
https://pubsonline.informs.org/journal/ijoc

Submitted to INFORMS Journal on Computing

INFORMS JOURNAL ON COMPUTING

Vol. 00, No. 0, Xxxxx 0000, pp. 000–000

ISSN 0899-1499, EISSN 1526-5528

Column Generation Using Domain-Independent
Dynamic Programming
Ryo Kuroiwa
National Institute of Informatics / The Graduate University of Advanced Studies, SOKENDAI, Japan, kuroiwa@nii.ac.jp

Edward Lam
Monash University, Australia, edward.lam@monash.edu

Authors are encouraged to submit new

papers to INFORMS journals by means

of a style file template, which includes

the journal title. However, use of a tem-

plate does not certify that the paper

has been accepted for publication in the

named journal. INFORMS journal tem-

plates are for the exclusive purpose of

submitting to an INFORMS journal and

are not intended to be a true representa-

tion of the article’s final published form.

Use of this template to distribute papers

in print or online or to submit papers

to another non-INFORM publication is

prohibited.

Abstract. Column generation and branch-and-price are leading methods for large-scale

exact optimization. Column generation iterates between solving a master problem

and a pricing problem. The master problem is a linear program, which can be solved

using a generic solver. The pricing problem is highly dependent on the application but

is usually discrete. Due to the difficulty of discrete optimization, high-performance

column generation often relies on a custom pricing algorithm built specifically to

exploit the problem’s structure. This bespoke nature of the pricing solver prevents

the reuse of components for other applications. We show that domain-independent

dynamic programming, a software package for modeling and solving arbitrary dynamic

programs, can be used as a generic pricing solver. We develop basic implementations

of branch-and-price with pricing by domain-independent dynamic programming and

show that they outperform a world-leading solver on static mixed integer programming

formulations for seven problem classes.

Funding: This work is supported by JSPS KAKENHI grant number JP25K24378

and by the Australian Research Council under grant DE240100042.

Key words: column generation, search, dynamic programming,

domain-independent dynamic programming, generic column generation

1. Introduction
Mixed-integer programs (MIPs) with a large number of variables are computationally difficult to

construct, let alone solve. Branch-and-price and column generation are two related methods for

overcoming this difficulty. Instead of enumerating all variables in advance, column generation loops

between solving a restricted master problem and a pricing problem (e.g., Lübbecke and Desrosiers

2005). The restricted master problem contains only a subset of the variables. This set is iteratively

expanded by solving the pricing problem. At termination, the subset is still substantially smaller than

the full set but is sufficient to prove optimality or infeasibility. To obtain integer solutions, column

1

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
2 Article submitted to INFORMS Journal on Computing

generation is embedded in a branch-and-bound tree search, where the linear relaxation of each node

is solved using column generation. This process is called branch-and-price.

The pricing problem is often application-specific. Although it can be modeled as a MIP and

solved using a black-box software package such as Gurobi (Gurobi Optimization, LLC 2024) or

CPLEX (IBM 2024), generic solvers are usually too slow for this purpose. High-performance

branch-and-price codes rely on custom pricing solvers that exploit the problem’s structure.

In many applications, the pricing problem reduces to a variant of the shortest path problem (Irnich

and Desaulniers 2005), which can be solved effectively using dynamic programming (DP) (Bellman

1957). However, these techniques are typically tailored to problem-specific assumptions, limiting

reuse and making generic column generation frameworks rare.

Domain-independent dynamic programming (DIDP) is a software package for modeling DP

problems and offers a suite of generic search algorithms (Kuroiwa and Beck 2023a, 2025a). Its

flexibility enables rapid prototyping of different pricing models and algorithms. This paper shows

that straightforward branch-and-price implementations backed by DIDP pricing can outperform

Gurobi, a state-of-the-art black-box MIP solver, on multiple problem classes.

The contributions of this paper are:

1. Four new features in DIDP for modeling and solving pricing problems, including a generic

labeling algorithm.

2. Declarative DIDP models for pricing in seven problem classes and basic branch-and-price

implementations built on them.

3. The first application of branch-and-price to the cumulative vehicle routing problem with time

windows (CumVRPTW) (Fernández Gil et al. 2020, Corona-Gutiérrez et al. 2022).

4. Experimental results showing that these implementations can outperform Gurobi, a world-

leading black-box MIP solver.

The remainder of this paper is structured as follows. Section 2 reviews column generation and

DIDP. Section 3 surveys related work. Section 4 introduces the new features of DIDP. Section 5

reports experimental results. Section 6 concludes this paper. The formulations can be found in the

appendix.

2. Background

This section describes column generation and the solving methodology in DIDP.

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
Article submitted to INFORMS Journal on Computing 3

2.1. Column Generation

Many combinatorial optimization problems can be modeled as a MIP that selects a subset of

combinatorial objects (e.g., routes, paths, schedules, cutting patterns, etc.) under compatibility

constraints. Every object is represented by a variable, so the number of variables grows exponentially

with the instance size, making full enumeration impractical. Branch-and-price and column generation

address this issue by considering only a small subset of variables and proving that this subset is

sufficient to guarantee optimality or infeasibility.

Let 𝑋 be the set of all combinatorial objects, indexed 1, . . . , 𝑛 where 𝑛 = |𝑋 |. Define the integer

master problem as:

(IMP)

min 𝑐⊤𝜆

s.t. 𝐴𝜆 ≥ 𝑏,

𝜆 ∈ Z𝑛
+,

where 𝑐 ∈Q𝑛, 𝐴 ∈Q𝑚×𝑛, 𝑏 ∈Q𝑚. Its linear relaxation, called the master problem, is:

(MP)

min 𝑐⊤𝜆

s.t. 𝐴𝜆 ≥ 𝑏,

𝜆 ∈ R𝑛
+.

Despite being a linear program, (MP) remains intractable because 𝑛 is large. Instead, we solve a

restricted problem with far fewer variables. For some 𝑛′≪ 𝑛, define the restricted master problem

as:

(RMP)

min 𝑐′⊤𝜆′

s.t. 𝐴′𝜆′ ≥ 𝑏,

𝜆′ ∈ R𝑛′
+ ,

(1)

where 𝜆′ = (𝜆1, . . . , 𝜆𝑛′) ∈ R𝑛′
+ is a subset of the variables and 𝑐′, 𝐴′ are the corresponding submatrices.

Column generation solves (RMP), adds improving variables and repeats until no improving variables

remain.

Let 𝜋 ∈ R𝑚
+ be the dual variables of Constraint (1). Given an optimal primal-dual solution (𝜆̂, 𝜋̂)

to (RMP), the reduced cost of any variable 𝜆 𝑗 , 𝑗 ∈ {1, . . . , 𝑛}, is

𝑐 𝑗 = 𝑐 𝑗 − 𝐴⊤·, 𝑗 𝜋̂.

At optimality, the variables present in (RMP) satisfy 𝑐 𝑗 ≥ 0. Any variable outside (RMP) (i.e.,

𝑗 ∈ {𝑛′ + 1, . . . , 𝑛}) with 𝑐 𝑗 < 0 can improve the objective when added.

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
4 Article submitted to INFORMS Journal on Computing

Explicitly scanning 𝑗 = 𝑛′ + 1, . . . , 𝑛 is impractical because 𝑐 and 𝐴 are too large to construct.

Instead, we define an oracle, called the pricing problem, that searches a 𝑗 ∈ {𝑛′ + 1, . . . , 𝑛} with

𝑐 𝑗 < 0. Assume that every 𝑥 ∈ 𝑋 has a vector representation (𝑥1, . . . , 𝑥𝑘) ∈ Z𝑘 subject to internal

feasibility constraints 𝐷𝑥 ≥ 𝑒. Formally, 𝑋 = {𝑥 ∈ Z𝑘 : 𝐷𝑥 ≥ 𝑒}. The pricing problem is:

(PP)
min
𝑗

𝑐 𝑗

s.t. 𝑥 𝑗 ∈ 𝑋.

If (PP) finds 𝑐 𝑗 < 0, we add the corresponding variable to (RMP) and reoptimize. The process stops

when (PP) proves there is no negative reduced cost column, which certifies that the current (RMP)

solution is also optimal for (MP).

Column generation can only solve linear programs and must be embedded in a branch-and-bound

tree search to solve MIPs. This embedding is called branch-and-price. In branch-and-price, branching

rules must be designed so that the pricing problem respects the branching decisions. Branching rules

are problem-specific, so a full review is beyond the scope of this paper.

While (PP) can be solved by problem-agnostic MIP solvers, specialized pricing solvers typically

perform substantially better because they can exploit problem structure. In practice, 𝑋 often defines

a shortest path problem, which admits fast specialized algorithms. Building a competitive generic

solver based on column generation for arbitrary MIP problems requires both the ability to recognize

the problem structure 𝑋 and the availability of a specialized algorithm to exploit this structure,

making such a solver elusive. Rather than pursuing full generality, we provide modeling tools and

a library of pre-built DP algorithms, enabling users to easily prototype different instantiations of

branch-and-price. Promising results can then motivate bespoke pricing implementations.

2.2. Dynamic Programming

Many pricing problems are naturally solved by dynamic programming (DP). DP characterizes the

problem via states and transitions, with costs or profits on transitions; an optimal policy solves the

associated Bellman recursion.

As a running example, consider the shortest path problem with resource constraints (SPPRC) (Irnich

and Desaulniers 2005), here instantiated as a VRPTW pricing problem with capacity and time-

window resources and an elementary (no-revisit) constraint. Let (N ,A) be a directed graph with

nodes N = {0, . . . , 𝑛 + 1} (source 0, sink 𝑛 + 1) and arcs A ⊆ {N ×N : 𝑖 ≠ 𝑗 , 𝑖 < 𝑛 + 1, 𝑗 > 0}. Each

customer 𝑖 has load 𝑙𝑖 ≥ 0, release time 𝑎𝑖 ≥ 0, due time 𝑏𝑖 ≥ 0, and service duration 𝑠𝑖 ≥ 0; each

arc (𝑖, 𝑗) has distance 𝑑𝑖, 𝑗 ≥ 0 and travel cost 𝑐𝑖, 𝑗 . The goal is an elementary path from 0 to 𝑛 + 1 of

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
Article submitted to INFORMS Journal on Computing 5

minimum total travel cost such that cumulative load never exceeds capacity 𝑄 and each visit respects

[𝑎𝑖, 𝑏𝑖].

Let𝑉 (R, 𝑖, 𝑞, 𝑡) be the minimum cost from node 𝑖 to 𝑛+1 when the unvisited set is R ⊆ {1, . . . , 𝑛},

current load is 𝑞, and time is 𝑡. The Bellman equation is:

𝑉 (R, 𝑖, 𝑞, 𝑡) =


0 if 𝑖 = 𝑛 + 1

min
𝑗∈R∪{𝑛+1}:(𝑖, 𝑗)∈A∧𝑞+𝑙 𝑗≤𝑄∧𝑡+𝑠𝑖+𝑑𝑖, 𝑗≤𝑏 𝑗

𝑐𝑖, 𝑗 +𝑉
(
R \ { 𝑗}, 𝑗 , 𝑞 + 𝑙 𝑗 , 𝑡′(𝑗)

)
otherwise

(2)

where 𝑡′(𝑗) = max
{
𝑡 + 𝑠𝑖 + 𝑑𝑖, 𝑗 , 𝑎 𝑗

}
. The optimal objective value is 𝑉 ({1, · · · , 𝑛},0,0,0).

2.3. Domain-Independent Dynamic Programming

Domain-independent dynamic programming (DIDP) is a generic solver framework for DP. Previous

work developed Dynamic Programming Description Language (DyPDL) (Kuroiwa and Beck 2023a,

2025a), a declarative modeling formalism for DIDP. In DyPDL, a DP model is defined by state

variables, transitions, base cases, and state constraints.

A state variable has a type, either numeric, element, or set. A numeric variable takes a value in Q,

an element variable in Z+0 , and a set variable in 2Z+0 . A state is represented by full value assignments

to the state variables, and we denote the value of a state variable 𝑥 in state 𝑆 by 𝑆[𝑥]. For our

example in Equation (2), R, 𝑗 , 𝑞, and 𝑡 can be modeled as state variables in DyPDL, and R is a set

variable, 𝑗 is an element variable, and 𝑞 and 𝑡 are numeric variables. An expression 𝑒 is a function

that returns a value 𝑒(𝑆) given a state 𝑆, built from predefined operations on state variables. In

particular, a numeric expression returns a value in Q, an element expression returns a value in Z+0 , a

set expression returns a value in 2Z+0 , and a condition returns a Boolean value in ⟨⊥,⊤⟩, where ⊥/⊤

represents that the condition is unsatisfied/satisfied. When a condition 𝑐 is satisfied by state 𝑆, i.e.,

𝑐(𝑆) =⊤, we denote it by 𝑆 |= 𝑐.

A transition defines the change of a state by making a decision. For each state variable, an

expression 𝑒 with the corresponding type defines the updated value 𝑒(𝑆) after the transition is

applied. In addition, each transition has preconditions, conditions that must be satisfied by a state for

the transition to be applied. The transition is applicable in state 𝑆 if for each precondition 𝑐, 𝑆 |= 𝑐.

In our example in Equation (2), visiting node 𝑗 corresponds to a transition in DyPDL that updates

R to R \ { 𝑗}, 𝑖 to 𝑗 , 𝑞 to 𝑞 + 𝑙 𝑗 , and 𝑡 to 𝑡′(𝑗). This transition has preconditions 𝑗 ∈ R ∪ {𝑛 + 1},

(𝑖, 𝑗) ∈ A, 𝑞 + 𝑙 𝑗 ≤𝑄, and 𝑡 + 𝑠𝑖 + 𝑑𝑖, 𝑗 ≤ 𝑏 𝑗 .

