
Large Neighborhood Search for Temperature
Control with Demand Response

Edward Lam1,2[0000−0002−4485−5014], Frits de Nijs1[0000−0003−4466−2447], Peter J.
Stuckey1[0000−0003−2186−0459], Donald Azuatalam1[0000−0002−2149−8122], and

Ariel Liebman1[0000−0002−5679−4140]

1 Monash University, Melbourne, Australia
2 CSIRO Data61, Melbourne, Australia

{edward.lam,frits.nijs,peter.stuckey,
donald.azuatalam,ariel.liebman}@monash.edu

Abstract. Demand response is a control problem that optimizes the op-
eration of electrical loads subject to limits on power consumption during
times of low power supply or extreme power demand. This paper studies
the demand response problem for centrally controlling the space condi-
tioning systems of several buildings connected to a microgrid. The paper
develops a mixed integer quadratic programming model that encodes
trained deep neural networks that approximate the temperature tran-
sition functions. The model is solved using standard branch-and-bound
and a large neighborhood search within a mathematical programming
solver and a constraint programming solver. Empirical results demon-
strate that the large neighborhood search coupled to a constraint pro-
gramming solver scales substantially better than the other methods.

Keywords: Sustainability · Energy systems · Power systems · Control
· Smart grid · Microgrid · Large neighborhood search · Local search

1 Introduction

Electricity utilities are required to ensure supply-demand balance throughout the
power grid since any mismatch can cause voltage or system frequency instabil-
ity, resulting in loss of supply or system blackouts. Supply-demand balance will
become increasingly difficult with increased investment in uncontrollable renew-
able generations such as solar and wind. To more effectively and cost-efficiently
safeguard system reliability, utilities are increasingly deploying demand response
to cater for unforeseen or difficult circumstances in their network, such as ex-
treme weather, by motivating customers to decrease demand at certain times or
to shift their consumption to off-peak periods.

Figure 1 shows four example power profiles of a building over a typical day.
Normal power consumption, peaking at nearly 8 kW, is shown in black. As ap-
pliances and the building’s insulation receive upgrades in energy efficiency, the
load profile is expected to shift from the black line to the green line, which peaks

2 E. Lam et al.

0 2 4 6 8 10 12 14 16 18 20 22 24

0

1

2

3

4

5

6

7

8

Time (hour)

P
ow

er
co
n
su
m
p
ti
o
n
(k
W

)
Baseline

Demand limiting

Demand shifting

Energy efficient

Peak period

Fig. 1. Load shapes of a building, with and without demand response [13].

at just over 6 kW. In the meantime, utilities promote grid reliability and stabil-
ity by allowing building management to either curtail power use (shown in red)
or shift power usage to earlier parts of the day (shown in blue) when the tem-
perature is cooler; preserving power for heating, ventilation and air conditioning
(HVAC) systems in the warmer parts of the day.

Utilities target customers with large controllable devices with flexible us-
age for participation in demand response. Examples of such devices include
thermostatically-controlled loads (e.g., HVAC systems and electric water heaters)
and shiftable appliances (e.g., dishwashers, washing machines and dryers). Since
space conditioning accounts for a large proportion of building energy use, espe-
cially in commercial buildings, HVAC loads are excellent candidates for demand
response. Moreover, slight temperature changes do not immediately impact oc-
cupant comfort because of the thermal storage effect of buildings [13], a feature
that can be further enhanced through building upgrades such as hot water stor-
age tanks and phase-change materials [3].

Even though a manual approach to demand response can be tediously im-
plemented, HVAC systems in modern commercial buildings can be controlled by
automation systems. This paper develops strategies to jointly control the HVAC
systems of several buildings connected to a microgrid such that their tempera-
tures are maintained within acceptable comfort bounds and all power restrictions
are adhered to. We make use of a deep neural network to automatically learn
a transition function for each of the buildings under control, as a proxy for the
behavior governed by physical laws. This paper shows how these neural network
transition functions can be encoded in a mixed integer quadratic programming
(MIQP) model that decides on the operating mode of the HVAC system in all
connected buildings within a given planning horizon.

The model is implemented in the constraint programming (CP) solver Gecode
and the mathematical programming (MP) solver Gurobi. A large neighborhood
search (LNS) is also implemented in the two exact solvers for finding local im-
provements. Empirical results show that the best solutions are found using LNS
in Gecode. The remainder of the paper explores these results in detail.

Large Neighborhood Search for Temperature Control with Demand Response 3

2 Related Work

HVAC systems account for approximately 50% of total building energy consump-
tion [15]. Their large energy footprint, combined with their flexibility due to ther-
mal inertia, has resulted in significant efforts in developing methods to unlock
their potential for demand response, including multiple field tests [12]. Unfortu-
nately, these methods are largely market-based, controlling the HVACs through
price signals rather than computing a globally optimal joint schedule. Given the
true model dynamics for each building, the globally optimal joint schedule can
be approximated efficiently by Lagrangian relaxation methods such as column
generation [14]. However, the use of relaxations means that constraints are not
guaranteed to be satisfied, unless schedules are corrected by re-planning in an
on-line fashion. This requires that the agents are in constant communication,
which is a potential system vulnerability. The optimization methods proposed
in this paper avoid this issue by computing feasible schedules a priori.

