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Abstract

�e establishment of kidney exchange programs has dramatically improved rates for kidney
transplants by matching donors to compatible patients who would otherwise fail to receive a kidney
for transplant. Rather than simply swapping kidneys between two patient-donor pairs, having
multiple patient-donor pairs simultaneously donate kidneys in a cyclic manner enables more patients
to receive a kidney for transplant. For practicality reasons, the cycles must be limited to short lengths.
Finding these cycles can be accomplished by solving the Cardinality-constrained Multi-cycle Problem,
which generalizes the Prize-collecting Assignment Problem with constraints that bound the length
of the subtours. �is paper presents a series of additions to existing works—new constraints, some
polyhedral results, new separation algorithms and a new pricing algorithm—and integrates them
in the �rst branch-and-cut-and-price model of the problem. �e model is shown to empirically
outperform the state-of-the-art by solving 149 of 160 standard benchmarks, compared to 115 by the
position-indexed chain-edge formulation and 114 by the position-indexed edge formulation.

1 Introduction
Chronic kidney disease is di�cult to treat. One e�ective treatment option is to entirely remove and
replace a patient’s kidney via a transplant. Even though many patients have family and friends who
are willing to donate a kidney, the kidney itself might not be compatible with the patient due to many
factors such as blood type and tissue type.

Transplant rates can be improved by kidney exchange programs, which match donors to compatible
recipients. Figure 1 depicts two patients P1 and P2 who respectively have a willing donor D1 and
D2. D1 is incompatible with P1, and likewise, D2 is incompatible with P2. �e four individuals can
enroll in a kidney exchange program, whereby D2 donates a kidney to P1 and D1 donates a kidney to
P2, provided the exchange is compatible. �is event, called a two-way exchange is indicated by two
patients and two donors. In general, three-way exchanges (Figure 2) and K-way exchanges, for any
K ≥ 2, are possible.

As the number of patients and donors increase and the factors leading to incompatibility grow,
it becomes increasingly di�cult to match patients and donors by hand. Instead, matchings can be
found algorithmically using combinatorial optimization. �e problem can be stated on a directed
graph. Every incompatible patient-donor pair is given a vertex and every compatible donation is
represented by an arc. Every arc is associated with a weight representing some measure of value such
as compatibility, chance of success or urgency. A feasible solution to the problem is a set of disjoint
cycles that cover the vertices such that each vertex appears in at most one cycle, representing the
fact that each patient-donor pair can donate and receive at most one kidney. An optimal solution
maximizes the total weight of the cycles. We note that di�erent objective functions are considered in
other studies on kidney exchange problems.
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Figure 1: A two-way exchange.
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Figure 2: A three-way exchange.

�e length of the cycles is usually restricted to a small valueK , typicallyK = 2 orK = 3 (Abraham
et al., 2007). �is limitation arises from practicality reasons; for example, it may be di�cult to ensure a
large number of operating theaters and su�cient medical sta� are simultaneously available. When
K =∞, the problem reduces to the Prize-collecting Assignment Problem, and hence, is polynomially
solvable due to its totally unimodular structure (Nemhauser and Wolsey, 1999). �e problem is also
polynomially solvable when K = 2 (Abraham et al., 2007; Biró et al., 2009). In contrast, the problem is
NP-hard for any �nite K ≥ 3.

Despite its complexity and di�culty, the problem described above is reasonably solved using
mathematical programming. Even though branch-and-cut and branch-and-price have some success,
their integration in branch-and-cut-and-price has not yet been studied. �is paper presents the �rst
branch-and-cut-and-price formulation of the problem. �e contributions are (1) two new constraints
that enforce the length of the cycles, (2) a proof that a subset of an existing inequality is facet-de�ning in
a Dantzig-Wolfe reformulation of the problem, (3) new separation algorithms for existing inequalities,
(4) a new pricing algorithm, and (5) the integration of various components in the �rst branch-and-cut-
and-price model of the problem.

�e remainder of this article is structured as follows. Section 2 presents the mathematical def-
inition of the problem. Section 3 reviews existing models and valid inequalities. Sections 4 and 5
present theoretical and implementation contributions respectively. Section 6 discusses details of the
implementation. Section 7 analyzes experimental results. Section 8 proposes ideas for future work.
Section 9 concludes this paper.

