mark the customer as unreachable.

The components ltime
i , lenergyi , (l

mrtp
i )p∈P of label li are parameters that define the recharg-
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Figure 4: Two recharging functions governing the time of starting service and the battery level at arrival to a
common vertex.

ing function f energyi (τ), τ ∈ [ltime
i , tclosei ], which relates the time of starting service at vertex

i to the battery level upon arrival at i. The minimum battery level is given by lenergyi and

is associated with the earliest service start time ltime
i . The vehicle can arrive with a higher

battery level by delaying the service start time at vertex i to recharge more at the stations

visited previously. Thus, for τ ∈ [ltime
i , tclosei ], we get:

f energyi (τ) =


lenergyi + τ−θ1 if τ− < lmrt1

i ,

lenergyi +
∑ρ(τ)−1

µ=1 l
mrtµ
i θµ +

(
τ− −

∑ρ(τ)−1
µ=1 l

mrtµ
i

)
θρ(τ) if lmrt1

i ≤ τ− <
∑P

µ=1 l
mrtµ
i ,

lenergyi +
∑P

µ=1 l
mrtµ
i θµ otherwise,

where τ− = τ − ltime
i and ρ(τ) ∈ P such that

∑ρ(τ)−1
µ=1 l

mrtµ
i < τ− ≤

∑ρ(τ)
µ=1 l

mrtµ
i . Two

examples of this function are illustrated in Figure 4. It can be shown that f energyi (τ) is

continuous, piecewise-linear, concave and non-decreasing. The last case (“otherwise”) is a

constant function representing no more time to recharge due to either a binding time window

or a fully charged battery.

A feasible extension is found after Algorithm 2 completes. The labeling algorithm

then proceeds to determine whether an existing label dominates the new label or the new

label dominates an existing label. A label l1 = (lcost1 , lload1 , ltime
1 , lenergy1 , (l

mrtp
1 )p∈P , (l

custc
1 )c∈C)

dominates another label l2 = (lcost2 , lload2 , ltime
2 , lenergy2 , (l

mrtp
2 )p∈P , (l

custc
2 )c∈C) if both labels are

associated with partial paths ending at the same vertex i and all of the following conditions

hold:

lcost1 ≤ lcost2

lload1 ≤ lload2

ltime
1 ≤ ltime

2
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f energy1 (τ) ≥ f energy2 (τ) ∀τ ∈ [ltime
2 , tclosei ] (3)

lcustc1 ≤ lcustc2 ∀c ∈ C.

If label l2 is dominated by l1, then l2 can be removed from further consideration as any

feasible extension of l2 is also a feasible extension of l1 that yields an equal or better reduced

cost. In the case that both l1 dominates l2 and l2 dominates l1, then one of them must kept

to ensure that the algorithm is exact.

Testing Condition (3) requires comparing two piecewise-linear functions. This can be

accomplished by comparing the two functions at the endpoints and at the breakpoints of

either function, i.e.,

f energy1 (τ) ≥ f energy2 (τ) ∀τ ∈
{
ltime
2 , tclosei

}
∪

ltime
2 +

p∑
µ=1

l
mrtµ
2 : p ∈ P ∧ ltime

2 +

p∑
µ=1

l
mrtµ
2 < tclosei

 .

In Figure 4, the blue label could dominate the yellow label because the blue function is

greater than the yellow function at all of its breakpoints.

3.6. The Checking Subproblem

Because the RMP (2a)–(2e) does not include, in general, all Constraints (1c), there is

no guarantee that there exists a feasible charging schedule for any integral solution to the

RMP. Consequently, when an RMP integral solution is found, one must first determine

whether it can be associated with a feasible charging schedule. This is accomplished by

solving a checking subproblem that can be stated as follows. Given a set of vehicle routes that

services each customer exactly once and that includes visits to charging stations, determine if

there exists a feasible charging schedule for each vehicle such that each route is energy- and

time-feasible and the capacity of all charging stations are not exceeded. Note that charging

can only occur during the visits that were already planned in the proposed set of routes.

The checking subproblem is expressed as a constraint programming model based on succes-

sor variables over the giant tour representation (e.g., Kilby and Shaw, 2006). Appearing very

frequently in constraint programming models of vehicle routing problems, this representation

concatenates the routes into a single tour by linking the return to the depot of every route to

the departure from the depot of another route. The successor variables are used to identify

the successor vertex of every vertex. In our case, the successor variables are fixed according to

the solution from the RMP. Nevertheless, given that these variables are required to determine

the Benders cuts as explained in the next section, we present a constraint programming

model that involves them as if they were not fixed.

Let K = {0, . . . ,K − 1} be the set of vehicles. The checking subproblem can be defined

over a directed graph GCS = (V,ACS), which differs slightly from graph GPS described in

the previous section. The vertex set is again given by V = C ∪ S ′ ∪ D+ ∪ D−. However, for

every vehicle, the giant tour representation requires one source vertex and one sink vertex.

Hence, the depot vertex sets are redefined as D+ = {C + 2C · S, . . . , C + 2C · S +K − 1} and

D− = {C+2C ·S+K, . . . , C+2C ·S+2K−1}, where source depot vertex i = C+2C ·S+k ∈ D+
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and sink depot vertex j = C + 2C · S +K + k ∈ D− are both associated with vehicle k ∈ K.

The giant tour representation links the sink depot vertex of vehicle k ∈ {0, . . . ,K − 2} to

the source depot vertex of vehicle k + 1, and the sink depot of the last vehicle K − 1 to the

source depot of the first vehicle 0. Hence, the routes can be viewed as one giant tour.

The giant tour formulation uses loops to indicate unvisited vertices. Any vertex not

visited by a vehicle will be excluded from the giant tour and will have itself as its immediate

predecessor and immediate successor. The network includes loops at the station vertices,

which may be unvisited, whereas loops are prohibited at the customer vertices because every

customer must be visited.