When accurate models are not available, one solution is to directly learn a
controller by interacting with the system, through reinforcement learning. This
approach has seen wide application to demand-response problems [20]. How-
ever, the vast majority of these approaches apply only to single-agent problems;
learning to control the joint dynamics directly is highly intractable due to the
curse of dimensionality on the exponential growth of the state and action space,
while multi-agent reinforcement learning does not have a clear pathway to im-
pose global constraints. In addition, reinforcement learning requires the reward
function coefficients to be fixed a priori, so changes in a user’s comfort prefer-
ences necessitate learning a new solution. To avoid these challenges, we propose
separating learning the transition function from planning the HVAC schedules.

We adapt a variety of techniques in the combinatorial optimization literature
to the demand response problem. The use of artificial neural networks (ANNs)
as approximations of complex processes in optimization models has been cham-
pioned in [4]. They develop a Neuron global constraint and bounds-consistent
filtering algorithms, which are evaluated in controlling the temperature of com-
puter chips under various workloads. In [2], an ANN is encoded in a mixed
integer linear programming model using facet-defining (i.e., tightest possible)
constraints. However, they show that the new constraints are outperformed by
a simple big-M encoding in practice.

A learned transition function in the form of a ReLU-ANN can be encoded
directly as a mixed-integer linear program [18]. In their work, the authors de-
velop valid inequalities that allow sparsifying the encoding of an ANN, result-
ing in significant speed-up. Among other domains, they apply their approach
to a multi-zone HVAC control problem, with an objective to minimize cost of
keeping occupants comfortable. Due to the complexity of the mixed-integer lin-
ear programming, only relatively small instances with short horizons can be
solved optimally, requiring on-line planning. Compared to their work, we con-
sider demand-response in a larger multi-building setting, which we show to be
intractable to solve directly, requiring the use of our local search procedures to
solve in reasonable time.

4 E. Lam et al.

3 The Problem

This section describes the problem and then models it using MIQP.

3.1 Motivation

Monash University has committed to achieving net zero emissions by 2030. It
is investing AUD$135 million to increase the energy efficiency of its operations,
electrify its buildings, and transition to renewable electricity through on-site
solar generation and off-site power purchase agreements. The project aims to
develop solutions to the university’s operations, and to serve as a testbed for
scientific and engineering studies by integrating its education, research and in-
dustry activities with its built environment. This approach has been recognized
globally, having won the United Nation’s Momentum for Change Award in 2018.

One component of the project is to redevelop a portion of the main univer-
sity campus at Clayton, Victoria, Australia into an energy-efficient microgrid.
The project has seen the installation of distributed energy resources including
medium-scale solar photovoltaic generation, precinct-scale batteries and electric
vehicles that can supply the microgrid while stationary. Buildings with varied
usage characteristics, including commercial buildings and student residences, are
also refurbished for improved energy efficiency and their HVAC systems, if not
entirely deprecated by gains in energy efficiency, are upgraded for autonomous
control by the microgrid.

The purpose of this paper is to study merely one small portion of a real-world
microgrid project. This paper considers a simplified problem abstracted from the
problem of jointly controlling the internal air temperature of several buildings
subject to occupant comfort and demand response. For simplicity, every building
is assumed to have one independent HVAC system that influences its future
indoor temperature by operating in one of three modes: off, cooling or heating.
However, the approach naturally generalizes to multiple control zones within a
building.

3.2 The State Transition Function

The change in temperature from one timestep to the next (i.e., the state transi-
tion function) is governed by physical laws. The future indoor temperatures are
a function of the current indoor and outdoor air temperature, the internal mass
temperature (a measure from the occupants and furniture), the internal humid-
ity, the building insulation, the solar irradiance as well as many other factors.
Ideally, the parameters of the physical laws are estimated from data collected
in the environment, and then a physical model is encoded into an optimization
model. However, such physical models are typically non-linear, making them
hard to encode and solve, and high-accuracy simulation is computationally ex-
pensive. Furthermore, estimating the parameters from data already entails the
use of machine learning. Therefore, this paper argues for a data-driven approach
to directly estimate the entire transition function using a deep neural network,

Large Neighborhood Search for Temperature Control with Demand Response 5

rather than estimating the building parameters in a finite difference discretiza-
tion of the governing differential equations.

The transition function is approximated by a multi-layer perceptron (MLP),
also called a vanilla feedforward neural network. MLPs are a basic workhorse
in machine learning. This section briefly review MLPs. For a formal treatment,
readers are recommended to consult the definitive textbook [10].

An MLP Fθ : Rn → Rm with parameters θ = (θ1, . . . , θk) for some k ∈ N is
a function that maps a real-valued n-dimensional vector input to a real-valued
m-dimensional vector output. Consider a data set D consisting of pairs of real-
valued vectors (x,y) ∈ Rn×Rm. In supervised learning, training Fθ is the process
of finding a good estimate of θ such that the predicted output Fθ(x) is reasonably
close to the actual output y for the entire data set (e.g., by minimizing the sum of
mean squared errors over θ). After training (i.e., θ is chosen and fixed), prediction
refers to the process of evaluating Fθ(x) on any arbitrary input vector x in the
hope that Fθ generalizes to the unknown y corresponding to x.

An MLP Fθ consists of L ≥ 2 layers. Let L = {1, . . . , L} be the set of layers.
Layer 1 is the input layer and layer L is the output layer. The intermediate layers
are hidden layers. If there are two or more hidden layers, Fθ is described as deep.