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
6 Article submitted to INFORMS Journal on Computing

A base case defines conditions that a state must satisfy for termination. In other words, no more

transitions are applied when a state satisfies such conditions. A state satisfying a base case is called

a base state. For our example in Equation (2), a base case is defined by a condition 𝑖 = 𝑛 + 1.

A state constraint defines conditions that must be satisfied by all states. For our example in

Equation (2), we do not have particular state constraints.

In addition to the above components, a special state called the target state is defined in DyPDL. A

solution for a DyPDL model is a sequence of transitions that transforms the target state into a base

state. We give a more formal definition in what follows. Let the target state be 𝑆0 and T (𝑆) be a

set of applicable transitions in a state 𝑆. For a transition 𝜏 ∈ T (𝑆), let 𝑆[[𝜏]] be a state where the

value of each state variable is updated from 𝑆 according to 𝜏. A solution is a sequence of transitions

⟨𝜏1, ..., 𝜏𝑛⟩ such that 𝜏𝑖 ∈ T
(
𝑆𝑖−1) and 𝑆𝑖 = 𝑆𝑖−1 [[𝜏𝑖]] for 𝑖 = 1, . . . , 𝑛, 𝑆𝑖 satisfies all state constraints

for 𝑖 = 0, . . . , 𝑛, and 𝑆𝑛 satisfies a base case. Analogously, we define an 𝑆-solution, a sequence of

applicable transitions that transforms a state 𝑆 into a base state.

For simplicity, we focus on a subset of the DyPDL formalism, where the objective value of a

solution is defined by the weight function 𝑤𝜏 of a state associated with each transition 𝜏. In addition,

we consider the weight function 𝑣, which maps a base state 𝑆 to its objective value 𝑣(𝑆). Given a

solution ⟨𝜏1, ..., 𝜏𝑛⟩ with 𝑆𝑖 = 𝑆𝑖−1 [[𝜏𝑖]] for 𝑖 = 1, . . . , 𝑛, its objective value is
∑𝑛

𝑖=1 𝑤𝜏𝑖

(
𝑆𝑖−1) + 𝑣 (𝑆𝑛).

The objective value of an 𝑆-solution is defined analogously. An optimal solution minimizes the

objective value. We note that our approach can be easily extended to maximization and the case

where the weights are combined by binary operators such as multiplication, min, and max by

following previous work (Kuroiwa and Beck 2025a). The optimal objective value can be represented

by the following Bellman equation:

(DIDP)

compute 𝑉 (𝑆0)

𝑉 (𝑆) =


∞ if 𝑆 violates a state constraint

𝑣(𝑆) if 𝑆 is a base state

min𝜏∈T (𝑆) 𝑤𝜏 (𝑆) +𝑉 (𝑆[[𝜏]]) otherwise.

The first line declares that the optimal objective value for the problem is 𝑉 (𝑆0), the value of the

target state. The first case of the equation defines 𝑉 (𝑆) =∞ if any state constraint is violated. The

second case defines the value of a base state. The third case recursively defines the optimal objective

value for an 𝑆-solution using transitions. Here, we assume that the third case equals∞ if T (𝑆) = ∅.

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
Article submitted to INFORMS Journal on Computing 7

In DyPDL, redundant information implied by other parts of the DP model can be explicitly

defined. Such information is analogous to valid inequalities in a MIP model and can potentially be

useful for a solver. DyPDL provides two specific features solely for redundant information: resource

variables and dual bound functions.

In problem-specific DP algorithms, state dominance is sometimes exploited, where one state is

known to be superior to another. For our example in Equation (2), a state (R, 𝑖, 𝑞1, 𝑡1) leads to a

better or equal solution than a state (R, 𝑖, 𝑞2, 𝑡2) if 𝑞1 ≤ 𝑞2 and 𝑡1 ≤ 𝑡2. In DyPDL, to represent state

dominance, a numeric variable or an element variable can be declared as a resource variable with a

preference for less or greater. Given two states 𝑆 and 𝑆′, 𝑆 is preferred over 𝑆′ if 𝑆[𝑟] ≤ 𝑆′[𝑟] for each

resource variable 𝑟 that prefers less, 𝑆[𝑟] ≥ 𝑆′[𝑟] for each resource variable 𝑟 that prefers greater,

and 𝑆[𝑥] = 𝑆′[𝑥] for each non-resource variable 𝑥. When 𝑆 is preferred to 𝑆′, a solver assumes that

for each 𝑆′-solution, there exists an 𝑆-solution that has an equal or better objective value with an

equal or shorter number of transitions. Using the value function for minimization,

𝑉 (𝑆) ≤ 𝑉 (𝑆′) if 𝑆 is preferred to 𝑆′.

A dual bound function 𝜂 returns a lower bound 𝜂(𝑆) on the optimal value of a state 𝑆, i.e.,

𝑉 (𝑆) ≥ 𝜂(𝑆).

In DyPDL, a dual bound function is described by an expression, similar to other components. For

our example in Equation (2), since the travel cost of an arc can be negative, we can use a dual bound

function that only considers the negative incoming arc for each node. Using the minimum incoming

arc cost 𝑐in
𝑗
= min(𝑘, 𝑗)∈A 𝑐𝑘 𝑗 for node 𝑗 ,

𝑉 (R, 𝑖, 𝑞, 𝑙) ≥
∑︁

𝑗∈R∪{𝑛+1}
min

{
𝑐in
𝑗 ,0

}
. (3)

2.4. State-Space Search Algorithms in Artificial Intelligence

In the field of artificial intelligence (AI), a range of state-space search algorithms has been developed

for solving problems such as planning and combinatorial optimization problems (Russell and

Norvig 2020), often in parallel and with little communication with the mathematical optimization

community.

State-space search algorithms are a class of recursive algorithms for exploring a state transition

graph in which vertices represent subproblems (states) and edges represent decisions (transitions).

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
8 Article submitted to INFORMS Journal on Computing

Conceptually, state-space search algorithms recursively explore the state space until finding a

goal state, in which case the path to the state is a solution. This recursion naturally makes them

suited for solving DP problems. Two successful state-space search algorithms implemented in

DIDP are cost-algebraic A* solver for DyPDL (CAASDy) and complete anytime beam search

(CABS) (Kuroiwa and Beck 2023a,b, 2025a).

CAASDy is based on A* (Hart et al. 1968), a highly successful generalization of Dijkstra’s

shortest path algorithm (Dijkstra 1959). In A*, each state 𝑆 is assigned a cost 𝑔(𝑆), representing

the cost to reach 𝑆 from an initial state 𝑆0. The A* algorithm requires the definition of a heuristic

function ℎ(𝑆) that estimates the cost to-go to reach any base state (i.e., a feasible solution) from state

𝑆. The total estimated cost of a state 𝑆 is then 𝑓 (𝑆) = 𝑔(𝑆) + ℎ(𝑆), comprising the cost-so-far 𝑔(𝑆)
and the cost to-go ℎ(𝑆). A* maintains a priority queue of states ordered by 𝑓 (𝑆), called the open

list, and expands states in order of increasing 𝑓 -value. If the heuristic function ℎ(𝑆) is admissible

(i.e., never overestimates the true cost) and all state transitions have non-negative cost, A* is both

complete and optimal, guaranteeing that the first solution found is a least-cost path. The effectiveness

of A* depends on the quality of the heuristic, which guides the search toward promising regions of

the state space and can dramatically reduce the number of states explored. Dijkstra’s algorithm is a

special case of A* when all state transitions have non-negative cost and ℎ(𝑆) = 0 for all states 𝑆.

CAASDy uses the dual bound function 𝜂 as an admissible heuristic function ℎ as it underestimates

the optimal path cost. In addition, it uses state dominance defined by resource variables for pruning

states. CAASDy also allows more general cost structures that can be represented in DyPDL, based

on the cost-algebraic heuristic search framework (Edelkamp et al. 2005). For example, maximization

is supported in addition to minimization, cost functions can be combined using operators other than

addition, such as multiplication, min, and max, and negative transition costs are allowed.

CABS (Zhang 1998) is based on beam search, an incomplete breadth-first search algorithm that

explores only a few of the most promising states at each depth, called the beam. At every iteration,

it generates the successor states of all states currently in the priority queue. It then inserts only a

subset of the successors into the priority queue for exploration in the next iteration and discards

others. In the implementation by Kuroiwa and Beck (2023b, 2025a), CABS select the 𝑘 states with

lowest 𝑓 -values, and the parameter 𝑘 is called the beam width. Because it discards states, beam

search is incomplete.

CABS guarantees completeness and provides solutions of increasing quality over time by

repeatedly running beam search in the inner loop while increasing the beam width in the outer loop

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
Article submitted to INFORMS Journal on Computing 9

until search space is exhausted. Note that whenever the beam width is increased, the beam search in

the inner loop will repeat states explored in the previous iteration. CABS is anytime (it can return

the best solution found so far if requested to terminate) and it is complete (it will eventually find an

optimal solution given sufficient time). Similar to CAASDy, the CABS solver in DIDP also uses the

dual bound function as a heuristic function and state dominance for pruning.

3. Literature Review
Achieving high-performance column generation requires identifying exploitable structure in the

pricing problem and implementing a matching specialized algorithm to exploit this structure. This

difficult task is the reason that generic column generation solvers remain uncommon. Nevertheless,

there are a few attempts at automatic column generation.

Dantzig-Wolfe decomposition is a method for reformulating a compact model (often polynomial

number of variables in the instance size) into an extended model with many more variables (often

exponential) (Lübbecke and Desrosiers 2005). The reformulation attains a dual bound no weaker

than the original and sometimes significantly stronger (e.g., Letchford and Salazar-González 2006),

resulting in much faster solve times despite being significantly larger. GCG is an open-source

academic solver that analyzes a given MIP model to obtain a Dantzig-Wolfe reformulation and then

solves both the reformulation and the original model side-by-side (Gamrath and Lübbecke 2010).

The reformulation may provide a stronger dual bound but the original model is easier for defining

cutting planes, branching rules, etc. because these additions do not affect the pricing problem (i.e.,

they are robust (de Aragao and Uchoa 2003, Fukasawa et al. 2006)). Additionally, GCG can take

the matrix structure as input, which assists in choosing a subset of variables and constraints for the

Dantzig-Wolfe reformulation.

While GCG implements custom pricing solvers in private development versions, they are not

publicly available, presumably because they require sophisticated detectors for analyzing the structure

of the matrix to determine whether it contains blocks representing structured subproblems for which

it has a specialized solver. Therefore, GCG can be considered to solve both the integer master

problem and the pricing problem using SCIP, an academic MIP solver (Achterberg et al. 2008).

Without the use of bespoke pricing solvers, GCG often performs poorly. Nevertheless, it serves as

an important proof-of-concept showing that automatic Dantzig-Wolfe reformulation is theoretically

and technically possible.

VRPSolver is a non-commercial and proprietary branch-and-price code for solving limited

variations of vehicle routing problems (Pessoa et al. 2020). It contains specialized pricers tailored

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
10 Article submitted to INFORMS Journal on Computing

to the resource-constrained shortest path pricing problems in vehicle routing. Users can model

vehicle routing problems within the limitations of its library. However, details are limited because

the code is closed-source. In any case, VRPSolver can only solve vehicle routing problems and

related problems such as bin packing.

The field thus far lacks a generic but performant solver that fully automates Dantzig-Wolfe

reformulation and column generation. This paper does not attempt to address this issue, but rather,

makes it easier for researchers to manually prototype different pricing problems that arise from

different Dantzig-Wolfe reformulations and solve them easily using a library of pre-built search

algorithms. Should experimental results show that a basic branch-and-price solver based on a

black-box dynamic programming pricer is competitive with static MIP models, then that evidence

can justify developing a bespoke pricing algorithm.

4. Updates to DIDP

This section introduces four new features of DIDP for modeling and solving search problems

commonly seen in the pricing problem of column generation.

4.1. Filter Operation

For our example in Equation (2), a state is represented by a set of unvisited nodes R, the current

node 𝑖, the current load 𝑞, and the current time 𝑡. While we update R to R \ { 𝑗} when 𝑗 is visited,

we can also remove a node 𝑘 ∈ R that can no longer be visited by its due time 𝑏𝑘 from R. Let 𝑑∗
𝑗 ,𝑘

be the shortest travel time from node 𝑗 to node 𝑘 , which can be precomputed. Since we arrive

at 𝑗 at time 𝑡′(𝑗) = max
{
𝑡 + 𝑠𝑖 + 𝑑𝑖, 𝑗

}
, if 𝑡′(𝑗) + 𝑠 𝑗 + 𝑑∗𝑗 ,𝑘 > 𝑏𝑘 , then node 𝑘 cannot be visited after

visiting 𝑗 from the current state. In addition, 𝑘 cannot be visited after 𝑗 if it results in overload, i.e.,

𝑞 + 𝑙 𝑗 + 𝑙𝑘 > 𝑄. Thus, R is updated to R′(𝑗) =
{
𝑘 ∈ R \ { 𝑗} : 𝑡′(𝑗) + 𝑠 𝑗 + 𝑑∗𝑗 ,𝑘 ≤ 𝑏𝑘 ∧ 𝑞 + 𝑙 𝑗 + 𝑙𝑘 ≤𝑄

}
.