The arc set ACS = (A1∪ . . .∪A8∪A15∪ . . .∪A18)\ (A9∪ . . .∪A14) is essentially identical

to the arc set APS used in the pricing subproblem but is modified to accommodate the giant

tour representation by allowing loops at the stations and by linking each sink depot vertex to

the source depot vertex of the next vehicle. Here, the arc subsets A1 to A14 are defined as

in Section 3.5, assuming that D+ and D− contain multiple vertices. The other subsets are

given by:

• A15 = {(i, j) : i ∈ D+, j ∈ D−, k ∈ K, i = C + 2C · S + k, j = C + 2C · S + K + k}
contains the arcs from the source depot vertex of each vehicle to its sink depot vertex.

• A16 = {(i, i) : i ∈ S ′} contains the loops at the stations.

• A17 = {(i, j) : i ∈ D−, j ∈ D+, k ∈ K \ {K − 1}, i = C + 2C · S + K + k, j =

C + 2C · S + (k + 1)} contains the arcs from the sink depot vertex of each vehicle to

the source depot vertex of the next vehicle.

• A18 = {(i, j) : i ∈ D−, j ∈ D+, i = C + 2C · S +K +K, j = C + 2C · S} contains the

arc from the sink depot vertex of the last vehicle to the source depot vertex of the first

vehicle.

Let pi ∈ V and ni ∈ V be integer variables storing the immediate predecessor and

immediate successor of vertex i ∈ V respectively. That is, pi is the vertex previous to i in a

route and ni is the next vertex after i. If ni = i and pi = i, then i does not appear in any

route. When solving the checking subproblem, all pi and ni variables are fixed to the values

that specify the routes in the solution to the RMP. Then, the constraint programming solver

will be able to propagate these values to the other constraints and in turn derive a conflict

on these variables.

Let ki ∈ K be a variable storing the vehicle that visits vertex i ∈ V . Let li ∈ {0, . . . , T load}
be the total load delivered up to and including vertex i ∈ V. The model assumes that

recharging is possible at any vertex but the recharge duration is 0 at non-station vertices.

Let ti ∈ {topeni , . . . , tclosei } and t′i ∈ {0, . . . , T time} be the time of starting and completing

recharge at i ∈ V, respectively. Let ei, e
′
i ∈ {0, . . . , T energy} be the battery level before and

after recharging at i ∈ V , respectively. Define di ∈ {0, . . . , T time} as the recharge duration at

i ∈ V. For every station s ∈ S and its expanded vertices i ∈ S ′s, let mi ∈ {0, . . . ,Ms − 1} be

the charger used by the vehicle at i.
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The constraint programming model is given as follows:

Inverse(n,p), (4a)

SubCircuit(n), (4b)

kni = ki ∀i ∈ C ∪ S ′ ∪ D+, (4c)

kC+2C·S+k = k ∀k ∈ K, (4d)

kC+2C·S+K+k = k ∀k ∈ K, (4e)

nC+2C·S+k < nC+2C·S+k+1 ∀k ∈ {0, . . . ,K − 2}, (4f)

t′i = ti ∀i ∈ V \ S ′, (4g)

e′i = ei ∀i ∈ V \ S ′, (4h)

di =
∑
w∈P

(1/θw) ·max{min{σw, e′i} −max{σw−1, ei}, 0} ∀i ∈ S ′, (4i)

t′i = ti + di ∀i ∈ S ′, (4j)

e′i ≥ ei ∀i ∈ S ′, (4k)

DiffN((ti)i∈S′s , (di)i∈S′s , (mi)i∈S′s ,1) ∀s ∈ S, (4l)

li = lpi + tloadi ∀i ∈ C ∪ S ′ ∪ D−, (4m)

tni ≥ t′i + ttraveli,ni ∀i ∈ C ∪ S ′ ∪ D+, (4n)

eni = e′i − t
energy
i,ni

∀i ∈ C ∪ S ′ ∪ D+, (4o)

li = ti = 0 ∀i ∈ D+, (4p)

ei = T energy ∀i ∈ D+, (4q)

pj ∈ {i : (i, j) ∈ ACS} ∀j ∈ V, (4r)

ni ∈ {j : (i, j) ∈ ACS} ∀i ∈ V, (4s)

ki ∈ K ∀i ∈ V, (4t)

li ∈ {0, . . . , T load} ∀i ∈ V, (4u)

ti ∈ {topeni , . . . , tclosei } ∀i ∈ V, (4v)

t′i ∈ {0, . . . , T time} ∀i ∈ V, (4w)

di ∈ {0, . . . , T time} ∀i ∈ V, (4x)

ei, e
′
i ∈ {0, . . . , T energy} ∀i ∈ V, (4y)

mi ∈ {0, . . . ,Ms − 1} ∀s ∈ S, i ∈ S ′s. (4z)

Constraint (4a) links the successor and predecessor variables, where n = (n0, . . . , nC+2C·S+2K−1)

and p = (p0, . . . , pC+2C·S+2K−1) are the vectors of the successor variables and predecessor

variables, respectively. Formally, this constraint ensures that ni = j ↔ pj = i for all i, j ∈ V.

This constraint also implicitly requires the successor variables to take unique values and

the predecessor variables to take unique values; i.e., it contains AllDifferent(n) and

AllDifferent(p) as necessary conditions. Constraint (4b) enforces the giant tour.

Constraints (4c) track each vehicle along its route by equating the index of the vehicle

visiting vertex i to the index of the vehicle visiting the successor of i. Constraints (4d)

20



and (4e) require the vehicle visiting a source or sink depot vertex to be exactly the vehicle

associated with the vertex. The giant tour formulation ties a particular vehicle index to

every source and sink depot vertex. This introduces symmetry due to permutations of the

vehicle index. That is, permuting the routes and assigning them to different vehicles give

exponentially-many equivalent solutions. Constraints (4f) break this vehicle symmetry by

imposing an ordering on the first vertex (successor of the source depot vertex) across all

routes. Given a solution, permuting the routes is now infeasible.