Each layer consists of units, also known as neurons. Let Ul = {1, . . . , Ul} be
the set of units in layer l ∈ L, where Ul ≥ 1 is the number of units in layer
l. The input layer has n units (i.e., U1 = n) and the output layer has m units
(i.e., UL = m). Each unit u in layer l represents a function fl,u. The units in
the input layer (i.e., l = 1) represents the input vector x to Fθ. Formally, unit
u ∈ U1 represents the identity function f1,u : Rn → R of the uth component of
x = (x1, . . . , xn):

f1,u(x) = xu.

In a fully-connected MLP, every unit u ∈ Ul in layer l > 1 represents a function
f l,u
Wl,u,Bl,u

: RUl−1 → R with parameters Wl,u ∈ RUl−1 and Bl,u ∈ R that maps
the outputs of the units in the previous layer l − 1 to one real number:

f l,u
Wl,u,Bl,u

(x) = σl,u(Wl,u · x+Bl,u).

The vector Wl,u is the weights of u, and the scalar Bl,u is the bias of u. The
function σl,u : R→ R is the activation function of u. Common activation func-
tions include the sigmoid function σ(x) := 1

1+e−x and the rectified linear unit
(ReLU) σ(x) := max(x, 0). In recent times, ReLU has displaced the sigmoid
activation function [10]. For this reason, this study focuses on ReLU.

Let θ = (W2,1, B2,1, . . . ,W2,U2
, B2,U2

, . . . ,WL,1, BL,1, . . . ,WL,UL
, BL,UL

)
be the concatenation of the parameters of all units. Then, the MLP Fθ is a
function composition of all units through its layers, as described above.

It is well-known that MLPs with at least one hidden layer and a sufficiently
large number of units is a universal function approximator under reasonable
assumptions (e.g., [7]). In simpler terms, MLPs can approximate any arbitrary
transition function given enough units and appropriate activation functions. For
this reason, we use an MLP as the transition function.

6 E. Lam et al.

xoff
b,t

xcool
b,t

xheat
b,t

ib,t

mb,t

ob,t

sb,t

ib,t+1

mb,t+1

pb,t

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Fig. 2. The architecture of the MLP used to approximate the transition function of
each building b ∈ B.

Let T = {0, . . . , T} be the time periods and T ′ = {0, . . . , T − 1} be the
planning periods in which decisions are made. Consider a set B of buildings.
Every building b ∈ B is associated with an MLP illustrated in Figure 2. It takes
the following inputs from the building’s environment at timestep t ∈ T ′:

1. An indicator xoff
b,t ∈ {0, 1} of whether the HVAC system is off.

2. An indicator xcool
b,t ∈ {0, 1} of whether the HVAC system is cooling.

3. An indicator xheat
b,t ∈ {0, 1} of whether the HVAC system is heating.

4. The indoor air temperature ib,t ∈ [0, 1] scaled to between 0 and 1.
5. The indoor mass temperature mb,t ∈ [0, 1] scaled to between 0 and 1.
6. The outdoor air temperature ob,t ∈ [0, 1] scaled to between 0 and 1.
7. The solar irradiance sb,t ∈ [0, 1] scaled to between 0 and 1.

These seven inputs are fed through several fully-connected hidden layers with
ReLU activation functions. The output layer has three units:

1. The indoor air temperature ib,t+1 ∈ [0, 1] at the next timestep.
2. The indoor mass temperature mb,t+1 ∈ [0, 1] at the next timestep.
3. The power usage pb,t ∈ [0, 1] for running the mode given in the input layer.

Unusually, the output units also use the ReLU activation function to ensure non-
negativity. (We observed minuscule negative power usage otherwise.) All inputs
and outputs are normalized to values between 0 and 1 for numerical reasons.

3.3 The Mixed Integer Quadratic Programming Model

MIQP generalizes mixed integer linear programming by allowing quadratic terms
in the objective function. The MIQP model of the problem is shown in Figure 3.

Large Neighborhood Search for Temperature Control with Demand Response 7

The model minimizes power consumption and uses soft constraints to penalize
the difference from the indoor air temperatures to a fixed comfortable temper-
ature. The problem contains two classes of (hard) constraints: (1) constraints
that encode the state transition functions, and (2) constraints that limit the
total power usage during a subset of timesteps for demand response.

This deterministic model assumes that the buildings’ environments (i.e., the
outdoor air temperature and solar irradiance) and the power supply constraints
are known in advance with certainty. These assumptions are acceptable in prac-
tice because 24-hour weather forecasts are adequately accurate, and power sup-
ply limitations are ordered by utilities in advance because of extreme heat fore-
casts (e.g., higher than 40°C). Furthermore, since real-time control problems are
solved repeatedly throughout the day, large errors (e.g., drifts) are mitigated in
the next run when more accurate data is available.

The model declares three primary decision variables xoff
b,t, x

cool
b,t , xheat

b,t ∈ {0, 1}
to respectively indicate whether the HVAC system is off, cooling or heating
in building b ∈ B during time t ∈ T ′. Define a decision variable pb,t ∈ [0, 1]
for the power usage due to operating in the mode indicated by xoff

b,t, x
cool
b,t or

xheat
b,t . Let ib,t,mb,t, ob,t, sb,t ∈ [0, 1] be the indoor air temperature, indoor mass

temperature, outdoor air temperature and solar irradiance of building b ∈ B in
timestep t ∈ T . As the model is deterministic, the outdoor temperature ob,t and
the solar irradiance sb,t for all timesteps, and the initial conditions ib,0 and mb,0

are known constants. The remaining ib,t and mb,t (i.e., where t > 0) are decision
variables.