In the current DyPDL, the change of a state variable by a transition is described by expressions

built from predefined operations on state variables. Existing solvers maintain expression tree data

structures and evaluate them during solving. For set expressions, set operations such as union,

intersection, and difference are implemented. In addition, an ‘if-then-else’ operation is available,

which evaluates to one of two expressions depending on the evaluation result of a condition.)sing

these operations, R′(𝑗) can be implemented by repeatedly removing a singleton or empty set defined

by a set expression ‘if 𝑘 ∈ R ∧ (𝑡′(𝑗) + 𝑠 𝑗 + 𝑑∗𝑗 ,𝑘 > 𝑏𝑘 ∨ 𝑞 + 𝑙 𝑗 + 𝑙𝑘 > 𝑄) then {𝑘} else ∅’ for each

𝑘 = 1, . . . , 𝑛. However, such an implementation complicates the model code. Furthermore, it results

in an expression tree whose depth is proportional to 𝑛, which is slow to evaluate in practice.

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
Article submitted to INFORMS Journal on Computing 11

For ease of modeling and efficiency, we introduce a filter operation, a set expression that returns a

subset of a given set whose elements satisfy a specified condition. With our interface, a user specifies a

filter operation by two components: a set expressionX and a parameterized condition 𝑐(𝑥), a function

that returns a condition given a parameter 𝑥. The parameter 𝑥 is a placeholder and is replaced with each

element of a setX(𝑆) when evaluated, given a state 𝑆, and an element 𝑖 ∈ X(𝑆) is removed if 𝑆 ̸ |= 𝑐(𝑖).
In other words, the filter operation represents an expression that returns {𝑥 ∈ X(𝑆) : 𝑆 |= 𝑐(𝑥)}
given a state 𝑆. For our example, R′(𝑗) = {R \ { 𝑗} : 𝑡′(𝑗) + 𝑠 𝑗 + 𝑑∗𝑗 ,𝑘 ≤ 𝑏𝑘 ∧ 𝑞 + 𝑙 𝑗 + 𝑙𝑘 ≤𝑄} can be

represented by a filter operation defined by a set expression R \ { 𝑗} and a parameterized condition

𝑡′(𝑗) + 𝑠 𝑗 + 𝑑∗𝑗 ,𝑘 ≤ 𝑏𝑘 ∧ 𝑞 + 𝑙 𝑗 + 𝑙𝑘 ≤𝑄, where 𝑘 is the parameter.

4.2. Set Resource Variables

In the current DyPDL, only numeric and element variables can be resource variables to define state

dominance. However, in pricing problems, state dominance is sometimes defined by a set variable.

For our example in Equation (2), we could define state dominance where state (R1, 𝑖, 𝑞1, 𝑡1) is better

than or as good as (R2, 𝑖, 𝑞2, 𝑡2) if R2 ⊆ R1, 𝑞1 ≤ 𝑞2, and 𝑡1 ≤ 𝑡2 since having more candidate nodes

to visit potentially leads to a shorter path.

We introduce set resource variables: a state 𝑆 is preferred to another state 𝑆′ only if the value of a set

variable in 𝑆 is a subset or superset of that in 𝑆′. Similarly to numeric and element resource variables,

the preference, less or greater, specifies whether a subset or superset is better. When less/greater is

specified for a set resource variable X, 𝑆 is preferred to 𝑆′ only if 𝑆[X] ⊆ 𝑆′[X]/𝑆′[X] ⊆ 𝑆[X].
A set resource variable can be mimicked by defining a set of numeric or element resource variables,

whose values take either 0 or 1. However, our set resource variable implementation uses a bitset to

represent a set, which is computationally more efficient.

4.3. Fractional Knapsack Expression

For our example in Equation (2), we presented a dual bound function considering the minimum

incoming arc cost 𝑐in
𝑗
= min(𝑘, 𝑗)∈A 𝑐𝑘, 𝑗 for each node 𝑗 in Example 3. We can also take the current

load 𝑞 and the capacity 𝑄 into consideration when computing a dual bound. By visiting node 𝑗 , we

increase the load by 𝑙 𝑗 and the cost by at least 𝑐in
𝑗

. Given a state (R, 𝑖, 𝑞, 𝑡),

𝑉 (R, 𝑖, 𝑞, 𝑙) ≥ min
J⊆R:𝑞+∑ 𝑗∈J 𝑙 𝑗≤𝑄

∑︁
𝑗∈J

𝑐in
𝑗 . (4)

This dual bound can be viewed as the negation of the optimal cost of the 0-1 knapsack problem,

which is to maximize the total profit of items packed into a knapsack with a fixed capacity. In

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
12 Article submitted to INFORMS Journal on Computing

particular, the knapsack has the capacity 𝑄 − 𝑞, and each node 𝑗 ∈ R with 𝑐in
𝑗
< 0 corresponds to an

item with the profit −𝑐in
𝑗

and weight 𝑙 𝑗 . We argue that a similar substructure is common in pricing

problems when a subset of elements with the negative reduced costs needs to be selected under a

resource constraint.

Since the 0-1 knapsack problem is NP-hard (Karp 1972), computing the right-hand side of

Inequality (4) is also NP-hard. Recent work has reported that the Dantzig bound (Dantzig 1957),

a polynomial-time upper bound on the optimal objective value for the 0-1 knapsack problem, is

useful as the dual bound function for DIDP (Kuroiwa and Beck 2025b). Given the capacity 𝐶 and a

set of items N with weight 𝑤 𝑗 > 0 and the profit 𝑝 𝑗 > 0 for each 𝑗 ∈ N , the Dantzig bound can be

computed as follows. First, the items are sorted in a descending order of 𝑝 𝑗

𝑤 𝑗
. Second, the items are

included in the knapsack in sorted order as long as the total weight does not exceed the capacity 𝐶,

and let I be the set of such items. When the current item 𝑗 has the weight 𝑤 𝑗 larger than 𝐶 −∑𝑖∈I 𝑤𝑖,

it is fractionally included with the profit 𝑝 𝑗

𝑤 𝑗
(𝐶 −∑𝑖∈I 𝑤𝑖). In other words, the optimal objective

value is upper bounded by 𝑝 𝑗

𝑤 𝑗
(𝐶 −∑𝑖∈I 𝑤𝑖) +

∑
𝑖∈I 𝑝𝑖.

With expressions in the current DyPDL, efficiently modeling the Dantzig bound is dif-

ficult due to its algorithmic nature. Therefore, we introduce a new expression, called

the fractional knapsack expression, dedicated to the Dantzig bound. We denote it by

fractional knapsack
(
X,𝐶, (𝑝 𝑗) 𝑗=1,...,𝑛, (𝑤 𝑗) 𝑗=1,...,𝑛

)
, where X is a set expression, 𝐶 is a numeric

expression, and (𝑝 𝑗) 𝑗=1,...,𝑛 and (𝑤 𝑗) 𝑗=1,...,𝑛 are lists of 𝑛 numeric expressions. Then, the expression

represents the Dantzig bound for the 0-1 knapsack problem, where given a state 𝑆, the set of items is

X(𝑆), the capacity of the knapsack is 𝐶 (𝑆), and each item 𝑥 ∈ X(𝑆) has the profit 𝑝𝑥 and the weight

𝑤𝑥 . For our example, we represent the dual bound function as follows:

𝑉 (R, 𝑖, 𝑞, 𝑙) ≥ −fractional knapsack
(
R,𝑄 − 𝑞,

(
min

{
−𝑐in

𝑗 ,0
})

𝑗=1,...,𝑛
,
(
𝑙 𝑗
)
𝑗=1,...,𝑛

)
. (5)

4.4. Generic Labeling Solver

Labeling algorithms are commonly used for solving pricing problems such as SPPRC (Irnich and

Desaulniers 2005, Pugliese and Guerriero 2013). In such an algorithm, for each node 𝑖 in a graph,

cumulative resource consumption by a path from the source node to 𝑖 is represented as a label. A

single node 𝑖 can have multiple labels when there are multiple paths from the source node to 𝑖 with

different resource consumptions. Therefore, a labeling algorithm maintains a set of labels for each

node.

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
Article submitted to INFORMS Journal on Computing 13

In our example pricing problem for VRPTW, we consider SPPRC in a graph (N ,A), where N

is the set of nodes and A is the set of arcs. A label is a 4-tuple (R, 𝑞, 𝑡, 𝑔), where R is the set of

reachable nodes, 𝑞 is the cumulative load, 𝑡 is the time spent so far, and 𝑔 is the path cost. Initially,

the source node 0 has a label (N \ {0, 𝑛+ 1},0,0,0) corresponding to an empty path. When a node 𝑖

has a label (R, 𝑞, 𝑡, 𝑔), for each node 𝑗 ∈ R ∪ {𝑛+1} with (𝑖, 𝑗) ∈ A, 𝑞 + 𝑙 𝑗 ≤𝑄, and 𝑡 + 𝑠𝑖 + 𝑑𝑖 𝑗 ≤ 𝑏 𝑗 ,

we can generate a new label (R′(𝑗), 𝑞 + 𝑙 𝑗 ,max{𝑡 + 𝑠𝑖 + 𝑑𝑖 𝑗 , 𝑎 𝑗 }, 𝑔 + 𝑐𝑖 𝑗), corresponding to extending

the path. A labeling algorithm repeatedly generates labels to find a resource-feasible shortest path

from the source node to the sink node. The order in which nodes and labels are selected for treatment

depends on concrete algorithms. To reduce computational effort, a labeling algorithm typically

prunes labels based on dominance; given two labels for the same node, one can be removed if

another is known to be better or equal. In our example, a label (R1, 𝑞1, 𝑡1, 𝑔1) dominates another

label (R2, 𝑞2, 𝑡2, 𝑔2) if R2 ⊆ R1, 𝑞1 ≤ 𝑞2, 𝑡1 ≤ 𝑡2, and 𝑔1 ≤ 𝑔2, and thus the algorithm may discard

the latter without loss of optimality.

A labeling algorithm is similar to the AI-style state-space search, already employed in DIDP.

State dominance defined by resource variables in DIDP is analogous to dominance between labels

and is already exploited by the existing solvers, such as CAASDy and CABS. A state transition

can be viewed as generating a new label from an existing label. The practical difference between

labeling algorithms and the existing DIDP solvers is in the order in which a label (or a state in DIDP)

is selected. If an algorithm detects that label 𝑙 is dominated by another label 𝑙′ after treating 𝑙, it

has done useless work since 𝑙 could have been discarded without treatment. To reduce such useless

work, labeling algorithms typically prioritize labels with better resource consumption by using a

lexicographic order (Pugliese and Guerriero 2013). Under some conditions, such approaches have a

theoretical guarantee that a treated label will not be discarded later and are described as label setting.

In contrast, CAASDy and CABS select states based on the 𝑓 -values and do not consider resource

variables. Therefore, in this paper, we propose a generic labeling solver for DIDP, which searches

states in a lexicographic order of resource variables. We note that our algorithm is not guaranteed to

be a label setting algorithm in general.

Our solver is built on top of the anytime heuristic search framework of DIDP proposed in previous

work (Kuroiwa and Beck 2023b, 2025a). In that framework, states to be searched are maintained in

a priority queue called an open list. In each iteration, one state is selected and removed from the

open list, and its successor states are generated by applying transitions and then inserted into the

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
14 Article submitted to INFORMS Journal on Computing

Algorithm 1 Generic labeling solver for a DyPDL model. The target state is denoted by 𝑆0 and the

dual bound function by 𝜂.
1: if 𝑆0 ̸ |= C then return ∅ ⊲ Check the state constraints.

2: Σ←∅, 𝛾←∞ ⊲ Initialize solutions.

3: 𝜎(𝑆0) ← ⟨⟩, 𝑔(𝑆0) ← 0 ⊲ Initialize the 𝑔-value.

4: 𝑂← {𝑆0}, 𝐺← {𝑆0} ⊲ Initialize the open list.

5: while 𝑂 ≠ ∅ do

6: Let 𝑆 ∈𝑂 be the lexicographically minimum state

7: 𝑂←𝑂 \ {𝑆} ⊲ Remove the state.

8: if 𝑆 is a base state and 𝑔(𝑆) + 𝑣(𝑆) < 𝛾 then

9: 𝛾← 𝑔(𝑆) + 𝑣(𝑆) ⊲ Update the best solution cost.

10: 𝑂← {𝑆′ ∈𝑂 : 𝑔(𝑆′) + 𝜂(𝑆′) < 𝛾} ⊲ Prune states in the open list.

11: Σ← Σ∪ {𝜎(𝑆)} ⊲ Add the new best solution.

12: else

13: for all 𝜏 ∈ T (𝑆) : 𝑆[[𝜏]] satisfies all state constraints do

14: 𝑔current← 𝑔(𝑆) +𝑤𝜏 (𝑆) ⊲ Compute the 𝑔-value.

15: if �𝑆′ ∈𝐺 such that 𝑆[[𝜏]] is preferred to 𝑆′ and 𝑔current ≥ 𝑔(𝑆′) then

16: 𝐺← {𝑆′ ∈𝐺 : 𝑆 is not preferred to 𝑆′∨ 𝑔current(𝑆) < 𝑔(𝑆′)}
17: if 𝑔current + 𝜂(𝑆[[𝜏]]) < 𝛾 then

18: 𝜎(𝑆[[𝜏]]) ← ⟨𝜎(𝑆); 𝜏⟩, 𝑔(𝑆[[𝜏]]) ← 𝑔current

19: 𝐺←𝐺 ∪ {𝑆[[𝜏]]}, 𝑂←𝑂 ∪ {𝑆[[𝜏]]} ⊲ Insert the successor state.

20: return Σ ⊲ Return solutions.

open list if they are not dominated by existing states. Each concrete algorithm differs in selecting the

state to remove from the open list.

We present pseudocode for the generic labeling algorithm for a DyPDL model in Algorithm 1.

Except for line 6, the algorithm and implementation details follow the existing solvers. To emphasize

that the algorithm returns multiple solutions, we write Σ to explicitly denote a set of solutions found.