2 Problem De�nition
Two types of kidney exchange are practiced. �e problem described in the previous section is known as
the Cardinality-constrained Multi-cycle Problem (CCMCP). Another problem seen in kidney exchange
is the Cardinality-constrained Cycles and Chains Problem (CCCCP), which additionally allows paths as
well as cycles. �e paths represent a chain of kidney donations. A path starts with a healthy altruistic
donor, who does not receive anything in return, donating a kidney to the patient of one incompatible
pair, and the donor from this pair in turn donates their kidney to the patient of another incompatible
pair, and so on. Finally, the path terminates at a patient without a donor, e.g., a patient with a recently
deceased donor or whose donor becomes a bridging donor in a long chain. �e focus of this paper is
the CCMCP; we simply mention the CCCCP for completeness. However, most of our contributions are
also applicable to the CCCCP but their exact form and/or implementation are a topic for future study.
A comprehensive survey of the CCMCP and the CCCCP was conducted by Mak-Hau (2017).

�e CCMCP is de�ned on a directed graph G = (V,A) with vertices V = {1, . . . , |V |} and arcs
A ⊆ {(i, j) : i, j ∈ V, i 6= j}. Every vertex i ∈ V represents an incompatible patient-donor pair;
that is, donor i has agreed to donate a kidney to recipient i but is physiologically incompatible. �e
arcs identify all compatible recipients of a donor: the arc (i, j) ∈ A signi�es that donor i can donate
to patient j. Every arc (i, j) is associated with a weight wi,j ∈ R+ that represents the value of the
donation.

An (elementary) path p = (i1, i2, . . . , ik) of length k ∈ {1, 2, . . .} is a sequence of k vertices
such that every vertex and its next vertex form a valid arc (i.e., (i1, i2), . . . , (ik−1, ik) ∈ A) and the
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vertices are not repeated (i.e., is 6= it for all s, t ∈ {1, . . . , k} and s 6= t). An (elementary) cycle
c = (i1, i2, . . . , ik, ik+1) of length k is a sequence of vertices such that (i1, i2, . . . , ik) is a path,
ik+1 = i1 and (ik, i1) ∈ A. �e weight wc =

∑k
t=1 wit,it+1

∈ R+ of a cycle is the sum of its arc
weights. �e goal of the CCMCP is to �nd cycles that have length at mostK , for a givenK ∈ {2, 3, . . .},
such that every vertex appears in at most one cycle and the total weight of all cycles is maximized.
Under this speci�cation, not every vertex needs to belong to a cycle.

3 Related Works
In this section, we review existing models of the CCMCP and various classes of constraints that bound
the length of the cycles.

3.1 Arc-based Models
Arc-based models use binary decision variables to select arcs that form cycles on G. �ese models can
be categorized as polynomial-size and exponential-size.

3.1.1 Polynomial-size Models

Polynomial-size models are usually implemented in a way that all problem variables and constraints
are included in the beginning, i.e., they are solved without the need for column or row generation.
�ese models have decision variables indexed by at least three dimensions: two indices to represent
the arc and one to index the cycle in which the arc belongs. Since cycles are explicitly numbered,
permutations of the cycle index leads to symmetry in the model unless deliberately removed.

One example of a polynomial-size model is the extended edge (EE) formulation by Constantino
et al. (2013). Let xi,j,l be a binary decision variable indicating whether the arc (i, j) ∈ A belongs in
the lth cycle, where l ∈ L = {1, . . . , |L|} and |L| is an upper bound on the number of cycles, e.g.,
|L| = |V |. �e EE model is shown in Problem (1).