Every building b has a copy of its MLP transition function for every timestep;
totaling T copies for every building. Let Lb = {1, . . . , Lb} denote the layers of
the transition function of b, and U l

b = {1, . . . , U l
b} the units in layer l ∈ Lb. For

every b ∈ B and t ∈ T ′, denote the output value of unit u ∈ U l
b in layer l ∈ Lb as

f l,u
b,t ∈ [0, 1]. Using the transition function, all f l,u

b,t (and hence ib,t+1, mb,t+1 and

pb,t) are functionally-defined by the seven inputs xoff
b,t, x

cool
b,t , xheat

b,t , ib,t, mb,t, ob,t
and sb,t. Therefore, search is only required on the xoff

b,t, x
cool
b,t and xheat

b,t variables.

Let cp ∈ R+ be the cost of power, scaled appropriately. Define R ⊂ T as
the set of timesteps during which the building temperature must be maintained
close to an ideal comfortable temperature i0 ∈ [0, 1]. Any deviation away from
i0 is quadratically penalized by a cost ci ∈ R+. Define Q ⊂ T ′ × [0, 1] as the
set of demand response events, which are pairs of a timestep and the amount of
power available during that particular timestep.

The first summation in Objective Function (1a) represents the cost of pow-
ering the HVAC systems, and the second penalizes deviations from the ideal
temperature. Using a quadratic term rather than the absolute value function
ensures that a large deviation in one timestep and a small deviation in another
timestep is worse than two medium-sized deviations, for example.

Constraint (1b) equates the input layer of the MLPs to the environment
of the buildings. Constraint (1c) makes predictions using the MLPs. This con-
straint is written using the max function but can be linearized using a binary
variable [9]. Constraint (1d) equates the output layers to the temperatures in the

8 E. Lam et al.

min
∑
b∈B

∑
t∈T ′

cppb,t +
∑
b∈B

∑
t∈R

ci(ib,t − i0)
2 (1a)

subject to

(f1,1
b,t , . . . , f

1,7
b,t) = (xoff

b,t, x
cool
b,t , xheat

b,t , ib,t,mb,t, ob,t, sb,t) ∀b ∈ B, t ∈ T ′, (1b)

f l,u
b,t = max(Wl,u

b,t · (f
l−1,1
b,t , . . . , f

l−1,Ul−1

b,t) +Bl,u
b,t , 0)

∀b ∈ B, t ∈ T ′, l ∈ Lb \ {1}, u ∈ U l
b, (1c)

(ib,t+1,mb,t+1, pb,t) = (f
Lb,1
b,t , f

Lb,2
b,t , f

Lb,3
b,t) ∀b ∈ B, t ∈ T ′, (1d)

xoff
b,t + xcool

b,t + xheat
b,t = 1 ∀b ∈ B, t ∈ T ′, (1e)∑

b∈B

pb,t ≤ q ∀(t, q) ∈ Q, (1f)

xoff
b,t, x

cool
b,t , xheat

b,t ∈ {0, 1} ∀b ∈ B, t ∈ T ′, (1g)

ib,t ∈ [0, 1] ∀b ∈ B, t ∈ {1, . . . , T}, (1h)
mb,t ∈ [0, 1] ∀b ∈ B, t ∈ {1, . . . , T}, (1i)

pb,t ∈ [0, 1] ∀b ∈ B, t ∈ T ′, (1j)

f l,u
b,t ∈ [0, 1] ∀b ∈ B, t ∈ T , l ∈ Lb, u ∈ U l

b. (1k)

Fig. 3. The MIQP model.

next timestep and the power usages in the current timestep. Constraint (1e) en-
forces exactly one mode for each building and timestep. Constraint (1f) couples
the buildings together by limiting the total power consumption across all build-
ings according to the demand response events. Constraints (1g) to (1k) are the
domains of the decision variables. (The implementation omits Constraints (1b)
and (1d) and uses the MLP inputs and outputs directly.)

4 Search Heuristics

This section describes the branching rules and the LNS.

4.1 The Variable and Value Selection Strategy

MP solvers and lazy clause generation CP solvers are able to derive good branch-
ing rules dynamically by collecting statistics during the search (e.g., [8,1]). How-
ever, in classical finite-domain CP solvers, a problem-specific search procedure
may be required to be successful. This section presents one such branching rule.

Recall from Section 3.3 that branching is only required on xoff
b,t, x

cool
b,t and

xheat
b,t because all other variables are functionally-defined by the operating modes

and the input data. The branching rule is driven by one main ideology. During
timestep t, the branching rule prefers the operating mode that brings the indoor

Large Neighborhood Search for Temperature Control with Demand Response 9

temperature nearest to the ideal comfort temperature i0 if t + 1 requires tem-
perature control for occupant comfort (i.e., t+1 ∈ R). Otherwise, the branching
rule prefers turning off the HVAC systems to reduce power costs.