Constraints (4g) and (4h) forbid recharging at non-station vertices by equating the time

and battery level before and after recharging. Constraints (4i) sum the amount of time spent

recharging in each piece by computing the amount of energy replenished in each piece, which

may be clamped by the start and end battery levels of the piece. Constraints (4j) calculate

the timestep when recharging is completed. Constraints (4k) permit recharging at a station

vertex.

Constraints (4l) schedule the recharges at each recharging station. The DiffN global

constraint is handled natively in constraint programming using a specialized algorithm. The

vector 1 is the unit vector with appropriate dimension.

Constraints (4m) track the load along a route. These constraints state that the total load

delivered up to vertex i is the total load delivered up to the predecessor of i incremented by

the amount delivered at i. Constraints (4n) track the time along a route by requiring the

recharge start time at the successor of i to be later than the recharge completion time at i

plus the travel time. Similarly, Constraints (4o) track the battery level along a route.

Constraints (4p) and (4q) initialize the load, time and battery level at the start of a route.

Constraints (4r) to (4z) restrict the domain of the variables.

A nuance here is that most constraint programming solvers only support integer variables

and do not support floating point variables because computing the lower bound and upper

bound of the domain of a floating point variable in exact arithmetic is both tricky and slow.

To accommodate this limitation, all input data and variables in the checking subproblem are

restricted to integer values. In particular, the time variables ti, t
′
i and the energy variables

ei, e
′
i at each vertex i ∈ V and the 1/θw coefficient in Constraints (4i) must take integral

values. This is not required for the pricing subproblem. However, in practice, the time data

(time windows, travel times, recharging durations, etc.) are often assumed to be integer.

Furthermore, an amount of energy can be approximated by a scaled integer value obtained by

first rounding this amount to a suitable number of decimals η before multiplying it by 10η.

3.7. Translating Master Problem Candidate Solutions and Nogoods

This section describes how a set of routes from an integer feasible solution to the RMP

can be translated into a partial solution in the checking subproblem, and how a nogood in

the checking subproblem can be translated into a Benders cut in the RMP.

The automatic logic-based Benders decomposition and branch-and-check algorithm of

Lam and Van Hentenryck (2017); Davies et al. (2017) and Lam et al. (2020) require the

integer programming problem and the constraint programming problem to communicate

through a set of identical variables. Hence, the constraint programming problem historically
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uses the same representation as the integer programming problem and therefore cannot

exploit the capabilities of global constraints.

The route variables in the RMP and the successor variables in the checking subproblem

are clearly not identical. To remedy this issue, first consider an intermediary: a network flow

representation with arc variables xi,j ∈ {0, 1} that indicate whether an arc (i, j) ∈ APS is

used. This is the well-known two-index formulation commonly used in the Traveling Salesman

Problem and branch-and-cut arc-based models of vehicle routing problems. Observe that any

feasible solution x̂ to the RMP has an equivalent solution in the network flow representation:

x̂i,j =
∑
r∈R

Ai,jr x̂r.

Even though the arc variables in the network flow representation and the successor variables

in the giant tour representation are equivalent, the depot vertices D+ ∪ D−, and hence the

arc sets APS and ACS, differ substantially. In particular, the network flow representation has

no vehicle symmetry, whereas the giant tour representation duplicates the depot vertex for

every vehicle, which consequently introduces symmetry due to permutations of the vehicle

index.

Consider the subset A∩ = APS ∩ ACS = {(i, j) ∈ APS : i, j ∈ C ∪ S ′} of arcs that exists

in both models. These arcs have customer or station end-points. For these arcs (i, j) ∈ A∩,

it is simply a matter of fixing ni = j whenever x̂i,j = 1 and then running the propagation

algorithms, which will either (1) declare that the solution (x̂i,j)(i,j)∈A∩ is schedule-feasible and

return a schedule ((t̂i)i∈V , (t̂
′
i)i∈V), or (2) declare that the solution (x̂i,j)(i,j)∈A∩ is schedule-

infeasible and return an explanation, i.e., a conjunction of several variable-value pairs that

implicate the infeasibility:∧
(i,j)∈A1

¬Jni = jK ∧
∧

(i,j)∈A2

Jni = jK→ infeasible,

where A1,A2 ⊂ A∩ and A1 ∩A2 = ∅. This explanation states that no feasible schedule exists

whenever all conditions ni 6= j for (i, j) ∈ A1 and ni = j for (i, j) ∈ A2 hold simultaneously.

Negating the explanation yields a nogood, i.e., a constraint that prevents the same infeasibility

from reoccurring: ∨
(i,j)∈A1

Jni = jK ∨
∨

(i,j)∈A2

¬Jni = jK.

The nogood can then be translated into the combinatorial Benders cut∑
(i,j)∈A1

xi,j +
∑

(i,j)∈A2

(1− xi,j) ≥ 1,

which can be rearranged to ∑
(i,j)∈A1

xi,j −
∑

(i,j)∈A2

xi,j ≥ 1− |A2|.
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This Benders cut expressed in the network flow representation must then be rewritten in

terms of the master problem variables (see Desaulniers et al., 2011):

∑
r∈R∗

 ∑
(i,j)∈A1

Ai,jr −
∑

(i,j)∈A2

Ai,jr

xr ≥ 1− |A2|.

It corresponds to a new b ∈ B in Constraints (2c), where Bb = 1− |A2|,

Br
b =

∑
(i,j)∈A1

Ai,jr −
∑

(i,j)∈A2

Ai,jr =
∑

(i,j)∈A

Bi,j
b A

i,j
r

and

Bi,j
b =


1 if (i, j) ∈ A1

−1 if (i, j) ∈ A2

0 otherwise.