The set Σ is initialized as an empty set (line 2). When the target state violates state constraints,

we immediately return an empty set and terminate (line 1). We maintain the current best solution

cost 𝛾, initialized with ∞ (line 2). For each state 𝑆, we record the best sequence of transitions to

reach it, 𝜎(𝑆), and the 𝑔-value 𝑔(𝑆), corresponding to the accumulated transition weight. Given

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
Article submitted to INFORMS Journal on Computing 15

𝜎(𝑆) = ⟨𝜏1, . . . , 𝜏𝑚⟩, we have 𝑔(𝑆) =∑𝑚
𝑖=1 𝑤𝜎𝑖

(𝑆𝑖−1) where 𝑆𝑖 = 𝑆𝑖−1 [[𝜏𝑖]] for 𝑖 = 1, . . . , 𝑚. For the
target state 𝑆0, the path is empty, and the 𝑔-value is 0. The set 𝐺 stores all generated states, and the
open list 𝑂 stores states to be searched, both of which initially contain only the target state (line 4).
The algorithm proves optimality (or infeasibility) when the open list becomes empty (line 5) and
returns the set of solutions found.

In each step, the lexicographically minimum state 𝑆 is removed from the open list (lines 6 and
7). States are lexicographically ordered based on the values of resource variables. Given resource
variables 𝑟1, . . . , 𝑟𝑛′ , a state 𝑆 is lexicographically smaller than 𝑆′ if there exists 1 ≤ 𝑖 ≤ 𝑛′ such that
𝑆[𝑟 𝑗] = 𝑆′[𝑟 𝑗] for 1 ≤ 𝑗 < 𝑖, 𝑆[𝑟𝑖] ≠ 𝑆′[𝑟𝑖], and 𝑆[𝑟𝑖] is preferred to 𝑆′[𝑟𝑖]. In our implementation,
we compare element resource variables, numeric resource variables, and set resource variables in
order. Resource variables of the same type are compared in order of definition. When all resource
variables have the same values, we break ties by the 𝑔-value, and then the dual bound value, where
smaller is preferred.

If 𝑆 is a base state, then 𝜎(𝑆) is a solution, and the best solution cost 𝛾 is updated if 𝜎(𝑆) is
better (lines 8–9). In addition, all states 𝑆′ ∈𝑂 with 𝑔(𝑆′) + 𝜂(𝑆′) ≥ 𝛾 are removed from the open
list since they cannot lead to a better solution (line 10). Since 𝜂(𝑆) is a lower bound on the solution
cost starting from 𝑆, 𝑔(𝑆) + 𝜂(𝑆) is a lower bound on the solution cost extending the sequence of
transitions 𝜎(𝑆). If this value is equal to or worse than the current solution cost, the current sequence
does not lead to a better solution, so we ignore it.

If 𝑆 is not a base state, its successor state 𝑆[[𝜏]] is generated for every applicable transition in
𝜏 ∈ T (𝑆) if it satisfies the state constraints (line 13). If 𝑆[[𝜏]] is dominated by another state 𝑆′ in 𝐺

with a better or equal 𝑔-value, it cannot lead to a solution better than 𝑆′, so 𝑆[[𝜏]] is ignored (line 15).
Otherwise, states dominated by 𝑆[[𝜏]] with a better or equal 𝑔-value are removed from 𝐺 (line 16).
For this dominance detection procedure, 𝐺 is implemented as a hash table, where keys are the values
of the non-resource variables, and entries are arrays of pointers to states. When a successor state
is generated, an array of states with the same non-resource variable values is retrieved from the
hash table. The successor state is compared against each state in the array to detect dominance and
appended to the array if not dominated.

After dominance detection, the dual bound value 𝜂(𝑆[[𝜏]]) is computed. If 𝑔(𝑆) +𝑤𝜏 (𝑆) +𝜂(𝑆[[𝜏]])
is worse than the best solution cost, the successor state 𝑆[[𝜏]] is ignored (line 17). Otherwise,
𝜎(𝑆[[𝜏]]) and 𝑔(𝑆[[𝜏]]) are initialized or updated, and 𝑆[[𝜏]] is inserted into the open list and 𝐺

(line 19). Here, by ⟨𝜎(𝑆); 𝜏⟩, we represent a sequence of transitions, which is an extension of 𝜎(𝑆)
with 𝜏.

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
16 Article submitted to INFORMS Journal on Computing

4.5. Summary of the New Features

In summary, we add the following new features:

• The filtering operation to efficiently construct a subset of elements satisfying a given condition.

• Set resource variables for dominance pruning.

• The fractional knapsack expression to efficiently compute an informative dual bound.

• A generic labeling solver considering resource variables in search order.

The filtering operation potentially reduces the size of the state space by removing unnecessary

elements from set state variables. Together with the filtering operation, a set resource variable

enables the solving algorithm to detect more state dominance. The fractional knapsack expression

can provide an informative dual bound. These two features are useful for the generic labeling

solver (and other solvers) to prune unnecessary states, as shown in Algorithm 1. Furthermore, the

generic labeling solver tries to avoid expanding states dominated by other states generated later. By

combining the new modeling features and the new solver, we generalize labeling algorithms used in

problem-specific settings to DIDP.

5. Experimental Results

This section describes the computational experiments. These experiments compare the performance

of other solvers against branch-and-price where pricing is performed using DIDP.

5.1. Problems and Instances

The solvers are evaluated on the following NP-hard problems. The models are provided in the

appendix.

• Bin packing problem: The bin packing problem (BPP) considers a number of identical bins

with a common capacity and a set of items, each associated with a weight. The aim is to place

every item into a bin such that the capacity of the bin is not exceeded and the number of bins

used is minimized. The pricing problem takes the form of the 0-1 knapsack problem that decides

whether an item is included or excluded in a bin. Instances for the bin packing problem are retrieved

from BPPLIB (Delorme et al. 2018). BPPLIB is a collection of instance sets gathered from several

sources. The experiments are conducted on the Falkenauer (1996) set, the first of many instance sets

within BPPLIB. We use the compact formulation described in Delorme et al. (2016).

• Graph coloring problem: Given a graph, the graph coloring problem (GCP) attempts to

assign a color to every vertex such that no two adjacent vertices share the same color. The

objective is to minimize the number of colors used. The pricing problem is the maximum weighted

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
Article submitted to INFORMS Journal on Computing 17

independent set problem, where the weight of each node is the dual value. The solvers are tested

on the instances collected by Michael Trick (https://mat.tepper.cmu.edu/COLOR/

instances.html) and the Roars Lab (https://github.com/dynaroars/npbench/

tree/master/instances/coloring/graph_color) at George Mason University. We

use the compact formulation described in Malaguti and Toth (2010).

• Parallel machine scheduling problem: In parallel machine scheduling, a set of jobs is

scheduled on multiple machines in parallel. In particular, we consider minimizing the total weighted

completion time with identical machines, commonly denoted as 𝑃 | |∑𝑤𝑖𝐶𝑖 (Eastman et al. 1964).

In this problem, 𝑛 jobs are scheduled on 𝑚 identical machines, where each job 𝑗 has processing

time 𝑝 𝑗 and weight 𝑤 𝑗 . With the total weighted completion time objective, once a set of jobs is

assigned to a machine, it is known that scheduling job 𝑗 before job 𝑘 results in a better or equal

objective value if 𝑤 𝑗/𝑝 𝑗 ≤ 𝑤𝑘/𝑝𝑘 (Elmaghraby and Park 1974). Thus, the pricing problem is a

variant of the 0-1 knapsack problem that selects jobs to schedule on a machine. Branch-and-price is

compared against a compact formulation (presented in the appendix) on instances generated by us

following previous work (van den Akker et al. 1999). In particular, we use 𝑛 = 20,30,40,50 and

𝑚 = 3,4,5 with three different configurations for 𝑝 𝑗 and 𝑤 𝑗 : 𝑝 𝑗 uniformly sampled from [1,10] and

𝑤 𝑗 uniformly sampled from [10,100], 𝑝 𝑗 and 𝑤 𝑗 uniformly sampled from [1,100], and 𝑝 𝑗 and 𝑤 𝑗

uniformly sampled from [10,20]. For each of the 36 configurations, we generate five instances,

resulting in 180 instances in total.

• Multi-runway aircraft scheduling problem: The multi-runway aircraft scheduling problem

(MRASP), proposed by Ghoniem et al. (2015), is a variant of parallel machine scheduling. It aims

to schedule the landing and take-off operations of a set of aircraft while minimizing the weighted

sum of the landing times of the aircraft. These operations must be separated by a minimum duration,

some of which violate the triangle inequality. The pricing problem is an SPPRC with two additional

resources for tracking aircraft operations whose time violates the triangle inequality, and the arc cost

depends on the current time. The instances are published by Ghoniem et al. (2015). These instances

are randomly generated but some data are derived from regulations specified by the Federal Aviation

Administration of the United States of America. The compact formulation is also from Ghoniem

et al. (2015).

• Vehicle routing problem with time windows: The vehicle routing problem with time windows

(VRPTW) (e.g., Vigo and Toth 2014) considers an infinite number of identical vehicles initially

stationed at a depot and a set of customers. Every customer is associated with a location distinct

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
18 Article submitted to INFORMS Journal on Computing

from the depot, a load, and a time window within which the customer must be visited by a vehicle.

The problem seeks to determine a sequence of customer visits for each vehicle while respecting the

capacity of each vehicle. The objective is to minimize the total travel distance of all vehicles visiting

their assigned customers and returning to the depot. The pricing problem is the SPPRC used in our

running example. Both the elementary and non-elementary versions are tested. The elementary

version restricts every customer to be visited at most once along a path. The non-elementary version

is a relaxed problem, where visiting the same node multiple times is allowed, and can be used

without loss of optimality (Desrochers et al. 1992). Branch-and-price is compared against two-index

and three-index compact models (Vigo and Toth 2014). The experiments are conducted on the

well-known Solomon (1987) instances with 50 and 100 customers.

• Cumulative vehicle routing problem with time windows: The cumulative vehicle routing

problem with time windows (CumVRPTW) modifies the objective of the VRPTW such that the travel

cost is multiplied by the cumulative load of the vehicle (Fernández Gil et al. 2020, Corona-Gutiérrez

et al. 2022). We also introduce a limit on the number of vehicles used. The pricing problem is the

same as the VRPTW but the objective function is modified with the cumulative cost. As far as

we know, column generation has not been applied to CumVRPTW. Branch-and-price is compared

against two-index and three-index models. The experiments are run on the Solomon instances for

the VRPTW.

• Pickup and delivery problem with time windows: The pickup and delivery problem with

time windows (PDPTW) makes two modifications to the VRPTW. Firstly, the objective function

is hierarchical: first minimize the number of vehicles in use and then minimize the total travel

distance. Secondly, every customer is associated with a pickup task and a delivery task, specifying a

precedence relation. The pickup task and delivery task individually have time windows. The pricing

problem is the same as the VRPTW but includes resources to track whether a pickup is on-board

and hence the corresponding delivery must be completed. Branch-and-price is compared against

two-index (Furtado et al. 2017) and three-index models (Ropke and Cordeau 2009). The 100-case

instances from the Li and Lim (2001) benchmarks are used.

5.2. Solvers

We add the new features for DIDP to didp-rs v0.9.0, a software implementation of DIDP.

Since didp-rs is written in Rust, we implement the new features in Rust (https://github.

com/domain-independent-dp/didp-rs/releases/tag/labeling). However, we

implement branch-and-price algorithms in Python (https://github.com/Kurorororo/

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
Article submitted to INFORMS Journal on Computing 19

didp-column-generation), using PySCIPOpt, the Python interface for SCIP, and DIDPPy,

the Python interface for didp-rs. This choice of programming language conveys our goal of quick

prototyping and ease of modeling, rather than high performance.

Three search algorithms within DIDP are compared: the new labeling algorithm, CABS and

CAASDy. All share a common base for the master problem, the branching rules and the pricing

model. They differ only in the choice of solving algorithm in pricing. The branching rules are unique

for each problem class, and we describe them in the appendix.

The branch-and-price approaches are compared against solving a compact formulation using

SCIP 9.2.1 with PySCIPOpt, GCG 3.5.5 with its Python interface PyGCGOpt, and Gurobi 12.0.2

with its Python interface gurobipy. VRPSolverEasy (Errami et al. 2024), an open-source Python

interface for VRPSolver, is also run on the VRPTW. To our knowledge, VRPSolverEasy is not

compatible with CumVRPTW and PDPTW.

All solvers are single-threaded. All instances are run in parallel for 1 hour on an Intel Xeon Gold

6338 CPU with 64 cores.

5.3. Comparison of DIDP Algorithms for Pricing

Figure 1 compares the performance of branch-and-price backed by the three DIDP pricers. For the

BPP, branch-and-price using CAASDy pricing is superior to the other two approaches, challenging

the widespread adoption of the labeling algorithm for pricing. For the GCP, the three pricing methods

perform almost identically, with CAASDy marginally ahead. For 𝑃 | |∑𝑤𝑖𝐶𝑖, CAASDy and CABS

are better at the beginning, but only the labeling algorithm is able to close all instances. We observe

this performance difference despite the fact that the pricing problem does not have any resource

variables. In such a case, the labeling algorithm is still different from CAASDy in that it orders

states by their 𝑔-values first and then ℎ-values for breaking ties. This ordering possibly results in the

observed difference. For the MRASP, the labeling algorithm performs best and CABS almost entirely

fails. The traditional labeling algorithm performs significantly better than CABS and CAASDy on

the VRPTW and CumVRPTW. The elementary variant ramps up faster than the non-elementary

variant but they both close the same number of instances at time-out for the VRPTW. However, the

non-elementary version performs significantly better for the CumVRPTW. For the PDPTW, the

elementary version of CAASDy has a small lead on the others.