The variable and value selection heuristic is described as follows. The algo-
rithm begins by generating a random ordering of the buildings. It then loops
through the timesteps from 0 to T − 1. At every timestep t and building b or-
dered randomly, it computes the indoor temperature at t+1 for all three HVAC
operating modes. If t + 1 ̸∈ R (i.e., the temperature in t + 1 does not need to
be controlled for occupant comfort), the branching rule first branches for the
HVAC system to be off (xoff

b,t ← 1) to reduce power costs, and then branches

either cooling (xcool
b,t ← 1) or heating (xheat

b,t ← 1) according to the difference be-
tween the ideal comfort temperature i0 and predicted temperature given cooling
or heating. If t+ 1 ∈ R, then the predicted temperature after operating in each
of the three modes is calculated, and the branching rule branches on the modes
in order of difference between i0 and the predicted temperature. Put simply, if
the next timestep does not require temperature control for comfort, the branch-
ing rule prefers reduced power costs by branching on turning the HVAC systems
off. Otherwise, the branching rule prefers the operating mode that increases
comfort. Since calculating these predictions involves many matrix multiplica-
tions, the predictions are calculated once during the initialization phase and the
branching rule is fixed for the entire search.

4.2 The Large Neighborhood Search

LNS is a popular local search technique [16,19]. It begins with an initial feasible
solution, perhaps found using a greedy method. Using this solution, LNS fixes a
subset of the variables to their values in the existing solution and then calls an
exact solver on the remaining relaxed variables. If a better solution is found, it
is stored as the incumbent solution. Upon completing the search, the process is
repeated with a new search on a different subset of variables fixed to the values
in the new best solution. The choice of variables to fix and relax is determined
by a subroutine called a neighborhood. For LNS to be effective, several neigh-
borhoods should be implemented to target different causes of suboptimality. Six
neighborhoods are developed. The six neighborhoods are randomly selected with
equal probability. They are described as follows.

Cool Off Neighborhood The Cool Off neighborhood attempts to reduce over-
cooling of one building. Consider a building operating in a sequence of ⟨Cool,
Cool,Cool,Off⟩. Perhaps it is better to have ⟨Off,Cool,Off,Cool⟩ in-
stead. This neighborhood shuffles around the Off and Cool modes within a
range of timesteps, and leaves the Heat decisions alone by fixing them in all
timesteps. This neighborhood is sketched below:

1. For every building b ∈ B and comfort time t ∈ R, compute a weight wb,t =
(ib,t − i0)

2 if xcool
b,t−1 = 1 and ib,t < i0, and wb,t = 0 otherwise. Exit if all

wb,t = 0.

10 E. Lam et al.

2. Select a b∗ ∈ B and t∗ ∈ R with probability
wb∗,t∗∑

b∈B
∑

t∈R wb,t
.

3. Fix xheat
b∗,t = 0 for all t ∈ T ′. Relax xoff

b∗,t and xcool
b∗,t for all t ∈ {t∗ − 1 −

k, . . . , t∗ − 1 + k} ∩ T ′ for some radius k ∈ N. Fix all other mode variables
to their values in the incumbent solution.

Heat Off Neighborhood The Heat Off neighborhood is the heating equivalent
of the Cool Off neighborhood:

1. For every building b ∈ B and comfort time t ∈ R, compute a weight wb,t =
(ib,t − i0)

2 if xheat
b,t−1 = 1 and ib,t > i0, and wb,t = 0 otherwise. Exit if all

wb,t = 0.

2. Select a b∗ ∈ B and t∗ ∈ R with probability
wb∗,t∗∑

b∈B
∑

t∈R wb,t
.

3. Fix xcool
b∗,t = 0 for all t ∈ T ′. Relax xoff

b∗,t and xheat
b∗,t for all t ∈ {t∗ − 1 −

k, . . . , t∗ − 1 + k} ∩ T ′ for some radius k ∈ N. Fix all other mode variables
to their values in the incumbent solution.

Flip Neighborhood The Flip neighborhood attempts to remove sequences of
alternating cooling and heating:

1. Create a random ordering of B and a random ordering of T ′.

2. Loop through b∗ ∈ B and t∗ ∈ T ′ using the random orderings. Find a b∗ and
t∗ such that (1) xcool

b∗,t∗ = 1 and xheat
b∗,t∗+1 = 1, (2) xheat

b∗,t∗ = 1 and xcool
b∗,t∗+1 = 1,

(3) xcool
b∗,t∗ = 1, xoff

b∗,t∗+1 = 1 and xheat
b∗,t∗+2 = 1 or (4) xheat

b∗,t∗ = 1, xoff
b∗,t∗+1 = 1

and xcool
b∗,t∗+2 = 1. Exit if such a b∗ and t∗ are not found.

3. For some radius k ∈ N, relax xoff
b∗,t, x

cool
b∗,t and xheat

b∗,t for all t ∈ {t− k, . . . , t+
1 + k} ∩ T ′ for cases (1) and (2), and for all t ∈ {t − k, . . . , t + 2 + k} ∩ T ′

for cases (3) and (4). Fix all other mode variables to their values in the
incumbent solution.

Precool Neighborhood The Precool neighborhood aims to cool down a building
before the first timestep of an interval of comfort times:

1. Create a random ordering of B.
2. Loop through b∗ ∈ B in random order and t∗ ∈ R in ascending order. Find

a b∗ and t∗ such that t∗ − 1 ̸∈ R, xcool
b∗,t∗−1 = 1 and ib∗,t∗ > i0. Exit if such a

b∗ and t∗ are not found.

3. Create an empty set τ ⊂ T ′ of timesteps.

4. Loop t backwards from t∗ − 2 to 0. Add t to τ if xcool
b∗,t = 0. Stop if |τ | = 2k

for some size parameter k ∈ N.
5. If |τ | = 0, go back to step (2) to find another b∗ and t∗.