The main argument here is that the naive mapping xi,j = 1 ↔ ni = j is valid because

(i, j) ∈ A∩ exists in both models.

The only remaining issue concerns the vehicle-specific depot vertices because explanations

over vehicle-specific arcs cannot be translated into a Benders cut over arcs not tied to a

particular vehicle. Specifically, prohibiting one vehicle from taking an arc does not preclude

a different vehicle from taking the same arc. Hence, the naive translation described above

requires some modifications.

Observe that the depot vertices D+ ∪ D− are numbered higher than the station vertices,

from C+2C ·S onward. Then, the mapping between the two models is not especially difficult:

• Arcs outgoing from the source depot vertex: xC+2C·S,i = 1↔ pi ≥ C + 2C · S for any

i ∈ V.

• Arcs incoming to the sink depot vertex: xi,C+2C·S+1 = 1↔ ni ≥ C + 2C · S +K for

any i ∈ V.

For example, if x̂C+2C·S,i = 1 for some vertex i ∈ V , the bound pi ≥ C+2C ·S is placed in the

constraint programming model and propagation runs as usual. If it returns an explanation

containing Jpi ≥ C + 2C · SK (or nogood containing Jpi < C + 2C · SK), then this literal is

manually replaced with the term (1− x̂C+2C·S,i) in the Benders cut, i.e., (C + 2C · S, i) ∈ A2.

3.8. Reducing the Number of Arcs in a Combinatorial Benders Cut

Conflict analysis stores the propagations (the changes to the domain of each variable) made

by each constraint by dynamically constructing a graph called the implication graph (Ohri-

menko et al., 2009; Feydy and Stuckey, 2009). Tightening the domain of one variable often

triggers propagations on other variables, tightening the domain of these variables in turn. The

sequence of propagations can eventually lead to a conflict. Upon detecting a conflict, conflict

analysis traces the implication graph to deduce a set of variable-value pairs that provoke the

conflict and then creates a combinatorial Benders cut that prevents these variable-value pairs
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from occurring again. By construction, the cut generated by conflict analysis cannot contain

more variables than the naive combinatorial Benders cut which contains all variable-value

pairs of the master problem candidate solution fixed in the checking subproblem. Therefore,

Benders cuts found using conflict analysis are stronger than the naive combinatorial Benders

cuts commonly seen in the literature simply because they concern a smaller set of variables.

However, conflict analysis does not guarantee that the cut contains the fewest number of

variables for explaining the conflict. The cut can contain propagations in the chain leading

to the conflict but not directly implicating the conflict. Hence, arcs in the cut not necessary

for explaining the conflict can be removed in a post-processing step.

Once conflict analysis has found a set of Q ≤ K jointly infeasible partial routes R̂ =

{r1, . . . , rQ} such that rq = (rq1, . . . , r
q
nq) for all q ∈ {1, . . . , Q}, Algorithm 3 attempts to

isolate the infeasibility to one station. Line 1 loops through each station s in turn. Line 2

extracts the routes that visit station s. If s is visited by more routes than its number of

chargers (Line 3), Line 4 solves the checking subproblem again with this subset of routes.

If these routes are infeasible (Line 5), the conflict can be isolated to station s, and hence,

Line 6 creates a cut over the smaller route set R̂s before exiting on Line 7. If the cut cannot

be isolated to one station, Line 8 creates a cut over the original arcs.

Algorithm 3 Procedure for reducing the number of arcs in a Benders cut

1: for s ∈ S do
2: R̂s = {rq ∈ R̂ : ∃i ∈ {1, . . . , nq} ∧ rqi ∈ S ′s}
3: if |R̂s| > Ms then
4: solve the checking subproblem again with some successor variables fixed to R̂s
5: if infeasible then
6: create a combinatorial Benders cut over R̂s
7: exit
8: create a combinatorial Benders cut over R̂

Line 4 is very time-consuming. To reduce the computation time, the post-processing

procedure is only run up to a certain depth in the branch-and-bound tree. A depth limit of

five is chosen for our experiments.

3.9. Lifting the Combinatorial Benders Cuts to Multi-Tournament Cuts

The Benders cuts generated by logical inference do not exploit the polyhedral structure

of the network flow representation nor the set partition representation. This section presents

minor polyhedral analysis on the network flow model to lift the Benders cuts into a stronger

form.

Ascheuer et al. (2000) study the polyhedron of the Asymmetric Traveling Salesman

Problem, which is closely related to the single-vehicle VRPTW. They show that whenever a

partial route r = (r1, . . . , rn) is infeasible, the constraint

n−1∑
i=1

xri,ri+1 ≤ n− 2,
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which prohibits at least one of the n− 1 arcs of r, can be lifted to the tournament inequality

n−1∑
i=1

n∑
j=i+1

xri,rj ≤ n− 2.

A combinatorial Benders cut that prohibits at least one arc from multiple partial routes can

also be lifted using the same idea, as shown in Proposition 1.

Proposition 1. Given a set of Q ≤ K jointly infeasible partial routes R̂ = {r1, . . . , rQ} such

that rq = (rq1, . . . , r
q
nq) for all q ∈ {1, . . . , Q}, the combinatorial Benders cut

Q∑
q=1

nq−1∑
i=1

xrqi ,r
q
i+1
≤

Q∑
q=1

(nq − 1)− 1

can be lifted to the multi-tournament inequality

Q∑
q=1

f(rq) ≤
Q∑
q=1

(nq − 1)− 1 (5)

where

f(rq) =



nq−1∑
i=1

nq∑
j=i+1

xrqi ,r
q
j

if rq1 6∈ D+, rqnq 6∈ D−,

xrq1 ,r
q
2
+

nq−1∑
i=2

nq∑
j=i+1

xrqi ,r
q
j

if rq1 ∈ D+, rqnq 6∈ D−,

nq−2∑
i=1

nq−1∑
j=i+1

xrqi ,r
q
j

+xrqnq−1,r
q
nq

if rq1 6∈ D+, rqnq ∈ D−,

xrq1 ,r
q
2
+

nq−2∑
i=2

nq−1∑
j=i+1

xrqi ,r
q
j

+xrqnq−1,r
q
nq

if rq1 ∈ D+, rqnq ∈ D−.