These findings demonstrate that the labeling algorithm, originally developed for vehicle routing,

is unchallenged in its intended application domain. Nonetheless, CAASDy is slightly better on three

of the seven problem classes, including the PDPTW, which is traditionally priced using labeling.

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
20 Article submitted to INFORMS Journal on Computing

Figure 1 Percentage of instances solved over time using branch-and-price with various DIDP pricers.

0 15 30 45 60

0%

20%

40%

60%

80%

100%

Time (Minutes)

Pe
rc

en
ta

ge
So

lv
ed

BPP

0 15 30 45 60
Time (Minutes)

GCP

0 15 30 45 60
Time (Minutes)

𝑃 | |∑𝑤𝑖𝐶𝑖

0 15 30 45 60
Time (Minutes)

MRASP

0 15 30 45 60

0%

20%

40%

60%

80%

100%

Time (Minutes)

Pe
rc

en
ta

ge
So

lv
ed

VRPTW

0 15 30 45 60
Time (Minutes)

CumVRPTW

0 15 30 45 60
Time (Minutes)

PDPTW

B&P CAASDy B&P CABS B&P Labeling

B&P CAASDy Elementary B&P CABS Elementary B&P Labeling Elementary
B&P CAASDy Non-Elementary B&P CABS Non-Elementary B&P Labeling Non-Elementary

These results indicate that search methods developed by the AI community are capable of solving the

pricing problem in column generation and could have a meaningful role given further development.

5.4. Comparison Against Other Solvers

Figure 2 compares the best branch-and-price method against the other solvers.

Bin Packing Problem The BPP has simple structure and is one of the standard benchmarks for

column generation. The pricing problem takes the form of a knapsack problem, which is known to

be easily solved by MIP. The performance of GCG and its generic MIP pricer clearly reflect this

observation. Branch-and-price using CAASDy is almost as effective as GCG at time-out but initially

ramps up slower. Gurobi performs substantially worse, demonstrating that exploiting problem

structure is essential to achieving high performance.

Graph Coloring Problem Branch-and-price with CAASDy dominates the other solvers. GCG

is slightly behind Gurobi, less so at the start and more later on. In the compact formulations, the

GCP has massive symmetry in the index of the color. The small lead by Gurobi suggests that it is

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
Article submitted to INFORMS Journal on Computing 21

Figure 2 Percentage of instances solved over time using other solvers compared to branch-and-price.

0 15 30 45 60

0%

20%

40%

60%

80%

100%

Time (Minutes)

Pe
rc

en
ta

ge
So

lv
ed

BPP

0 15 30 45 60
Time (Minutes)

GCP

0 15 30 45 60
Time (Minutes)

𝑃 | |∑𝑤𝑖𝐶𝑖

0 15 30 45 60
Time (Minutes)

MRASP

0 15 30 45 60

0%

20%

40%

60%

80%

100%

Time (Minutes)

Pe
rc

en
ta

ge
So

lv
ed

VRPTW

0 15 30 45 60
Time (Minutes)

CumVRPTW

0 15 30 45 60
Time (Minutes)

PDPTW

Gurobi SCIP GCG B&P CAASDy B&P Labeling

Gurobi Two-Index Gurobi Three-Index SCIP Two-Index SCIP Three-Index
GCG Two-Index GCG Three-Index VRPSolverEasy B&P Labeling Non-Elementary
B&P CAASDy Elementary

hindered by the symmetry, whereas GCG takes advantage of a column generation model in which

this symmetry is entirely absent.

Parallel Machine Scheduling Problem In 𝑃 | |∑𝑤𝑖𝐶𝑖, branch-and-price solves all instances in

nearly 15 minutes, while other approaches solve less than 20% of instances in 60 minutes. This

result shows a large advantage of branch-and-price over the compact formulation. GCG completely

fails, demonstrating that unsuitable pricing schemes are catastrophic whereas appropriate pricing

algorithms make branch-and-price superior to even commercial solvers.

Multi-Runway Aircraft Scheduling Problem The MRASP, with an SPPRC, again demonstrates

that this type of problem structure is well-suited to branch-and-price. Branch-and-price using a

labeling algorithm performs best, with Gurobi in second place. GCG fails to solve any instance.

Vehicle Routing Problem with Time Windows The VRPTW is the quintessential example of

successful branch-and-price when paired with an appropriate pricer. GCG fails at this problem

because its MIP pricer is unsuitable. The naive implementation of branch-and-price solves several

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
22 Article submitted to INFORMS Journal on Computing

more instances than Gurobi, again indicating that properly exploiting the problem structure is

highly beneficial. VRPSolverEasy solves nearly all the instances, demonstrating how advantageous

a problem-specific solver can be.

Cumulative Vehicle Routing Problem with Time Windows Branch-and-price with the labeling

algorithm is superior at the CumVRPTW, beating Gurobi by a few instances. It is interesting that

GCG solves more instances using the two-index model than the three-index model. The two-index

model does not replicate each vehicle with a different index, i.e., there is no symmetry in the index

of the vehicle. However, the third index gives rise to the block diagonal structure of the matrix that

GCG uses for its automatic Dantzig-Wolfe reformulation. This highly unusual result suggests that

GCG chose a poor reformulation in the three-index model.

Pickup and Delivery Problem with Time Windows For the PDPTW, branch-and-price using

CAASDy on the elementary variant is significantly better than Gurobi. Both SCIP and GCG

perform poorly on this problem. GCG again exhibits unexpected behavior regarding its choice of

Dantzig-Wolfe reformulation.

5.5. Main Findings

Across our benchmarks, the best pricing strategy is problem-dependent: branch-and-price with

either CAASDy or labeling performs best. In line with conventional practice in column generation,

labeling is effective when the pricing problem is an SPPRC.

Notably, CAASDy is a search method originating in the AI community. These observations

motivate deeper cross-fertilization between mathematical programming and AI planning, and point

to several promising directions for future work.

The experiments also prove that DIDP is valuable for rapid prototyping of column generation

solvers. Despite the simplicity and naivety of the current branch-and-price solvers, they already

outperform a state-of-the-art commercial solver on static formulations in a few cases. This demon-

strates that a flexible modeling layer, paired with a reusable library of search algorithms, can provide

quick proof-of-concept evidence for (or against) a column generation approach before investing in a

bespoke high-performance implementation.

6. Conclusion

This paper introduces four new features in DIDP relevant to pricing in column generation, including

a dual bound function based on the fractional knapsack problem and a generic labeling algorithm

applicable to any model.

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
Article submitted to INFORMS Journal on Computing 23

Using these tools, we build straightforward branch-and-price solvers for seven problem classes by

modeling the pricing problem as a dynamic program and selecting a solver from the DIDP library.

Despite their simplicity, these solvers perform better than a state-of-the-art commercial solver on

compact MIP formulations.

While the generic algorithms in DIDP are not intended to compete against bespoke codes, such

as VRPSolverEasy, they are useful for obtaining early-stage indications that a bespoke column

generation approach could be worthwhile.

Finally, the success of CAASDy, originally developed in the AI planning community, highlights

the benefits of cross-fertilization with researchers outside mathematical programming. Closer

collaboration with researchers in AI planning is a promising direction for future work.

References
Achterberg T, Berthold T, Koch T, Wolter K (2008) Constraint integer programming: A new approach to integrate

CP and MIP. Perron L, Trick MA, eds., Integration of Constraint Programming, Artificial Intelligence, and

Operations Research (CPAIOR), 6–20 (Springer Berlin Heidelberg).

Bellman R (1957) Dynamic Programming (Princeton University Press).

Corona-Gutiérrez K, Nucamendi-Guillén S, Lalla-Ruiz E (2022) Vehicle routing with cumulative objectives: A state of

the art and analysis. Computers & Industrial Engineering 169:108054.

Dantzig GB (1957) Discrete-variable extremum problems. Operations Research 5(2):266–277.

de Aragao MP, Uchoa E (2003) Integer program reformulation for robust branch-and-cut-and-price algorithms.

Mathematical Program in Rio: a conference in honour of Nelson Maculan, 56–61.

Delorme M, Iori M, Martello S (2016) Bin packing and cutting stock problems: Mathematical models and exact

algorithms. European Journal of Operational Research 255(1):1–20, ISSN 0377-2217.

Delorme M, Iori M, Martello S (2018) BPPLIB: a library for bin packing and cutting stock problems. Optimization

Letters 12(2):235–250.

Desrochers M, Desrosiers J, Solomon M (1992) A new optimization algorithm for the vehicle routing problem with

time windows. INFORMS Journal on Computing 40:342–354.

Dijkstra EW (1959) A note on two problems in connexion with graphs. Numerische Mathematik 1:269–271.

Eastman WL, Even S, Isaacs IM (1964) Bounds for the optimal scheduling of 𝑛 jobs on 𝑚 processors. Management

Science 11(2):268–279.

Edelkamp S, Jabbar S, Lafuente AL (2005) Cost-algebraic heuristic search. Conference of the Association for the

Advancement of Artificial Intelligence (AAAI), 1362–1367 (AAAI Press).

Elmaghraby SE, Park SH (1974) Scheduling jobs on a number of identical machines. AIIE Transactions 6(1):1–13.

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
24 Article submitted to INFORMS Journal on Computing

Errami N, Queiroga E, Sadykov R, Uchoa E (2024) VRPSolverEasy: A Python library for the exact solution of a rich

vehicle routing problem. INFORMS Journal on Computing 36(4):956–965.

Falkenauer E (1996) A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics 2(1):5–30.

Fernández Gil A, Gómez Sánchez M, Lalla-Ruiz E, Castro C (2020) Cumulative VRP with time windows: A trade-off

analysis. Lalla-Ruiz E, Mes M, Voß S, eds., Computational Logistics, 277–291 (Cham: Springer International

Publishing).

Fukasawa R, Longo H, Lysgaard J, De Aragão MP, Reis M, Uchoa E, Werneck RF (2006) Robust branch-and-cut-and-price

for the capacitated vehicle routing problem. Mathematical Programming 106(3):491–511.

Furtado MGS, Munari P, Morabito R (2017) Pickup and delivery problem with time windows: A new compact two-index

formulation. Operations Research Letters 45(4):334–341.

Gamrath G, Lübbecke ME (2010) Experiments with a generic Dantzig-Wolfe decomposition for integer programs. Festa

P, ed., Experimental Algorithms. Proceedings, 239–252 (Berlin, Heidelberg: Springer Berlin Heidelberg).

Ghoniem A, Farhadi F, Reihaneh M (2015) An accelerated branch-and-price algorithm for multiple-runway aircraft

sequencing problems. European Journal of Operational Research 246(1):34–43.

Gurobi Optimization, LLC (2024) Gurobi Optimizer Reference Manual. URL https://www.gurobi.com.

Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE

Trans. Syst. Sci. Cybern. 4(2):100–107.

IBM (2024) Ibm ilog cplex optimization studio. URL https://www.ibm.com/products/

ilog-cplex-optimization-studio.

Irnich S, Desaulniers G (2005) Shortest path problems with resource constraints. Desaulniers G, Desrosiers J, Solomon

MM, eds., Column Generation, 33–65 (Boston, MA: Springer US).

Karp RM (1972) Reducibility among combinatorial problems. Miller RE, Thatcher JW, Bohlinger JD, eds., Complexity

of Computer Computations, 85–103, The IBM Research Symposia Series (Boston, MA: Springer US).

Kuroiwa R, Beck JC (2023a) Domain-independent dynamic programming:generic state space search for combinatorial

optimization. Koenig S, Stern R, Vallati M, eds., International Conference on Automated Planning and Scheduling

(ICAPS), 236–244 (AAAI Press).

Kuroiwa R, Beck JC (2023b) Solving domain-independent dynamic programming problems with anytime heuristic

search. Koenig S, Stern R, Vallati M, eds., International Conference on Automated Planning and Scheduling

(ICAPS), 245–253 (AAAI Press).

Kuroiwa R, Beck JC (2025a) Domain-independent dynamic programming. URL https://arxiv.org/abs/

2401.13883.

Kuroiwa R, Beck JC (2025b) RPID: Rust Programmable Interface for Domain-Independent Dynamic Programming.

Principles and Practice of Constraint Programming (CP), volume 340, 23:1–23:21 (Dagstuhl, Germany: Schloss

Dagstuhl).

Kuroiwa and Lam: Column Generation Using Domain-Independent Dynamic Programming
Article submitted to INFORMS Journal on Computing 25

Letchford AN, Salazar-González JJ (2006) Projection results for vehicle routing. Mathematical Programming 105(2):251–

274.

Li H, Lim A (2001) A metaheuristic for the pickup and delivery problem with time windows. IEEE International

Conference on Tools with Artificial Intelligence (ICTAI), 160–167.

Lübbecke ME, Desrosiers J (2005) Selected topics in column generation. Operations Research 53(6):1007–1023.

Malaguti E, Toth P (2010) A survey on vertex coloring problems. International Transactions in Operational Research

17(1):1–34.

Pessoa A, Sadykov R, Uchoa E, Vanderbeck F (2020) A generic exact solver for vehicle routing and related problems.

Mathematical Programming 183(1):483–523.

Pugliese LDP, Guerriero F (2013) A survey of resource constrained shortest path problems: Exact solution approaches.

Networks 62(3):183–200.

Ropke S, Cordeau JF (2009) Branch and cut and price for the pickup and delivery problem with time windows.

Transportation Science 43(3):267–286.

Russell S, Norvig P (2020) Solving problems by searching. Artificial Intelligence: A Modern Approach, chapter 3,

63–109 (Pearson), fourth edition.

Solomon MM (1987) Algorithms for the vehicle routing and scheduling problems with time window constraints.

Operations Research 35(2):254–265.

van den Akker JM, Hoogeveen JA, van de Velde SL (1999) Parallel machine scheduling by column generation.

Operations Research 47(6):862–872.