6. Fix xheat
b∗,t = 0 for all t ∈ T ′. Relax xoff

b∗,t and xcool
b∗,t for all t ∈ τ . Fix all other

mode variables to their values in the incumbent solution.

Large Neighborhood Search for Temperature Control with Demand Response 11

Preheat Neighborhood The Preheat neighborhood is the heating equivalent of
the Precool neighborhood:

1. Create a random ordering of B.
2. Loop through b∗ ∈ B in random order and t∗ ∈ R in ascending order. Find

a b∗ and t∗ such that t∗ − 1 ̸∈ R, xheat
b∗,t∗−1 = 1 and ib∗,t∗ < i0. Exit if such a

b∗ and t∗ are not found.
3. Create an empty set τ ⊂ T ′ of timesteps.
4. Loop t backwards from t∗ − 2 to 0. Add t to τ if xheat

b∗,t = 0. Stop if |τ | = 2k
for some size parameter k ∈ N.

5. If |τ | = 0, go back to step (2) to find another b∗ and t∗.
6. Fix xcool

b∗,t = 0 for all t ∈ T ′. Relax xoff
b∗,t and xheat

b∗,t for all t ∈ τ . Fix all other
mode variables to their values in the incumbent solution.

On Neighborhood TheOn neighborhood attempts to turn on the HVAC systems:

1. Initialize wcool
t = 0 and wheat

t = 0 for all t ∈ R.
2. For every building b ∈ B and comfort time t ∈ R, add a weight (ib,t − i0)

2

to wcool
t if xcool

b,t−1 = 0 and ib,t > i0, or add the weight to wheat
t if xheat

b,t−1 = 0

and ib,t < i0. Exit if all w
cool
t = 0 and wheat

t = 0.

3. Focus on cooling with probability
∑

t∈R wcool
t∑

t∈R wcool
t +wheat

t
. Focus on heating other-

wise.
4. If cooling, select a t∗ ∈ R with probability

wcool
t∗∑

t∈R wcool
t

. Relax xoff
b,t and xcool

b,t

for all b ∈ B and t ∈ {t∗ − 1− k, . . . , t∗ − 1 + k} ∩ T ′ for some radius k ∈ N.
5. If heating, select a t∗ ∈ R with probability

wheat
t∗∑

t∈R wheat
t

. Relax xoff
b,t and xheat

b,t

for all b ∈ B and t ∈ {t∗ − 1− k, . . . , t∗ − 1 + k} ∩ T ′ for some radius k ∈ N.
6. Fix all other mode variables to their values in the incumbent solution.

5 Experimental Results

This section presents the experimental set-up and analyses the results.

5.1 Generating Exploratory Training Data

To generate the exploratory data for training the neural networks, we assume we
have access to physics-based Equivalent Thermal Parameter (ETP; [17]) models
that are closely matched to the real-world dynamics. By using models, we avoid
having to operate real buildings at uncomfortable temperatures far from their set
points for long periods of time needed to gather sufficient data. We instantiate
an ETP model for each of twenty buildings based on defaults provided by the
grid simulator GridLAB-D [6] plus some small (σ = 0.05µ) Gaussian noise to
vary their structural parameters.

The training data is generated as follows: we use the ETP models to generate
25,000 two-hour trajectories on five-minute timesteps, resulting in 600,000 data

12 E. Lam et al.

points per building model. Every sample trajectory consists of a fixed outdoor
temperature sampled uniformly at random, o0 ∼ U(0, 45), an initial indoor mass
temperature m0 ∼ U(10, 35), and corresponding initial air temperature close to
the initial mass temperature, i0 ∼ U(−0.5, 0.5) + m0. Then, a sequence of 24
exploratory actions are taken, by choosing actions uniformly from {Off,Heat,
Cool}, and recording for every step: the initial conditions, the power consumed
by the HVAC system, and the indoor air and indoor mass temperatures after
five minutes.

5.2 Training the Neural Networks

The training data is preprocessed by scaling all values to lie between 0 and 1.
This ensures that the loss in all dimensions are evenly considered. The MLPs
are trained using the Adam stochastic gradient descent algorithm [11] over 100
epochs in Tensorflow. One-fifth of the input trajectories are reserved for valida-
tion. For every building, ten randomly-initialized training runs are conducted.
Of the ten runs, the trained parameters resulting in the smallest sum of mean
squared errors are chosen and fixed for planning in the MIQP model.

Three sizes of MLPs are trained: (1) three hidden layers, each consisting of
thirty ReLU units, (2) two hidden layers, each with twenty ReLU units and (3)
two hidden layers, each with ten ReLU units. Averaged over the twenty buildings,
the three sizes respectively have 1.6×10−8, 1.5×10−8 and 4.7×10−8 validation
loss. We use the smallest MLPs since they still accurately fit the data and the
largest MLPs have marginally more error than the middle option.

5.3 Experimental Set-up

The MIQP model is solved using Gecode 6.2.0 and Gurobi 9.0.1. Using these
two solvers, the following four methods are evaluated:

– CP-BB : Branch-and-bound search in Gecode with the branching rule de-
scribed in Section 4.1.

– MP-BB : Branch-and-bound search in Gurobi.
– CP-LNS : Local search in Gecode with the branching rule from Section 4.1

and the LNS from Section 4.2.
– MP-LNS : Local search in Gurobi with the LNS from Section 4.2.