Problem (1)

max
∑
l∈L

∑
(i,j)∈A

wi,jxi,j,l (1a)

subject to∑
l∈L

∑
j:(i,j)∈A

xi,j,l ≤ 1 ∀i ∈ V, (1b)

∑
h:(h,i)∈A

xh,i,l =
∑

j:(i,j)∈A

xi,j,l ∀i ∈ V, l ∈ L, (1c)

∑
(i,j)∈A

xi,j,l ≤ K ∀l ∈ L, (1d)

xi,j,l ∈ Z+ ∀(i, j) ∈ A, l ∈ L. (1e)

�e Objective Function (1a) maximizes the total weight of the selected arcs. Constraint (1b) clones
the graph into |L| copies, and requires that every vertex is selected in at most one copy of the graph.
Constraint (1c) requires the in-degree of every vertex to be equal to its out-degree. Constraint (1d)
allows at most K arcs to be selected in the lth copy of the graph. Notice that more than one cycle can
be selected in each copy, but this constraint is valid under the problem de�nition. Constraint (1e) is the
integrality constraint. For reasons described later, the variables are speci�ed as integer variables, rather
than binary variables. In any case, the variables can only take binary values due to Constraint (1b).
�e EE formulation solved blood-type test instances with up to 100 vertices and K ranging from 4 to 6.

�is formulation is closely related to the three-index formulations of the Vehicle Routing Problems
(VRPs) (Vigo and Toth, 2014). �e CCMCP can be considered as a variation on the Prize-collecting
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Capacitated Vehicle Routing Problem in which every vehicle has capacity K , each customer has load 1
and vehicles can start and end at any vertex, not only at a central depot vertex.

�e EE model is shown experimentally to outperform prior arc-based models (e.g., the two-index
model in Section 3.1.2), despite being theoretically proven to not dominate the other models in its linear
relaxation bound. Such results are unusual, and contradicts well-established results from VRPs showing
that three-index models are inferior to two-index formulations (e.g., Letchford and Salazar-González,
2006).

Dickerson et al. (2016) recently improved the EE formulation in the position-indexed edge formula-
tion (PIEF), which uses binary variables to determine whether an arc appears in a particular position
of a cycle in a particular copy of the digraph—a concept that is an extension to the EE formulation.
�e model is also theoretically proven to have a stronger linear relaxation bound. A polynomial-time
algorithm for variable elimination in preprocessing was discussed and implemented. An extension of
PIEF to the CCCCP was extensively tested on large-scale problem instances with over 700 vertices and
with K = 3 and chain lengths varying from 2 to 12. �is model is shown to substantially outperform
many other models.

3.1.2 Exponential-size Models

Exponential-size models use binary variables indexed by two dimensions to denote the use of an arc.
�ese models contain exponentially many constraints to enforce the length of the cycles. Because of
this, these models are typically solved using branch-and-cut.

�e branch-and-cut method iterates between solving a master problem to obtain a candidate solu-
tion, and solving separation problems on the given candidate solution to identify violated constraints
and add them to the master problem (e.g., Mitchell, 2010).

�e two-index branch-and-cut model of the CCMCP has binary decision variables xi,j that indicate
if (i, j) ∈ A is selected. �e initial master problem is given in Problem (2).

Problem (2)

max
∑

(i,j)∈A

wi,jxi,j (2a)

subject to∑
j:(i,j)∈A

xi,j ≤ 1 ∀i ∈ V, (2b)

∑
h:(h,i)∈A

xh,i =
∑

j:(i,j)∈A

xi,j ∀i ∈ V, (2c)

xi,j ∈ Z+ ∀(i, j) ∈ A. (2d)

Objective Function (2a) maximizes the total weight of the selected arcs. Constraint (2b) allows at most
one outgoing edge for every vertex. Constraint (2c) ensures that every vertex that has an incoming
edge also has an outgoing edge. Constraint (2d) enforces integrality.

Since Problem (2) closely resembles the two-index formulation of the Prize-Collecting Capacitated
Vehicle Routing Problem (Vigo and Toth, 2014), we call it the Prize-collecting Assignment Problem.
Again, it di�ers in the lack of a central depot vertex. �is small di�erence invalidates all of the cu�ing
planes that generalize subtour elimination, e.g., rounded capacity cuts, 2-path cuts, etc.