Vigo D, Toth P, eds. (2014) Vehicle Routing: Problems, Methods, and Applications. MOS-SIAM Series on Optimization

(Society for Industrial and Applied Mathematics), second edition.

Zhang W (1998) Complete anytime beam search. Proceedings of the 15th National Conference on Artificial Intelligence

(AAAI), 425–430 (AAAI Press).

https://pubsonline.informs.org/journal/ijoc

Submitted to INFORMS Journal on Computing

INFORMS JOURNAL ON COMPUTING

Vol. 00, No. 0, Xxxxx 0000, pp. 000–000

ISSN 0899-1499, EISSN 1526-5528

Appendix to: Column Generation Using
Domain-Independent Dynamic Programming
Ryo Kuroiwa
National Institute of Informatics / The Graduate University of Advanced Studies, SOKENDAI, Japan, kuroiwa@nii.ac.jp

Edward Lam
Monash University, Australia, edward.lam@monash.edu

1. Bin Packing Problem

Given a set B of identical bins with capacity 𝑄 ≥ 0 and a set I of items, where each item 𝑖 ∈ I has

weight 𝑤𝑖 ≥ 0, BPP assigns every item to one bin such that the total weight of all items assigned to

each bin does not exceed its capacity.

Problem (1) is the master problem, where P ⊆ 2I is the set of patterns, each representing a set of

items in the same bin, and 𝜆𝑝 indicates a bin is activated to store the items in the pattern 𝑝.

min
∑︁
𝑝∈P

𝜆𝑝 (1a)∑︁
𝑝∈P

𝑎𝑖,𝑝𝜆𝑝 ≥ 1 ∀𝑖 ∈ I (1b)

𝜆𝑝 ∈ Z+ ∀𝑝 ∈ P . (1c)

Ryan-Foster branching is executed on the items (Foster and Ryan 1976), which selects two items

and decides if they are paired (must appear in the same bin) or conflicting (must appear in different

bins). In each child node, patterns incompatible with the decision are removed from P.

The items are partitioned into groups such that all items within a group are paired. Unpaired items

are placed into a singleton group containing only itself. Let G = {0, . . . , |G| − 1} denote the set of

item groups. For each item group 𝑔 ∈ G, define 𝑤𝑔 =
∑
𝑖∈𝑔 𝑤𝑖 as the total weight and 𝜋𝑔 =

∑
𝑖∈𝑔 𝜋𝑖 as

the total dual values of all items in 𝑔, where 𝜋𝑖 ≥ 0 is the dual variable of Constraint (1b) in the

linear relaxation. Furthermore, for each group 𝑔 ∈ G, define its conflicting groups H𝑔 ⊆ G as the

groups containing at least one item in conflict with any item in 𝑔.

The pricing problem is a variant of the 0-1 knapsack problem to find a set of items compatible with

the branching decisions. Problem (2) shows the DP model of the pricing problem. Define 𝑉 (𝑔, 𝑞,R)

1

Kuroiwa and Lam: Appendix to: Column Generation Using Domain-Independent Dynamic Programming
2 Article submitted to INFORMS Journal on Computing

as the value function of a state (𝑔, 𝑞,R) given by an element variable 𝑔 ∈ G ∪ {|G|} representing

the current item group in consideration, where the value |G| indicates a dummy terminal value, a

numeric variable 𝑞 representing the remaining capacity, and a set variable R representing the set of

reachable item groups (i.e., groups not yet committed and are compatible with the groups already

committed). Objective (2a) defines the sought value, where the −1 constant arises from the cost of

all patterns in Objective (1a) according to the column generation framework.

Equation (2b) defines the base case, which terminates the computation when reaching a dummy

state with 𝑔 = |G|. Equation (2c) minimizes the value function over two choices: include group

𝑔 or not. Inequality (2d) expresses that a state (𝑔, 𝑞1,R1) at group 𝑔 dominates another state

(𝑔, 𝑞2,R2), also at group 𝑔, if its remaining capacity 𝑞1 is larger and its reachable set R1 is a superset.

Inequality (2e) defines a lower bound on as the fractional knapsack problem.

compute 𝑉 (0,𝑄,G) − 1 (2a)

𝑉 (|G|, 𝑞,R) = 0 (2b)

𝑉 (𝑔, 𝑞,R) = min


𝑉 (𝑔 + 1, 𝑞 −𝑤𝑔,R \ (H𝑔 ∪ {𝑔′ : 𝑤𝑔′ > 𝑞 −𝑤𝑔})) − 𝜋𝑔 if 𝑔 ∈ R

𝑉 (𝑔 + 1, 𝑞,R \ {𝑔})
(2c)

𝑉 (𝑔, 𝑞1,R1) ≤ 𝑉 (𝑔, 𝑞2,R2) if 𝑞2 ≤ 𝑞1 ∧R2 ⊆ R1 (2d)

𝑉 (𝑔, 𝑞,R) ≥ −fractional knapsack(R, 𝑞, (𝜋𝑖)𝑖∈G , (𝑤𝑖)𝑖∈G) (2e)

2. Graph Coloring Problem
The GCP finds the minimum number of colors required to assign a color to every vertex of a given

graph 𝐺 = (V,E) such that the neighbors of every vertex are assigned a different color.

Problem (3) is the set partitioning problem, a master problem of our column generation model.

We use the set of patterns P ⊆ 2V , each of which represents the set of vertices assigned to the same

color. A variable 𝜆𝑝 ∈ Z+ indicates if the pattern is activated.

min
∑︁
𝑝∈P

𝜆𝑝 (3a)∑︁
𝑝∈P

𝑎𝑖,𝑝𝜆𝑝 = 1 ∀𝑖 ∈V (3b)

𝜆𝑝 ∈ Z+ ∀𝑝 ∈ P . (3c)

We use Ryan-Foster branching that selects two vertices and decides if they are assigned the same

color (paired) or different colors (conflicting). To correctly define a pricing problem compatible

Kuroiwa and Lam: Appendix to: Column Generation Using Domain-Independent Dynamic Programming
Article submitted to INFORMS Journal on Computing 3

with these branching decisions, define the set G = {0, . . . , |G| − 1} of vertex groups as a partition of

the vertices. All paired vertices are collected into one vertex group, and unpaired vertices are placed

in singletons. Let 𝜋𝑔 =
∑
𝑖∈𝑔 𝜋𝑖 be the total dual value of all vertices in group 𝑔 ∈ G. Let H𝑔 ⊆ G be

the groups that contain at least one conflicting vertex with the vertices in 𝑔 ∈ G.

The pricing problem decides whether the vertices in each vertex group are included or excluded

in a pattern, similarly to that of bin packing, but without the capacity constraint. Let 𝑉 (𝑔,R) be the

value function of a state (𝑔,R) defined by the current group 𝑔 ∈ G ∪ {|G|}, where |G| is a dummy

terminating value, and the reachable groups R (groups not yet examined and not in conflict with

groups already committed). Problem (4) presents the DP formulation. Inequality (4e) defines a lower

bound, excluding the reduced cost of item groups if it is positive.

compute 𝑉 (0,G) − 1 (4a)

𝑉 (|G|,R) = 0 (4b)

𝑉 (𝑔,R) = min
{
𝑉 (𝑔 + 1,R \H𝑔) − 𝜋𝑔,𝑉 (𝑔 + 1,R \ {𝑔}) if 𝑔 ∈ R

}
(4c)

𝑉 (𝑔,R1) ≤ 𝑉 (𝑔,R2) if R2 ⊆ R1 (4d)

𝑉 (𝑔,R) ≥
∑︁
𝑔′∈R

min(−𝜋𝑔′ ,0) (4e)

3. Parallel Machine Scheduling

In 𝑃 | |∑𝑤𝑖𝐶𝑖, a set of 𝑛 jobs J = {1, ..., 𝑛} is scheduled on a set of 𝑚 identical machines

M = {1, ..., 𝑚}, where each job 𝑗 ∈ J has processing time 𝑝 𝑗 and weight 𝑤 𝑗 . The objective is

to minimize the total weighted completion time. Elmaghraby and Park (1974) show that, given

a set of jobs assigned to the same machine, scheduling 𝑗 before 𝑘 results in a better or equal

objective value if 𝑤 𝑗/𝑝 𝑗 ≤ 𝑤𝑘/𝑝𝑘 . Without loss of generality, we assume that jobs are ordered so

that 𝑤 𝑗/𝑝 𝑗 ≤ 𝑤 𝑗+1/𝑝 𝑗+1 for 𝑗 = 1, ..., 𝑛−1. We also use the minimum start time 𝑟 𝑗 and the maximum

completion time 𝑑 𝑗 of job 𝑗 derived from theoretical analysis by van den Akker et al. (1999).

In the compact formulation in Problem (5), 𝑥𝑖, 𝑗 represents that job 𝑗 is scheduled on machine 𝑖 if

𝑥𝑖, 𝑗 = 1, and 𝐶 𝑗 represents the completion time of job 𝑗 . Constraint (5b) ensures that if 𝑗 is scheduled

Kuroiwa and Lam: Appendix to: Column Generation Using Domain-Independent Dynamic Programming
4 Article submitted to INFORMS Journal on Computing

on 𝑖, then 𝐶 𝑗 is not smaller than the total processing time of 𝑗 and its predecessors.

min
∑︁
𝑗∈J

𝑤 𝑗𝐶 𝑗 (5a)

𝐶 𝑗 ≥
𝑗∑︁

𝑘=1
𝑝𝑘𝑥𝑖,𝑘 −

𝑗−1∑︁
𝑘=1

𝑝𝑘 (1− 𝑥𝑖, 𝑗) ∀𝑖 ∈M,∀ 𝑗 ∈ J (5b)

𝑥𝑖, 𝑗 ∈ {0,1} ∀𝑖 ∈M,∀ 𝑗 ∈ J (5c)

𝐶 𝑗 ∈ [𝑟 𝑗 , 𝑑 𝑗] ∀ 𝑗 ∈ J . (5d)

Our column generation model is based on van den Akker et al. (1999). The master problem is

the set partitioning problem, similar to Problem (3), but now P is a set of schedules for a single

machine. In addition, the objective is
∑
𝑠∈P 𝑐𝑠𝜆𝑠 where 𝑐𝑠 is the cost of schedule 𝑠, and 𝑚 machines

are used, so we have
∑
𝑠∈P 𝜆𝑠 =𝑚. Our branching strategy is the same as van den Akker et al. (1999),

which changes the release date 𝑟 𝑗 and the deadline 𝑑 𝑗 for a selected job 𝑗 .

The pricing problem finds a schedule minimizing the reduced cost, computed from the dual value

𝜋 𝑗 for each job 𝑗 defined by Constraint (3b). Since an optimal schedule executes jobs with no idling

time (Elmaghraby and Park 1974), the pricing problem is a variant of the 0-1 knapsack problem of

deciding whether job 𝑗 is included in the schedule, with the time window constraints. In our DP

formulation in Problem (6), an element variable 𝑗 represents the job currently considered, and a

numeric variable 𝑡 represents the current time. We can use 𝐻 =
∑
𝑘∈J 𝑝𝑘/𝑚 + (𝑚−1) max𝑘∈J 𝑝𝑘/𝑚

as an upper bound on the completion time of a schedule. Therefore, the sum of processing time

scheduled from state (𝑗 , 𝑡) must be less than or equal to 𝐻 − 𝑡. In Inequality (6c), we use a dual

bound function based on the 0-1 knapsack problem with the set of items { 𝑗 , ..., 𝑛} and the capacity

𝐻 − 𝑡, where each job 𝑘 has the profit 𝜋𝑘 −𝑤𝑘 (𝑟𝑘 + 𝑝𝑘) and the weight 𝑝𝑘 .

compute 𝑉 (1,0) (6a)

𝑉 (𝑗 , 𝑡) =


0 if 𝑗 = 𝑛 + 1

min
{
−𝜋 𝑗 +𝑤 𝑗 𝑡 +𝑉 (𝑗 + 1, 𝑡 + 𝑝 𝑗),𝑉 (𝑗 + 1, 𝑡)

}
if 𝑟 𝑗 ≤ 𝑡 ∧ 𝑡 + 𝑝 𝑗 ≤ 𝑑 𝑗

𝑉 (𝑗 + 1, 𝑡) otherwise

(6b)

𝑉 (𝑗 , 𝑡) ≥ −fractional knapsack
(
{ 𝑗 , ...𝑛}, 𝐻 − 𝑡, (𝜋𝑘 −𝑤𝑘 (𝑟𝑘 + 𝑝𝑘))𝑘= 𝑗 ,...,𝑛 , (𝑝𝑘)𝑘= 𝑗 ,...,𝑛

)
. (6c)

4. Multi-Runway Aircraft Scheduling Problem
The MRASP schedules a set of heterogeneous aircraft on a set of identical runways while respecting

minimum separation times between aircraft and minimizing a weighted sum of scheduled times.

Kuroiwa and Lam: Appendix to: Column Generation Using Domain-Independent Dynamic Programming
Article submitted to INFORMS Journal on Computing 5

LetR = {1, . . . , 𝑅} be the set of 𝑅 identical runways, O = {takeoff, landing} be the set of operations,

and G be the set of aircraft classes and A be the set of aircraft. Every aircraft 𝑎 ∈ A is associated

with a class 𝑔𝑎 ∈ G, an operation 𝑜𝑎 ∈ O, a release time 𝑢𝑎 ≥ 0, a due time 𝑣𝑎 ≥ 𝑢𝑎 and a cost 𝑐𝑎 ≥ 0.