Both Gecode and Gurobi have built-in support for the max function in the
ReLU activation function. Hence, the models are directly implemented, and no
attempt was made to manually linearize Constraint (1c) for Gurobi. The radius
parameter k for the neighborhoods is randomly chosen as k = 2 with probability
0.7, k = 3 with probability 0.2 and k = 4 with probability 0.1.

All parameters in Gecode are set to their default values. Default parameters
are also used in Gurobi except the search is set to prioritize the primal bound
and the solver is warm-started with a greedy solution found using a procedure
almost identical to the branching rule from Section 4.1.

Large Neighborhood Search for Temperature Control with Demand Response 13

The solvers are tested on 504 instances. First, 42 typical weather conditions
(correlated outdoor temperature and solar irradiance time series) are generated,
of which 9 cover cold days with extremely low temperatures, and 9 are hot
days with extremely warm temperatures. Then, we control the complexity of
the instances generated by varying the length of the planning horizon, and the
number of buildings to be controlled. The horizon varies between four, eight
and sixteen hours, divided into five-minute time periods resulting in 48, 96, and
192 timesteps, respectively. Each of these instances is then paired with 5, 10, 15
and 20 buildings, making up the 504 instances. Every instance has at least one
demand response event, located at the coldest or warmest parts of the day. The
initial conditions of each building are given, with initial indoor mass temperature
assumed to be equal the initial air temperature. Every instance is run by each of
the four methods on a single thread for thirty minutes on an Intel Xeon E5-2660
v3 CPU at 2.60GHz.

5.4 Results and Analysis

Figure 4 is a cactus plot showing for each objective value how many instances
have better objective value as found by each solver. The chart shows that LNS
outperforms complete branch-and-bound, and that CP-LNS is significantly bet-
ter than MP-LNS. MP-BB and MP-LNS find feasible solutions to 125 and 215
instances respectively. CP-BB finds solutions to 174 instances, and CP-LNS
finds solutions to all 504 instances. Even though both MP-BB and MP-LNS are
given a warm start solution, they are unable to activate the solution in many
instances, declaring unknown problem status (unknown infeasible or feasible) at
termination. Output logs suggest that Gurobi needs to perform computations to
activate the solution. This may be caused by the need to compute a basis, which
is hindered by the large number of binary variables internally added to linearize
the max constraints.

CP-LNS, MP-LNS, CP-BB and MP-BB find the (equally) best solution to
439, 37, 8 and 20 instances respectively. Given the short time-out, neither exact
method is able to prove optimality on any instance. The optimality gap aver-
ages 97% across the 125 instances with feasible solutions from MP-BB. At best,
the optimality gap is 69%. These numbers suggest that the model features a
weak linear relaxation. Overall, these results indicate that exact methods are
ineffective for real-time control problems that have short time-outs required for
repeated reoptimization.

The MIQP model has simple structure, which should make it relatively easy
for Gurobi. Even though ReLU functions are nearly linear (i.e., they are a max
function composed with an affine function), they actually belong to the class of
non-convex programming problems. (Recall that a convex minimization problem
has convex less-than-or-equal-to constraints and affine equality constraints [5].)
Therefore, we speculate that the linearization of the ReLU function using a
binary variable leads to a very weak linear relaxation, making Gurobi inadequate.
Rather, the fast tree search of CP and its avoidance of computing nearly useless
dual bounds are key to tackling the problem.

14 E. Lam et al.

0 50 100 150 200 250 300 350 400 450 500

103

104

105

106

107

108

Number of instances with the same or lower objective value

O
b
je
ct
iv
e
va
lu
e

MP-BB

CP-BB

MP-LNS

CP-LNS

Fig. 4. Cactus plot of objective value against the number of instances for which each
method finds better solutions. On the left of any one value on the horizontal axis is the
number of instances that the method finds a solution with the same or lower objective
value.

5.5 Closing the Loop

The objective values reported in Figure 4 are predicted by the optimization
routine using the learned dynamics. To verify that the learned transition models
are accurate, we applied the computed schedules to an ETP simulator with
the actual parameters. Figure 5 (left) presents the match between the predicted
temperature trajectory as optimized by CP-LNS and the ground-truth trajectory
obtained by running the schedule through the simulator for an arbitrary instance.
We verified that this behavior is consistent across all instances.

Figure 5 (right) compares the accuracy of the learned dynamics with the
same optimization routine using a simpler MLP that omits the internal mass
temperature. We observe that training on all simulator inputs is required to get
schedules that closely match the predicted behavior. We hypothesize that the
reason for the large errors observed from the air-only MLP is that this model
does not actually constitute a function: for every input of ⟨air, outdoor, solar irra-
diance, control⟩, there are multiple correct corresponding next air temperatures.
The MLP learns to fit a least-error mean value, but this necessarily gives an
error in the prediction, which compounds over time into the dramatic mismatch
observed here.

6 Conclusions and Future Work

This paper developed an MIQP model for real-time control of space condition-
ing systems while considering demand response. The problem adjusts the indoor
temperature of several smart buildings connected to a microgrid to ensure occu-
pant comfort while subject to sporadic limitations on power supply. The model
is solved using the MP solver Gurobi and the CP solver Gecode. The paper

Large Neighborhood Search for Temperature Control with Demand Response 15

0 32 64 96 128 160 192

18

22

26

30

34

38

42

46

50

Timestep

°C

Mass-aware MLP

0 32 64 96 128 160 192

Timestep

Air-only MLP

Set point Actual Predicted Occupied Demand Response

Fig. 5. Comparison of the scheduled and actual temperature trajectory of a building.
Left: MLP trained on both air and mass temperatures. Right: MLP trained only on
air temperatures.

develops a problem-specific branching rule and LNS, which comprises six neigh-
borhoods that attempt to repair six different reasons for suboptimality. Gecode
coupled with the branching rule and LNS vastly outperforms Gurobi.