Proof. Consider the first case for all routes, i.e., rq1 6∈ D+, rqnq 6∈ D− for all q ∈ {1, . . . , Q}.
In other words, rqi ∈ C ∪ S ′ for all q ∈ {1, . . . , Q} and i ∈ {1, . . . , nq}. By substitution,

Constraint (5) is simplified to

Q∑
q=1

nq−1∑
i=1

nq∑
j=i+1

xrqi ,r
q
j
≤

Q∑
q=1

(nq − 1)− 1. (6)

Assume the complement

Q∑
q=1

nq−1∑
i=1

nq∑
j=i+1

xrqi ,r
q
j
>

Q∑
q=1

(nq − 1)− 1. (7)

The pricing subproblem will find routes that visit a customer or station vertex at most once,
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implying that the network flow formulation contains the degree constraints:∑
j:(i,j)∈APS

xi,j ≤ 1 ∀i ∈ C ∪ S ′ (8)

∑
h:(h,i)∈APS

xh,i ≤ 1 ∀i ∈ C ∪ S ′. (9)

Given that the variable domain xi,j ≤ 1 for all (i, j) ∈ APS, Constraints (7) and (8) together

imply that
nq∑

j=i+1

xrqi ,r
q
j

= 1

for all q ∈ {1, . . . , Q} and i ∈ {1, . . . , nq − 1}, which can be written explicitly as

xrqnq−1,r
q
nq

= 1, (10)

xrqnq−2,r
q
nq−1

+ xrqnq−2,r
q
nq

= 1, (11)

...

xrq1 ,r
q
2

+ . . .+ xrq1 ,r
q
nq

= 1 (12)

for all q ∈ {1, . . . , Q}. By Constraints (9) and (10), xrqnq−2,r
q
nq

= 0 and hence Constraint (11)

can be simplified to xrqnq−2,r
q
nq−1

= 1. Repeating the same logic, Constraints (10) to (12)

imply that xrqi ,r
q
i+1

= 1 for all q ∈ {1, . . . , Q} and i ∈ {1, . . . , nq − 1}, which is exactly the

original conflict. Therefore Constraint (6) is valid by contradiction. The proofs for the other

three cases are identical but respectively exclude the first vertex, the last vertex or both the

first and last vertices because the degree constraints do not apply on the depot vertices.

3.10. Branching Rules

As the RMP is a linear program, integrality is enforced by branching. Many vehicle

routing solvers based on column generation implement a hierarchical branching rule that first

branches on the number of routes and then on an individual arc. This hierarchical branching

rule is augmented with two additional branching rules after branching on the number of

routes but before branching on arcs. Given a solution x̂ to the RMP such that the number of

visits to all stations
∑

r∈R
∑

i∈S′ A
i
rx̂r is fractional, integrality is enforced by branching on∑

r∈R∗

∑
i∈S′

Airxr.

Next, for a station s ∈ S, integrality of the number of visits to s is enforced by branching on∑
r∈R̂

∑
i∈S′s

Airxr.
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3.11. Valid Inequalities and Acceleration Techniques

The literature abounds with countless cutting planes and other techniques for boosting

the performance of BCP algorithms. The following improvements are implemented.

• Rounded capacity inequalities: Laporte et al. (1985) generalize the well-known

subtour elimination constraints to the rounded capacity cuts which additionally includes

the vehicle capacity constraint. Our solver uses the separator from the CVRPSEP

package by Lysgaard et al. (2004).

• Two-path inequalities: Kohl et al. (1999) invent the two-path cuts. Given a subset

of customers, the two-path cuts state that if one vehicle cannot visit all the customers

in the set due to, e.g., a violated load or time window constraint, then those customers

must be covered by at least two vehicles.

• Subset row inequalities: Jepsen et al. (2008) devise the subset row cuts, which

tighten the set packing polyhedron in the RMP (i.e., half of Constraints (2b)), as

opposed to the rounded capacity and two-path cuts, which handle the load and time

window side constraints in the network flow representation.

• Heuristic pricing: In the early rounds of pricing, it is not necessary to solve the

pricing subproblem to optimality as discovering any route with negative reduced cost

is sufficient. To accelerate the pricing, the labeling algorithm is called on a smaller

graph in which every vertex has a limited number of incoming and outgoing arcs. In

the implementation, every vertex is given the five incoming arcs and the five outgoing

arcs with the lowest reduced cost. If heuristic pricing fails, i.e., if it cannot find a route

with negative reduced cost, then exact pricing comprising the full graph proceeds.

• ng-route pricing: The elementarity constraint in the pricing subproblem, which

requires every customer to be visited at most once, significantly increases the difficulty

of the problem because the chance that the conditions on the lcustc components in the

dominance rule are met is substantially reduced. In ng-route pricing, the elementarity

constraint is partially relaxed by occasionally resetting lcustc to 0 for some c ∈ C′

according to neighborhoods C′ ⊂ C that are defined for each customer vertex (Baldacci

et al., 2011). This procedure trades off the tightness of the linear relaxation bound for

improved performance in the labeling algorithm.

4. Experimental Results

This section reports the performance of the BCP algorithm and analyzes the impacts of

piecewise-linear recharging and the station capacity constraints.
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4.1. The Instances

Schneider et al. (2014)1 created instances for the EVRPTW with 21 recharging stations

by modifying the 100-customer benchmark instances of Solomon (1987)2 for the VRPTW.