Every tuple (𝑔1, 𝑜1, 𝑔2, 𝑜2) ∈ G × O × G × O is associated with a minimum separation time

𝑑𝑔1,𝑜1,𝑔2,𝑜2 ≥ 0. An aircraft 𝑎2 ∈ A scheduled sometime after 𝑎1 ∈ A, 𝑎1 ≠ 𝑎2, on the same runway

must occur at least 𝑑𝑔𝑎1 ,𝑜𝑎1 ,𝑔𝑎2 ,𝑜𝑎2
later. Since the triangle inequality does not necessarily hold in 𝑑,

it is insufficient to check the minimum separation time of every aircraft and its immediate successor.

Instead, the minimum separation time of every later aircraft must be checked for every aircraft.

Problem (7) is the master problem to select a subset of plans from the set of plans P. Every plan

𝑝 ∈ P is associated with an integer variable 𝜆𝑝 and a cost 𝑐𝑝 ≥ 0.

min
∑︁
𝑝∈P

𝑐𝑝𝜆𝑝 (7a)∑︁
𝑝∈P

𝜆𝑝 ≤ 𝑅 (7b)∑︁
𝑝∈P

𝑤𝑎,𝑝𝜆𝑝 ≥ 1 ∀𝑎 ∈ A (7c)

𝜆𝑝 ∈ Z+ ∀𝑝 ∈ P . (7d)

The branching rule removes the immediate successor of an aircraft, collected in a matrix 𝑆 ∈
{0,1}A×A whose elements (𝑖, 𝑗) signify whether 𝑗 can immediate succeed 𝑖.

Problem (8) is the DP formulation of the pricing problem. Let Q = {(𝑔, 𝑜) ∈ G ×O : ∃𝑔1 ∈ G, 𝑜1 ∈
O, 𝑔2 ∈ G, 𝑜2 ∈ O, 𝑑𝑔1,𝑜1,𝑔2,𝑜2 + 𝑑𝑔2,𝑜2,𝑔,𝑜 < 𝑑𝑔1,𝑜1,𝑔,𝑜} denote the set of class and operation pairs that

do not respect the triangle inequality. Every state 𝑆 =
(
M, 𝑖, 𝑡,

(
𝑒𝑔,𝑜

)
(𝑔,𝑜)∈Q

)
is defined by a set

variable M representing the set of reachable aircraft, an element variable 𝑖 representing the current,

a numeric variable 𝑡 representing the current time, and a numeric variable 𝑒𝑔,𝑜 for all (𝑔, 𝑜) ∈ Q
representing the earliest time that class 𝑔 can perform operation 𝑜. In addition, we use a flag 𝑓

indicating if no more aircraft will be scheduled, i.e., the state is base case iff 𝑓 = 1.

Objective (8a) defines the computation required. It initially begins at a dummy task −1 and the

data are appropriately extended with zeros to accommodate this dummy task. Equation (8b) is the

recursive equation. The first case defines a base case. In the second case, the outer minimization

occurs over two expressions. The first one transitions to a base state. The second expression, the inner

minimization, transforms 𝑆 =
(
M, 𝑖, 𝑡,

(
𝑒𝑔,𝑜

)
(𝑔,𝑜)∈Q

)
into 𝑆′(𝑗) =

(
M′(𝑗), 𝑗 , 𝑡′(𝑗),

(
𝑒′𝑔,𝑜) 𝑗)

))
, where

M′(𝑗) =M\ { 𝑗} \ {𝑘 : 𝑡′(𝑗) + 𝑑𝑔 𝑗 ,𝑜 𝑗 ,𝑔𝑘 ,𝑜𝑘 > 𝑣𝑘 }, 𝑡′(𝑗) = max
{
𝑡 + 𝑑𝑔𝑖 ,𝑜𝑖 ,𝑔 𝑗 ,𝑜 𝑗

, 𝑢 𝑗
}

if (𝑔 𝑗 , 𝑜 𝑗) ∉ Q and

Kuroiwa and Lam: Appendix to: Column Generation Using Domain-Independent Dynamic Programming
6 Article submitted to INFORMS Journal on Computing

𝑡′(𝑗) = max
{
𝑡 + 𝑑𝑔𝑖 ,𝑜𝑖 ,𝑔 𝑗 ,𝑜 𝑗

, 𝑢 𝑗 , 𝑒𝑔 𝑗 ,𝑜 𝑗

}
otherwise, and 𝑒′𝑔,𝑜 (𝑗) = max{𝑒𝑔,𝑜, 𝑡′(𝑗) + 𝑑𝑔 𝑗 ,𝑜 𝑗 ,𝑔,𝑜}. The cost

is computed from the dual value 𝜋 𝑗 for aircraft 𝑗 defined by Constraint (7c). Inequality (8c) states

that one state dominates another if its reachable set is larger and all its time variables are earlier.

Inequality (8d) defines a lower bound as the sum of reduced costs of all reachable scheduling tasks.

compute 𝑉 ((A,−1,0, (0, . . . ,0)),0) (8a)

𝑉 (𝑆, 𝑓) =


0 if 𝑓 = 1

min
{
𝑉 (𝑆,1),min 𝑗∈M:𝑡′ (𝑗)≤𝑣 𝑗 −𝜋 𝑗 + 𝑡′(𝑗)𝑐 𝑗 +𝑉 (𝑆′(𝑗), 𝑓) if 𝑓 = 0

(8b)

𝑉

((
M1, 𝑖, 𝑡1,

(
𝑒1
𝑔,𝑜

)
(𝑔,𝑜)∈Q

)
, 𝑓

)
≤ 𝑉

((
M2, 𝑖, 𝑡2,

(
𝑒2
𝑔,𝑜

)
(𝑔,𝑜)∈Q

)
, 𝑓

)
if M2 ⊆M1 ∧ 𝑡1 ≤ 𝑡2 ∧ 𝑒1

𝑔,𝑜 ≤ 𝑒2
𝑔,𝑜∀(𝑔, 𝑜) ∈ Q

(8c)

𝑉

((
M, 𝑖, 𝑡,

(
𝑒𝑔,𝑜

)
(𝑔,𝑜)∈Q

)
, 𝑓

)
≥

∑︁
𝑗∈M

𝑢 𝑗𝑐 𝑗 − 𝜋 𝑗 . (8d)

5. Vehicle Routing Problem with Time Windows

In the VRPTW, an unlimited number of identical vehicles is initially stationed at a depot, tasked with

delivering items to a set of customers and then returning to the depot. Every customer is associated

with a load and the total load allocated to a vehicle must respect the vehicle’s capacity.

Let 𝑛 be the number of customers andN = {0, . . . , 𝑛+1} be the set of nodes, where nodes 0 and 𝑛+1

represent the start and end depot locations respectively. Every node 𝑖 ∈ 𝑁 has a load 𝑙𝑖 ≥ 0, release time

𝑎𝑖 ≥ 0, due time 𝑏𝑖 ≥ 0 and service duration 𝑠𝑖 ≥ 0. Let A = {(𝑖, 𝑗) ∈ N ×N : 𝑖 ≠ 𝑗 , 𝑖 < 𝑛 + 1, 𝑗 > 0}
be the set of arcs. Every arc (𝑖, 𝑗) ∈ 𝐴 has a travel distance 𝑑𝑖, 𝑗 ≥ 0.

The master problem is a set partitioning problem similar to Problem (3), but Constraint (3b) is

defined for each customer 𝑖 = 1, . . . , 𝑛. We perform edge branching on the most fractional arc, which

disables the arc in one node and enforces it in another. The pricing problem is the SPPRC used as

the running example in the main text. In this problem, the travel cost 𝑐𝑖, 𝑗 of arc (𝑖, 𝑗) is defined as

−𝜋 𝑗 + 𝑑𝑖, 𝑗 , where 𝜋 𝑗 is the dual value for node 𝑗 defined by Constraint (3b). Problem (9) shows a

DP model for the pricing problem. Following the main text, we use 𝑡′(𝑗) = max
{
𝑡 + 𝑠𝑖 + 𝑑𝑖, 𝑗 , 𝑎 𝑗

}
and R′(𝑗) =

{
𝑘 ∈ R \ { 𝑗} : 𝑡′(𝑗) + 𝑠 𝑗 + 𝑑∗𝑗 ,𝑘 ≤ 𝑏𝑘 ∧ 𝑞 + 𝑙 𝑗 + 𝑙𝑘 ≤𝑄

}
where 𝑑∗

𝑖, 𝑗
is the precomputed

shortest travel time from 𝑖 to 𝑗 . In our implementation, 𝑑∗
𝑖 𝑗

is computed once at the beginning

using the Floyd-Warshall algorithm and not updated after deleting edges by branching. We define

R′(𝑛 + 1) = R since we do not care which customers are reachable once the vehicle has arrived at

the end depot.

Kuroiwa and Lam: Appendix to: Column Generation Using Domain-Independent Dynamic Programming
Article submitted to INFORMS Journal on Computing 7

Inequality (9d) defines a dual bound function as explained in the main text. In addition, we

consider the 0-1 knapsack problem, where the remaining time 𝑏𝑛+1 − 𝑡 − 𝑑in
𝑛+1 is the capacity, and

the minimum time to visit node 𝑗 , 𝑤in
𝑗
= 𝑑in

𝑗
+ 𝑠 𝑗 , is the weight. We use similar bounds using

𝑑out
𝑗

= min(𝑗 ,𝑘)∈A 𝑑 𝑗 ,𝑘 , 𝑣out
𝑗

= min
{
𝜋 𝑗 − 𝑑out

𝑗

}
, and 𝑤out

𝑗
= 𝑠 𝑗 + 𝑑out

𝑗
, though omitted in Inequality (9d).

compute 𝑉 ({1, . . . , 𝑛},0,0,0) (9a)

𝑉 (R, 𝑖, 𝑞, 𝑡) =


0 if 𝑖 = 𝑛 + 1

min
𝑗∈R∪{𝑛+1}:(𝑖, 𝑗)∈A∧𝑡+𝑠𝑖+𝑑𝑖, 𝑗≤𝑏 𝑗

𝑐𝑖, 𝑗 +𝑉
(
R′(𝑗), 𝑗 , 𝑞 + 𝑙 𝑗 , 𝑡′(𝑗)

)
otherwise

(9b)

𝑉 (R1, 𝑖, 𝑞1, 𝑡1) ≤ 𝑉 (R2, 𝑖, 𝑞2, 𝑡2) if R2 ⊆ R1 ∧ 𝑞1 ≤ 𝑞2 ∧ 𝑡1 ≤ 𝑡2 (9c)

𝑉 (R, 𝑖, 𝑞, 𝑡) ≥ max


0 if 𝑖 = 𝑛 + 1

−fractional knapsack
(
R,𝑄 − 𝑞,

(
𝑣in
𝑗

)
𝑗=1,...,𝑛

,
(
𝑙 𝑗
)
𝑗=1,...,𝑛

)
−fractional knapsack

(
R, 𝑏𝑛+1 − 𝑡 − 𝑑in

𝑛+1,
(
𝑣in
𝑗

)
𝑗=1,...,𝑛

,

(
𝑤in
𝑗

)
𝑗=1,...,𝑛

) (9d)

We also consider a non-elementary version of the pricing problem, where the same node can be

visited multiple times, following previous work (Desrochers et al. 1992). We eliminate 2-cycles,

which visit an immediate predecessor, e.g., a subpath (𝑖, 𝑗 , 𝑖). Problem (10) shows a DP model for

the relaxed pricing problem. Now, instead of the set of reachable customers R, we maintain an

element variable 𝑝 representing the immediate predecessor. In the target state, we use 𝑝 = 0.

For the dual bound function, we compute the set of reachable customers as R̂ = { 𝑗 ∈ N \ {𝑝, 𝑖} :

𝑡 + 𝑠𝑖 + 𝑑∗𝑖, 𝑗 ≤ 𝑏 𝑗 ∧ 𝑞 + 𝑙 𝑗 ≤ 𝑄} and an upper bound 𝑚 𝑗 on the number of visits to each customer.