Several directions for future research are available:

– More sophisticated measures of occupant comfort include various other fac-
tors, such as humidity. Future studies should include these variables.

– The model was initially implemented in CP Optimizer but it faced numerical
issues. CP solvers with lazy clause generation should be used, but it appears
that no other production-ready CP solver supports floating point variables.

– Dedicated propagators for the ReLU function should be investigated. The
outputs of the neural network are calculated using a sequence of matrix
multiplications, which can be implemented very efficiently using single in-
struction multiple data (SIMD) CPU instructions. A propagator that rea-
sons over the entire neural network, rather than an individual neuron, could
potentially improve the CP solver to a large extent.

– Different kinds of approximations to the transition functions should be eval-
uated. Deep neural networks are non-convex, making them difficult to reason
over. Linear models and decision trees are simpler and using them can po-
tentially improve the solving run-time.

– The control problem is naturally reoptimized over a rolling time window.
Adding one additional time period and keeping the existing decisions fixed
may not heavily impact the solution quality, but not does not allow a large
search space to be explored. This early study investigates a once-off overnight
run. Considering that the temperature approximations will drift as the day
progresses, the number of timesteps to reoptimize during the day is a key
question for future studies.

16 E. Lam et al.

References

1. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Re-
search Letters 33(1), 42–54 (2005)

2. Anderson, R., Huchette, J., Tjandraatmadja, C., Vielma, J.P.: Strong mixed-
integer programming formulations for trained neural networks. In: Lodi, A., Na-
garajan, V. (eds.) Integer Programming and Combinatorial Optimization. pp. 27–
42. Springer International Publishing, Cham (2019)

3. Azuatalam, D., Mhanna, S., Chapman, A., Verbič, G.: Optimal HVAC schedul-
ing using phase-change material as a demand response resource. In: 2017 IEEE
Innovative Smart Grid Technologies-Asia (ISGT-Asia). IEEE (2017)

4. Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Neuron constraints to model
complex real-world problems. In: Lee, J. (ed.) Principles and Practice of Constraint
Programming. pp. 115–129. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(2004)

6. Chassin, D.P., Fuller, J.C., Djilali, N.: GridLAB-D: An agent-based simulation
framework for smart grids. Journal of Applied Mathematics 2014 (2014)

7. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals and Systems 2(4), 303–314 (1989)

8. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.)
Proceedings of the 15th International Conference on the Principles and Practice
of Constraint Programming. pp. 352–366. Springer Berlin Heidelberg (2009)

9. FICO: MIP formulations and linearizations (2009), https://www.fico.com/en/
resource-download-file/3217

10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http:
//www.deeplearningbook.org

11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR 2015
(2015)

12. Kohlhepp, P., Harb, H., Wolisz, H., Waczowicz, S., Müller, D., Hagenmeyer, V.:
Large-scale grid integration of residential thermal energy storages as demand-side
flexibility resource: A review of international field studies. Renewable and Sustain-
able Energy Reviews 101, 527–547 (March 2019)

13. Motegi, N., Piette, M.A., Watson, D.S., Kiliccote, S., Xu, P.: Introduction to com-
mercial building control strategies and techniques for demand response. Tech. rep.,
California Energy Commission, PIER (2006)

14. de Nijs, F., Stuckey, P.J.: Risk-aware conditional replanning for globally con-
strained multi-agent sequential decision making. In: Proceedings of the 19th Inter-
national Conference on Autonomous Agents and Multiagent Systems. IFAAMAS
(2020)

15. Pérez-Lombard, L., Ortiz, J., Pout, C.: A review on buildings energy consumption
information. Energy and Buildings 40(3), 394–398 (January 2008)

16. Pisinger, D., Røpke, S.: Large neighborhood search. In: Gendreau, M., Potvin, J.Y.
(eds.) Handbook of metaheuristics, chap. 13, pp. 399–419. Springer (2010)

17. Pratt, R.G., Taylor, Z.T.: Development and testing of an equivalent thermal pa-
rameter model of commercial buildings from time-series end-use data. Tech. rep.,
Pacific Northwest Laboratory, Richland, Washington (1994)

18. Say, B., Wu, G., Zhou, Y.Q., Sanner, S.: Nonlinear hybrid planning with deep
net learned transition models and mixed-integer linear programming. In: Proceed-
ings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI-17. pp. 750–756 (2017)

https://www.fico.com/en/resource-download-file/3217
https://www.fico.com/en/resource-download-file/3217
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Large Neighborhood Search for Temperature Control with Demand Response 17

19. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.F. (eds.) Principles and Practice of
Constraint Programming, Lecture Notes in Computer Science, vol. 1520, pp. 417–
431. Springer Berlin Heidelberg (1998)

20. Vázquez-Canteli, J.R., Nagy, Z.: Reinforcement learning for demand response: A
review of algorithms and modeling techniques. Applied Energy 235, 1072–1089
(2019)

	Large Neighborhood Search for Temperature Control with Demand Response