Preliminary experiments indicate that the station capacity constraints are not binding in

these instances simply because there are too many stations. Consequently, new instances

are generated by replacing all stations with fewer randomly-located stations. Based on these

stations, one set of instances is created with one charger at all stations and another set is

created with two chargers at all stations. Like the Solomon benchmarks, smaller instances

with 25, 50 and 75 customers are then created from the 100-customer instances by discarding

the higher-numbered customers. In total, there are 224 instances in each of the two sets.

These instances are available online.3

4.2. The Solver

The implementation calls SCIP 7.0.3 (Gamrath et al., 2020) for branch-and-bound,

Geas (Gange et al., 2020) for constraint programming and Gurobi 9.5.1 for linear programming.

The labeling algorithm is implemented in C++. The solver is single-threaded and is run on

an Intel Xeon Platinum 8260 CPU at 2.4 GHz with a time limit of one hour and a memory

limit of 16 GB.

4.3. The Impact of Piecewise-Linear Recharging and Station Capacity Constraints

Table 1 compares the performance of the BCP algorithm on the baseline EVRPTW (linear

recharging and no station capacity) against the new variants with piecewise-linear (PWL)

recharging and station capacity constraints. The first two columns identify the problem

variant, comprising the recharging function and the number of chargers available at each

station. The third column shows the number of customers in the statistics in the remainder

of the row. The fourth column reports the number of instances solved to optimality or

proved infeasible within the time limit. The remaining columns report the mean solve time in

seconds, optimality gap, number of branch-and-bound nodes, number of columns generated

and number of Benders cuts generated. For calculating the mean, the solve time of timed-out

instances is recorded as 3600 seconds and the optimality gap of instances with no primal or

dual bound is recorded as 100%.

In the baseline, the linear recharging function assumes that the battery can be fully

recharged using the fastest recharging rate (the first piece). The results indicate that adding

piecewise-linear recharging makes the problem easier because it is more constrained by the

time windows due to delays from the slowest piece. The algorithm solves an additional 8

instances (171 vs. 163) and achieves an average runtime 122 seconds shorter (1069 vs. 1191).

In contrast, adding station capacity constraints makes the problem harder. Restricting

the stations to one charger reduces the number of instances solved by 28 (135 vs. 163) and

1https://data.mendeley.com/datasets/h3mrm5dhxw/1
2http://web.cba.neu.edu/~msolomon/problems.htm
3https://ed-lam.com
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Recharging Benders
Function Chargers Customers Solved Time Gap Nodes Columns Cuts

Linear ∞ 25 56/56 49 0% 219 1136 0
50 46/56 767 5% 897 2572 0
75 40/56 1370 11% 957 4192 0

100 21/56 2577 27% 1741 6402 0
All 163/224 1191 11% 953 3575 0

PWL ∞ 25 56/56 13 0% 108 1016 0
50 45/56 824 5% 607 2366 0
75 44/56 1129 15% 430 3989 0

100 26/56 2310 32% 1524 5901 0
All 171/224 1069 13% 667 3318 0

Linear 1 25 55/56 105 2% 620 1135 9
50 39/56 1214 14% 2495 3173 55
75 29/56 2123 29% 2811 5740 31

100 12/56 3014 45% 2157 7526 13
All 135/224 1614 22% 2021 4394 27

Linear 2 25 56/56 40 0% 187 1118 0
50 46/56 782 5% 958 2592 0
75 35/56 1603 14% 1481 4454 5

100 20/56 2671 34% 1836 6730 3
All 157/224 1274 13% 1116 3724 2

PWL 1 25 55/56 79 2% 654 1064 5
50 38/56 1337 19% 2293 3194 59
75 29/56 1973 35% 2387 5374 44

100 17/56 2744 48% 2222 7026 13
All 139/224 1533 26% 1889 4165 30

PWL 2 25 56/56 13 0% 96 1002 0
50 44/56 899 7% 852 2398 3
75 39/56 1413 21% 928 4301 6

100 21/56 2512 38% 1711 6166 4
All 160/224 1209 16% 897 3467 3

Table 1: Average statistics for all instances. Rounded to the nearest integer.
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increases the average runtime by 423 seconds (1614 vs. 1191). The station capacity constraints

are not as tight with two chargers and hence the impact is not as dramatic. Adding the second

charger allows 22 more instances (157 vs. 135) to be solved. Incorporating piecewise-linear

recharging into the problem with station capacity constraints again improves the performance

measures by solving a few more instances (139 vs. 135 and 160 vs. 157).

Table 2 presents statistics on the subset of instances with at least one Benders cut found.

The fourth column reports the number of solved instances from this subset of instances. In

contrast to other work, these results suggest that the station capacity constraints are not

binding in most instances. With piecewise-linear recharging and one charger at every station,

Benders cuts appear in even the smallest instances (25 customers) but are found in only 32

of the 224 instances.

The sixth to eighth columns show the proportion of time spent within the restricted

master, pricing and the checking problems. Note that these percentages do not sum to 100%

because they do not include time spent in the other components of branch-and-bound such

as branching, node selection, etc. A lot more time is spent pricing than checking for the

instances with one charger. With two chargers, the checking problem becomes much more

time-consuming. This is because the problem is less constrained, making infeasibility harder

to detect without a thorough search. The average optimality gap for the subset of instances

that requires scheduling one charger is significantly worse (39% vs. 26%). Similar findings

are observed for two chargers (27% vs. 16%).

Observe that the number of Benders cuts peaks at 50 customers for the problem with

piecewise-linear recharging and one charger at every station. This occurs for several reasons.

Instances with few customers do not require many vehicles, so there is less need for multiple

vehicles to recharge at the same time. That is, whenever a vehicle wants to charge at a

particular station, it is likely that the station is available. Furthermore, a fewer number of

customers can be covered with shorter routes and a vehicle taking a short route likely means

that the battery has enough initial charge for the entire route. At 50 customers, charging

scheduling starts to become necessary, as seen in the large number of Benders cuts. As the

problem becomes harder with more customers, the number of Benders cuts decreases because

the algorithm spends significantly more time in pricing (trying to get to an optimal RMP

solution before starting checking) and because the checking subproblem is called fewer times

since integral solutions are harder to come by.