Problem (2) itself does not bound the length of the cycles. Instead, constraints are added during
the solution process to enforce the cycle length constraints whenever they are violated by the current
feasible solution, i.e., to ensure solutions of the Prize-collecting Assignment Problem are also solutions
of the CCMCP. Cycle lengths can be restricted using any one of the following families of constraints.

Combinatorial Benders A Combinatorial Benders cut disallows one variable from any given set
of binary variables (Codato and Fische�i, 2004). Roth et al. (2007); Anderson et al. (2015) applied
combinatorial Benders cuts to the CCMCP. Whenever a solution contains a cycle c = (i1, . . . , ik, i1)
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Figure 3: A sailboat cut for K = 4.

of length k > K , Constraint (3) is added to Problem (2) in order to forbid c by requiring at least one of
the k edges of c to be unused.

k∑
t=1

xit,it+1 ≤ k − 1 (3)

TNT For instances with K = 3, let p = (i1, i2, i3, i4) be a path of length 4. �en, the constraints

3∑
t=1

xit,it+1
+ 3xi4,i1 + 2xi2,i1 + 2xi3,i1 + 2xi4,i2 ≤ 4, (4a)

and
3∑

t=1

xit,it+1 + 3xi4,i1 + 2xi4,i2 + 2xi4,i3 + 2xi3,i1 ≤ 4, (4b)

are proven valid by Mak-Hau (2018). Based on their coe�cients, we call Constraints (4a) and (4b) the
�ree and Twos (TNT) cuts. �ese inequalities are generalized to larger K in Section 4.1.

Tournament Given a cardinality-infeasible path p = (i1, . . . , iK , iK+1) of length K + 1, the
constraint

K∑
s=1

K+1∑
t=s+1

xis,it ≤ K − 1, (5)

called a tournament inequality, forbids at least one of the arcs between any pair of vertices in p.
Ascheuer et al. (2000) proposed the tournament inequalities for the Asymmetric Traveling Salesman
Problem, which is later shown to be valid and facet-de�ning for the CCMCP by Mak-Hau (2018).

Sailboat Mak-Hau (2018) showed that for any path p = (i1, . . . , iK) of length K , the constraint

K−1∑
s=1

K∑
t=s+1

xis,it − xiK ,i1 ≤ K − 2 (6)

is valid and facet-de�ning. We call Constraint (6) the sailboat inequalities, based on the illustration in
Figure 3.

3.2 Cycle-based Models
Instead of selecting arcs to form cycles, cycle-based formulations select a subset of cycles from a large
collection C of valid cycles. �ere are up to

∑K
j=2

(|V |
j

)
(j − 1)! elements in C . Hence, it is extremely

di�cult, and usually impossible, to generate C on large and/or dense instances in practice. �erefore,
cycle-based approaches are solved using column generation and branch-and-price.

Column generation is a method for solving linear programs with a large number of variables.
Instead of handing a large matrix to a linear programming solver, column generation progressively
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adds variables to a linear program until a point when all the variables taking non-zero value in some
optimal solution appears in the linear program. Branch-and-price is a branch-and-bound algorithm
that computes a dual bound in every node of the branch-and-bound tree using a linear relaxation
solved using column generation.

In cycle-based models, column generation begins with a small (possibly empty) restricted subset
C ′ ⊆ C of cycles, and then iterates between a restricted master problem, which is a linear relaxation
that selects a fractionally-optimal subset of cycles from C ′, and pricing problems, which �ll C ′ with
be�er cycles to bring C ′ closer towards a subset of C su�cient for proving optimality in the restricted
master problem (e.g., Desaulniers et al., 2005; Lübbecke and Desrosiers, 2005).

Restricted Master Problem Problem (7) describes the integer master problem, a set packing prob-
lem. �e restricted master problem discussed above is its linear relaxation. Every cycle c ∈ C is
associated with a weightwc ∈ R+ de�ned in Section 2. A binary decision variable yc is used to indicate
whether c ∈ C ′ is selected.

Problem (7)

max
∑
c∈C′

wcyc (7a)

subject to∑
c∈C′

aicyc ≤ 1 ∀i ∈ V, (7b)

yc ∈ Z+ ∀c ∈ C ′. (7c)

Objective Function (7a) maximizes the total weight of the cycles selected from C ′. Constraint (7b)
requires every vertex to be visited at most once. �e constant aic ∈ {0, 1} takes value 1 if cycle c ∈ C ′
visits i ∈ V and takes value 0 otherwise. Constraint (7c) is the integrality constraint.