Visiting a customer 𝑗 requires time at least min𝑘∈R̂∪{𝑛+1} (𝑠𝑐 + 𝑑𝑐 𝑗), and leaving from 𝑗 requires at

least 𝑠 𝑗 + 𝑑out
𝑗

. The customer 𝑗 must be visited by the deadline 𝑏 𝑗 . Therefore, given the current time

𝑡, we use the maximum integer 𝑚 𝑗 satisfying 𝑡 +𝑚 𝑗

(
min𝑘∈R̂∪{𝑛+1}:(𝑘, 𝑗)∈A (𝑠𝑘 + 𝑑𝑘, 𝑗) + 𝑠 𝑗 + 𝑑out

𝑗

)
≤

𝑏 𝑗 + 𝑠 𝑗 + 𝑑out
𝑗

. In other words, 𝑚 𝑗 =

⌊
𝑏 𝑗+𝑠 𝑗+𝑑out

𝑗
−𝑡

min𝑘∈R̂∪{𝑛+1}:(𝑘, 𝑗) ∈A (𝑠𝑘+𝑑𝑘, 𝑗)+𝑠 𝑗+𝑑out
𝑗

⌋
. Then, we multiply 𝑣in

𝑗
, 𝑙 𝑗 , 𝑤in

𝑗
,

𝑣out
𝑗

, and 𝑤out
𝑗

when computing the fractional knapsack bound. Again, we omit the bound based on

𝑑out
𝑗

.

compute 𝑉 (0,0,0,0) (10a)

Kuroiwa and Lam: Appendix to: Column Generation Using Domain-Independent Dynamic Programming
8 Article submitted to INFORMS Journal on Computing

𝑉 (𝑝, 𝑖, 𝑞, 𝑡) =


0 if 𝑖 = 𝑛 + 1

min
𝑗∈N\{0,𝑝}:(𝑖, 𝑗)∈A\{(0,𝑛+1)}∧𝑞+𝑙 𝑗≤𝑄∧𝑡+𝑠𝑖+𝑑𝑖, 𝑗≤𝑏 𝑗

𝑐𝑖, 𝑗 +𝑉 (𝑖, 𝑗 , 𝑞 + 𝑙 𝑗 , 𝑡′(𝑗)) otherwise

(10b)

𝑉 (𝑝, 𝑖, 𝑞, 𝑡) ≤ 𝑉 (𝑝, 𝑖, 𝑞′, 𝑡′) if 𝑞 ≤ 𝑞′∧ 𝑡 ≤ 𝑡′ (10c)

𝑉 (𝑝, 𝑖, 𝑞, 𝑡) ≥ max


0 if 𝑖 = 𝑛 + 1

−fractional knapsack
(
R̂,𝑄 − 𝑞,

(
𝑚 𝑗𝑣

in
𝑗

)
𝑗=1,...,𝑛

,
(
𝑚 𝑗 𝑙 𝑗

)
𝑗=1,...,𝑛

)
−fractional knapsack

(
R̂, 𝑏𝑛+1 − 𝑡 − 𝑑in

𝑛+1,
(
𝑚 𝑗𝑣

in
𝑗

)
𝑗=1,...,𝑛

,

(
𝑚 𝑗𝑤

in
𝑗

)
𝑗=1,...,𝑛

)
(10d)

CumVRPTW modifies VRPTW, so that the objective minimizes the travel distance of each

arc multiplied by the load at the origin of the arc. We limit the number to be at most 𝐾 (𝐾 = 25

is specified by the Solomon instances). The master problem of the CumVRPTW is the same as

Problem (3), with one additional constraint
∑
𝑝∈P 𝜆𝑝 ≤ 𝐾 . The pricing problem is also similar, but

its objective function is specific to CumVRPTW. We use 𝑞𝑑𝑖, 𝑗 for the travel cost from node 𝑖 to 𝑗

and 𝑣in
𝑗
= min{−𝑞𝑑in

𝑗
+ 𝜋 𝑗 ,0} and 𝑣out

𝑗
= min{−𝑞𝑑out

𝑗
+ 𝜋 𝑗 ,0} in the dual bound function.

6. Pickup and Delivery Problem with Time Windows
In the PDPTW, a vehicle picks up a commodity at one customer and delivers it to another

customer, while respecting time windows (Dumas et al. 1991). Let 𝑚 be the number of tasks,

N = {1, . . . , 𝑛} be the set of tasks, and L = {0, . . . ,2𝑛 + 1} be the number of locations. Each task

𝑖 ∈ N is associated with a pickup location 𝑖 ∈ L and a delivery location 𝑛 + 𝑖 ∈ L. Nodes 0 and

𝑛 + 1 represent the start and end depot locations, respectively. Every task 𝑖 ∈ 𝑁 has a load 𝑙𝑖 ≥ 0,

and every location 𝑖 ∈ L has release time 𝑎𝑖 ≥ 0, due time 𝑏𝑖 ≥ 0 and service duration 𝑠𝑖 ≥ 0. Let

A = {(𝑖, 𝑗) ∈ L × L : 𝑖 ≠ 𝑗 , 𝑖 < 𝑛 + 1, 𝑗 > 0} be the set of arcs. Every arc (𝑖, 𝑗) ∈ 𝐴 has a travel

distance 𝑑𝑖, 𝑗 ≥ 0. Our objective function is the sum of the number of used vehicles multiplied by a

constant penalty 𝑢 and the total travel distance, where 𝑢 = 10000. For all evaluated methods, we

tighten time windows and reduce edges by preprocessing, following Dumas et al. (1991).

Our column generation model is based on Ropke and Cordeau (2009). The master problem is the

same as Problem (3) while Constraint (3b) is defined for each pickup location 𝑖 = 1, . . . , 𝑛. We use

edge branching on the most fractional arc (𝑖, 𝑗) ∈ A. Preprocessing for tightening time windows,

reducing edges, and computing the shortest travel time from 𝑖 to 𝑗 , 𝑑∗
𝑖, 𝑗

using the Floyd-Warshall

algorithm is done once at the beginning and not updated after deleting edges by branching.

Kuroiwa and Lam: Appendix to: Column Generation Using Domain-Independent Dynamic Programming
Article submitted to INFORMS Journal on Computing 9

The pricing problem is a variant of SPPRC considering pickup and delivery and is formulated

as DP in Problem (11). The set of available tasks is represented by R, and the set of open tasks,

whose pickup locations are visited and delivery locations have not been visited, is represented by

O. The current location is represented by 𝑖, the current load by 𝑞, and the current time by 𝑡. We

use 𝑡′(𝑗) = max{𝑡 + 𝑠𝑖 + 𝑑𝑖, 𝑗 , 𝑎 𝑗 }. We also represent the set of available tasks after visiting 𝑗 by

R′(𝑗) = {𝑘 ∈ R \ { 𝑗} : 𝑡′(𝑗) + 𝑠 𝑗 + 𝑑∗𝑗 ,𝑘 ≤ 𝑏𝑘 }. The first line corresponds to returning to the depot

and is available only if no task is open (𝑞 = 0). The second and third lines correspond to pickup

and delivery, respectively. In addition, Equation (11d) defines redundant information implied by

Equation (11c): a state does not lead to a solution if there exists a task 𝑗 that cannot be completed by

the deadline, implemented by state constraints in DIDP.

For the dual bound function, we use the fractional knapsack bound considering the deadline for

the end depot. Using 𝑑in
𝑗
= min𝑘∈L:(𝑘, 𝑗)∈A 𝑑𝑘, 𝑗 , to complete the set of open tasks O and return to

the end depot, we need at least 𝑑in(O) =∑
𝑗∈O

(
𝑑in
𝑛+ 𝑗 + 𝑠𝑛+ 𝑗

)
+ 𝑑in

2𝑛+1. Completing task 𝑗 increases

the cost by at least 𝑣in
𝑗
= 𝑑in

𝑗
− 𝜋 𝑗 + 𝑑in

𝑛+ 𝑗 and the time by at least 𝑤in
𝑗
= 𝑑in

𝑗
+ 𝑠 𝑗 + 𝑑in

𝑛+ 𝑗 + 𝑠𝑛+ 𝑗 . We

consider the 0-1 knapsack problem with the capacity 𝑏2𝑛1 − 𝑡 − 𝑑in(O), where each item 𝑗 ∈ R has

profit 𝑣in
𝑗

and weight 𝑤in
𝑗

. We also use a similar bound using 𝑑out
𝑗

= min𝑘∈L:(𝑗 ,𝑘)∈A 𝑑 𝑗 ,𝑘 , omitted in

Problem (11).

compute 𝑉 (N , ∅,0,0,0) (11a)

𝑉 (R,O,2𝑛 + 1, 𝑞, 𝑡) = 0 (11b)

𝑉 (R,O, 𝑖, 𝑞, 𝑡) = min



𝑑𝑖,2𝑛+1 +𝑉 (R,O,2𝑛 + 1, 𝑞, 𝑡′(2𝑛 + 1)) if
(𝑖,2𝑛 + 1) ∈ A ∧ 𝑞 = 0

∧𝑡′(2𝑛 + 1) ≤ 𝑏2𝑛+1

min
𝑗∈R:(𝑖, 𝑗)∈A∧𝑞+𝑙 𝑗≤𝑄∧𝑡′ (𝑗)≤𝑏 𝑗

𝑑𝑖, 𝑗 − 𝜋𝑖 +𝑉 (R′(𝑗),O ∪ { 𝑗}, 𝑗 , 𝑞 + 𝑙 𝑗 , 𝑡′(𝑗))

min
𝑗∈O:(𝑖, 𝑗)∈A∧𝑡′ (𝑛+ 𝑗)≤𝑏𝑛+ 𝑗

𝑑𝑖,𝑛+ 𝑗 +𝑉 (R′(𝑛 + 𝑗),O \ { 𝑗}, 𝑛 + 𝑗 , 𝑞 − 𝑙 𝑗 , 𝑡′(𝑛 + 𝑗))

(11c)

𝑉 (R,O, 𝑖, 𝑞, 𝑡) =∞ if ∃ 𝑗 ∈ O, 𝑡 + 𝑠𝑖 + 𝑑∗𝑖,𝑛+ 𝑗 > 𝑏𝑛+ 𝑗 (11d)

𝑉 (R1,O, 𝑖, 𝑞1, 𝑡1) ≤ 𝑉 (R2,O, 𝑖, 𝑞2, 𝑡2) if R2 ⊆ R1 ∧ 𝑞1 ≤ 𝑞2 ∧ 𝑡1 ≤ 𝑡2 (11e)

𝑉 (R,O,2𝑛1, 𝑞, 𝑡) ≥ 0 (11f)

𝑉 (R,O, 𝑖, 𝑞, 𝑡) ≥ −fractional knapsack
(
R, 𝑏2𝑛+1 − 𝑡 − 𝑑in(O),

(
𝑣in
𝑗

)
𝑗=1,...,𝑛

,

(
𝑤in
𝑗

)
𝑗=1,...,𝑛

)
.

(11g)

Kuroiwa and Lam: Appendix to: Column Generation Using Domain-Independent Dynamic Programming
10 Article submitted to INFORMS Journal on Computing

In the non-elementary version in Problem (12), we allow completing the same task multiple times,

and thus R is removed. We still maintain the set of open tasks O to ensure that a delivery location is

visited after a pickup location.

For the dual bound, we compute the set of available tasks as R̂ = { 𝑗 ∈ N \O : 𝑡 + 𝑠𝑖 +𝑑∗𝑖, 𝑗 ≤ 𝑏 𝑗 }. We

also compute an upper bound𝑚 𝑗 on the number of times task 𝑗 is completed. Assuming (𝑛+ 𝑗 , 𝑗) ∉A,

completing task 𝑗 requires at least time min𝑘∈L:(𝑘, 𝑗)∈A
(
𝑠𝑘 + 𝑑𝑘, 𝑗

)
+ 𝑠 𝑗 +𝑑∗𝑗 ,𝑛+ 𝑗 + 𝑠𝑛+ 𝑗 +𝑑out

𝑛+ 𝑗 . Therefore,

𝑚 𝑗 =

⌊
𝑏𝑛+ 𝑗+𝑠𝑛+ 𝑗+𝑑out

𝑛+ 𝑗
min𝑘∈L:(𝑘, 𝑗) ∈A (𝑠𝑘+𝑑𝑘, 𝑗)+𝑠 𝑗+𝑑∗𝑗 ,𝑛+ 𝑗+𝑠𝑛+ 𝑗+𝑑out

𝑛+ 𝑗

⌋
.

compute 𝑉 (∅,0,0,0) (12a)

𝑉 (O,2𝑛 + 1, 𝑞, 𝑡) = 0 (12b)

𝑉 (O, 𝑖, 𝑞, 𝑡) = min



𝑑𝑖,2𝑛+1 +𝑉 (O,2𝑛 + 1, 𝑞, 𝑡′(2𝑛 + 1)) if
(𝑖,2𝑛 + 1) ∈ A ∧ 𝑞 = 0∧
𝑡′(2𝑛 + 1) ≤ 𝑏2𝑛+1

min
𝑗∈N\O:(𝑖, 𝑗)∈A∧𝑞+𝑙 𝑗≤𝑄∧𝑡′ (𝑗)≤𝑏 𝑗

𝑑𝑖, 𝑗 − 𝜋𝑖 +𝑉 (O, 𝑗 , 𝑞 + 𝑙 𝑗 , 𝑡′(𝑗))

min
𝑗∈O:(𝑖, 𝑗)∈A∧𝑡′ (𝑛+ 𝑗)≤𝑏𝑛+ 𝑗

𝑑𝑖,𝑛+ 𝑗 +𝑉 (O \ { 𝑗}, 𝑛 + 𝑗 , 𝑞 − 𝑙 𝑗 , 𝑡′(𝑛 + 𝑗))

(12c)

𝑉 (O, 𝑖, 𝑞, 𝑡) =∞ if ∃ 𝑗 ∈ O, 𝑡 + 𝑠𝑖 + 𝑑∗𝑖,𝑛+ 𝑗 > 𝑏𝑛+ 𝑗 (12d)

𝑉 (O, 𝑖, 𝑞1, 𝑡1) ≤ 𝑉 (O, 𝑖, 𝑞2, 𝑡2) if 𝑞1 ≤ 𝑞2 ∧ 𝑡1 ≤ 𝑡2 (12e)

𝑉 (O,2𝑛 + 1, 𝑞, 𝑡) ≥ 0 (12f)

𝑉 (O, 𝑖, 𝑞, 𝑡) ≥ −fractional knapsack
(
R̂, 𝑏2𝑛+1 − 𝑡 − 𝑑in(O),

(
𝑚 𝑗𝑣

in
𝑗

)
𝑗=1,...,𝑛

,

(
𝑚 𝑗𝑤

in
𝑗

)
𝑗=1,...,𝑛

)
.

(12g)

References
Desrochers M, Desrosiers J, Solomon M (1992) A new optimization algorithm for the vehicle routing problem with

time windows. INFORMS Journal on Computing 40:342–354.

Dumas Y, Desrosiers J, Soumis F (1991) The pickup and delivery problem with time windows. European Journal of

Operational Research 54(1):7–22.

Elmaghraby SE, Park SH (1974) Scheduling jobs on a number of identical machines. AIIE Transactions 6(1):1–13.

Foster BA, Ryan DM (1976) An integer programming approach to the vehicle scheduling problem. Operational Research

Quarterly 27(2):367–384.

Ropke S, Cordeau JF (2009) Branch and cut and price for the pickup and delivery problem with time windows.
Transportation Science 43(3):267–286.

van den Akker JM, Hoogeveen JA, van de Velde SL (1999) Parallel machine scheduling by column generation.
Operations Research 47(6):862–872.