The last four columns report the average number of vehicles used, the average number of

stations used (i.e., receives at least one vehicle), the average proportion of time that the used

stations are charging at least one vehicle and the average proportion of time that the used

stations are at capacity. The results show that the stations are charging at least one vehicle

for a significant amount of time. In the case of one charger, a station is at capacity whenever

it is in use. The stations are in use around 1/3rd of the time. For the larger instances with

two chargers, the stations are at capacity around 1/10th of the time. Adding one additional

charger to every station substantially alleviates the capacity limitations.

Overall, the hybrid BCP algorithm solves 30% (17 of 56) of the 100-customer instances
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Recharging Time in Time in Time in Benders Vehicles Stations Station Station at
Function Chargers Customers Solved Time Master Pricing Checking Gap Nodes Columns Cuts Used Used in Use Capacity

Linear 1 25 2/3 1202 2% 25% 34% 33% 8186 567 167 9 4/10 39% 39%
50 12/20 1542 3% 47% 18% 25% 5737 2675 153 15 3/7 35% 35%
75 11/24 2421 5% 72% 8% 38% 6153 5592 73 20 3/7 30% 30%

100 5/21 2885 3% 87% 3% 38% 4729 6575 36 27 3/6 33% 33%
All 30/68 2252 4% 67% 10% 34% 5681 4816 89 20 3/7 33% 33%

Linear 2 50 3/3 522 1% 83% 12% 0% 2276 1616 4 18 9/13 33% 7%
75 2/7 2630 5% 75% 12% 15% 6071 4110 36 23 7/10 39% 16%

100 1/7 3507 2% 91% 4% 44% 5130 6574 23 33 6/8 43% 18%
All 6/17 2619 3% 83% 8% 24% 5014 4685 25 25 7/10 39% 14%

PWL 1 25 3/4 930 2% 55% 11% 25% 7819 1206 70 6 3/10 35% 35%
50 13/21 1641 4% 49% 15% 38% 5710 3082 158 15 2/8 38% 38%
75 9/24 2427 4% 70% 10% 42% 5350 5406 103 20 3/7 30% 30%

100 7/21 2683 3% 86% 3% 39% 5103 6569 34 27 3/5 28% 28%
All 32/70 2182 4% 68% 9% 39% 5525 4818 97 20 3/7 32% 32%

PWL 2 25 1/1 5 0% 12% 86% 0% 13 241 1 7 6/8 24% 1%
50 3/5 1660 1% 44% 23% 22% 7546 1461 37 19 7/9 36% 15%
75 4/8 2026 2% 44% 45% 26% 3910 3440 44 25 8/9 37% 11%

100 1/9 3235 1% 87% 8% 34% 5018 5755 23 25 5/7 43% 17%
All 9/23 2332 1% 60% 28% 27% 4964 3777 32 22 6/8 38% 14%

Table 2: Average statistics for the subset of instances with at least one Benders cut. Rounded to the nearest integer.
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Benders
Customers Solved Time Gap Nodes Columns Cuts

25 54/56 150 13% 1177 792 1
50 45/56 790 33% 688 2580 27
75 42/56 1034 59% 95 3734 5

100 32/56 1658 70% 313 4817 0
All 173/224 908 44% 568 2981 8

Table 3: Average statistics for full recharging and one charger at every station. Rounded to the nearest integer.

with piecewise-linear recharging and one charger at every station and 38% (21 of 56) of the

instances with two chargers. Considering the subset of 100-customer instances with binding

station capacity constraints, the algorithm solves 33% (7 of 21) and 11% (1 of 9), respectively.

These results signify that the station capacity constraints remain a significant challenge.

Nonetheless, the results demonstrate that the proposed method displays substantially better

scalability than the existing methods for related but different problems. The results confirm

that the route-then-schedule methodology is appropriate for the EVRPTW-PLR-CRS because

the EVRPTW-PLR-CRS is predominantly a routing problem. The scheduling component

becomes relatively easy once the routes are fixed as the routes have few, if any, visits to the

recharging stations.

4.4. The Impact of Full Recharges

This section analyzes the impact of always requiring vehicles to recharge to full when

visiting a station. This problem variant is the simplest of four cases studied by Desaulniers

et al. (2016). The modifications to the BCP algorithm are described in Appendix B. Table 3

shows the results for the instances with one charger at every station. The previous section

found that replacing the linear recharging function with a piecewise-linear function that

has slower pieces significantly delays the vehicles, making many routes time-infeasible. Full

recharging makes even more routes time-infeasible, and sometimes whole instances infeasible,

because the vehicles must discharge and recharge through the slowest piece in the higher

states of charge. In contrast, vehicles can maintain their states of charge in the fastest piece

when partial recharges are allowed. The key finding is that slow recharging delays the vehicles,

making the problem easier to solve because the time constraints are more likely to be violated

and hence the search space is smaller.

5. Conclusion and Future Work

This paper proposes an exact method for solving the EVRPTW-PLR-CRS. The EVRPTW-

PLR-CRS includes a more realistic non-linear recharging procedure and recharging stations

with a limited number of chargers which must be shared among the vehicles. To ensure that

the vehicles achieve their collective goal of delivering the packages to all customers on time,

the vehicles are required to self-organize at the recharging stations. This interaction leads to

a novel scheduling structure rarely seen in vehicle routing problems.

This paper develops a BCP algorithm for the EVRPTW-PLR-CRS that exploits the

best available technologies for routing and scheduling by distributing the routing to integer
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programming and the scheduling to constraint programming. The method deploys a very-

recent generic form of logic-based Benders decomposition which can separate combinatorial

Benders cuts overarching all vehicles. The framework makes solving vehicle routing problems

with synchronization relatively easy, as otherwise, handling the interaction/synchronization

between vehicles is extremely difficult and usually problem-specific.

Previous work on automatic logic-based Benders decomposition require the integer pro-

gramming problem and the constraint programming problem to communicate through a

set of identical variables. This paper develops a new translation that enables the checking

subproblem to use the giant tour formulation more friendly to constraint programming tech-

nology. The paper also proposes two simple lifting techniques to strengthen the combinatorial

Benders cuts. The hybrid BCP algorithm solves 299 of all 448 instances (51%) and 38 of the

112 100-customer instances (34%).

Lam and Van Hentenryck (2017) speculate that the generic form of logic-based Benders

decomposition is ineffective in column generation solvers of classical vehicle routing problems

because the intra-route constraints (e.g., time windows) are almost always binding and suggest

that the approach may be useful in rich vehicle routing problems when synchronization

constraints are seldom binding. This paper validates their hypothesis.

As the generic form of logic-based Benders decomposition is only invented recently, many

directions for future work are available. In particular, developing a deeper connection between

the master, pricing and checking subproblems is a promising topic. Presently, the master

problem completely ignores the scheduling constraints in the absence of the combinatorial

Benders cuts. In many studies using logic-based Benders decomposition, the branch-and-cut

master problem is equipped with a relaxation of the omitted constraints to drive it towards

candidate solutions that are more likely to be feasible in the checking subproblem. In the

context of branch-and-price, this relaxation in the master problem is associated with a new

dual variable that imposes additional structure in the pricing subproblem that destroys the

pricing algorithm. Hence, it is extremely difficult to implement a relaxation of the scheduling

constraints in the master problem even though the relaxations themselves are well-known.

Appendix A. An Example of the EVRPTW-PLR-CRS

Figure A.5 illustrates the routes of two vehicles visiting three customers with a detour

via a common recharging station. One vehicle follows the solid arcs on the top and the other

vehicle follows the dashed arcs on the bottom. Both recharging and discharging rates are

equal to 1 unit of energy per timestep. The time window of each customer is given on the

right. All customers have zero service duration. The two numbers above (resp. below) a

vertex provide the time of starting service and the charge of the top (resp. bottom) vehicle.

The arrows at the stations indicate the time and charge before and after recharging. The

number on each arc is the travel time and the identical energy consumption.

The top route begins at the depot D+ at timestep 0 with 15 units of energy in its battery.

It consumes 10 timesteps and 10 units of energy to reach station S at timestep 10. It then

recharges until timestep 12 to gain 2 units of energy. It spends 2 timesteps and 2 units of
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Figure A.5: The routes of two vehicles concurrently recharging at a station.

energy to arrive at customer C1 at timestep 14 with 5 units of energy remaining. It finally

finishes its route at the depot D− at timestep 19 with no energy remaining.

The bottom route also begins at the depot D+ at timestep 0 with 15 units of energy. It

delivers a package to customer C2 at the same location, costing 0 units of time and energy,

but it is delayed from unloading until the time window opens at timestep 2. It then consumes

6 timesteps and 6 units of energy to reach station S at timestep 8 with 9 units of energy

remaining. It recharges for 4 timesteps and finishes with a total of 13 units of energy. It

spends 5 timesteps traveling to customer C3 and arrives at timestep 17 with 8 units of energy

leftover. It ends at the depot D− at timestep 25 with an empty battery.

After arriving at station S, the top vehicle requires 7 units of energy for the remainder of

its route. It arrives at the station with 5 units of energy, which means that it must recharge

for 2 timesteps to acquire the 7 units of energy to complete its route. The vehicle arrives at

timestep 10 and must depart by timestep 12 to reach customer C1 before the time window

closes. Hence, it must recharge during timesteps 10 and 11.

The bottom vehicle arrives at station S with 9 units of energy and requires a total of 13

units of energy to complete its route. Hence, it must recharge for 4 timesteps. It arrives at

the station at timestep 8 and must depart by timestep 15 to arrive at customer C3 before

the time window closes at timestep 20. Because it must recharge for 4 timesteps within this

time interval, it has a slack of 3 timesteps for delaying the recharge.

Assuming that the station has a single charger, Figure A.6 demonstrates that regardless

of whether the bottom vehicle recharges at the earliest (left) or latest (right) opportunity, no

feasible schedule that satisfies the arrival times at customers C1 and C3 exists.

Appendix B. Modifications to Full Recharges

This section presents modifications to always fully recharge a vehicle. In the labeling

algorithm (Algorithm 2), Lines 10 to 29 are replaced with Algorithm 4. If the destination

is a station (Line 4), for each piece p ∈ P in order (Line 5), Line 6 calculates the energy

recharged in the piece, Line 7 increases the energy available by this amount and Line 8 delays
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Figure A.6: Scheduling the two vehicles in Figure A.5 to recharge at station S. No feasible schedule exists
because the two vehicles are trying to use one charger simultaneously.

the vehicle by the time to recharge this amount.

Algorithm 4 Changes to the labeling algorithm to require full recharges.

1: lenergyj ← lenergyi − tenergyi,j

2: if lenergyj < 0 ∨ ltime
j > tclosej then

3: exit (extension is infeasible)

4: if j ∈ S ′ then
5: for p = 1, . . . , P do
6: ∆← max {σp −max {σp−1, lenergyj }, 0}
7: lenergyj ← lenergyj + ∆

8: ltime
j ← ltime

j + ∆/θp

9: if ltime
j > tclosej then

10: exit (extension is infeasible)

In the checking subproblem, Constraints (B.1) is added to enforce full recharges. This

constraint states that the energy level must be full when departing a station.

e′i = T energy ∀i ∈ S ′. (B.1)
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