Pricing Problem �e set C ′ is �lled by solving the pricing problem formalized in Problem (8).

Problem (8)

z := max
∑

(i,j)∈A

(wi,j − πi)xi,j (8a)

subject to∑
j:(i,j)∈A

xi,j ≤ 1 ∀i ∈ V, (8b)

∑
h:(h,i)∈A

xh,i =
∑

j:(i,j)∈A

xi,j ∀i ∈ V, (8c)

∑
(i,j)∈A

xi,j ≤ K, (8d)

xi,j ∈ Z+ ∀(i, j) ∈ A. (8e)

Objective Function (8a) �nds cycles with maximum reduced cost w̄ = wi,j − πi, where πi is the value
of the dual variable of Constraint (7b). Notice that yc in the integer master problem is speci�ed as an
integer variable, rather than a binary variable. �is alleviates the need to consider an additional dual
variable in Objective Function (8a) arising from the implicit upper bound constraint. In any case, yc is
naturally restricted to take binary values by Constraint (7b).

Observe that Constraints (8b) to (8e) are nearly identical to Constraints (1b) to (1e). �is is not a
coincidence; these constraints emerge from a Dantzig-Wolfe reformulation of Problem (1). A solution
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to Problem (8) is equivalent to the cycles chosen in any one of the l copies of the graph in Problem (1).
Recall that any one copy of the graph in Problem (1) can contain multiple cycles. A�er solving
Problem (8), each cycle must be isolated in a post-processing step.

Even though the pricing problem is stated as a mixed integer program, in practice, it is o�en solved
using algorithms tailored to the problem. Roth et al. (2007) used mixed integer programming. Abraham
et al. (2007) used heuristics and exhaustive search to solve instances with up to 10,000 vertices but
arc density information is not reported. Glorie et al. (2014) solved a cycle-based model using U.S.
population data with up to 1000 vertices. Since long chains are allowed, this is not a direct comparison
to the CCMCP. Nonetheless, their Bellman-Ford dynamic programming pricer is later proved incorrect
by Plaut et al. (2016). Corrections are implemented by Dickerson et al. (2016). Klimentova et al. (2014)
used heuristics on a di�erent master problem to solve instances with up to 2000 vertices with K = 3,
1000 vertices with K = 4, and 900 vertices with K = 5 and K = 6. Arc densities were again not
speci�ed. �e position-indexed chain-edge formulation (PICEF) by Dickerson et al. (2016) models the
CCCCP but reduces to the CCMCP in the absence of chains. In PICEF, all cycles are enumerated as
variables in the master problem, which is given to a black-box mixed integer programming solver;
thus avoiding the need for pricing.

ColumnGeneration Column generation begins by solving the restricted master problem to produce
a primal solution and values to πi. It then proceeds to solve the pricing problem, resulting in a value
for z and a cycle c given by the values to the xi,j variables. Whenever z > 0, c can potentially appear
in a solution be�er than the current solution to the restricted master problem. �erefore, c is added to
C ′ and the process returns to the restricted master problem, which may or may not select the new
cycle c. Column generation terminates when the pricing problem reports that z ≤ 0, indicating that
all cycles that could appear in an optimal solution already exist in C ′, i.e., none are in C \ C ′.

3.3 Branch-and-cut-and-price
Branch-and-cut-and-price provides two complementary views into a problem by integrating branch-
and-cut and branch-and-price. For this reason, it powers state-of-the-art algorithms for many graph
optimization problems, including the Traveling Salesman Problem (Applegate et al., 2006), Vehicle
Routing Problem with Time Windows (Røpke, 2012), Capacitated Vehicle Routing Problem (Pecin et al.,
2014) and Multi-agent Path Finding (Lam et al., 2019). Despite impressive successes, branch-and-cut-
and-price has not yet been implemented for CCMCP; hence the motivation of this study.

In general, branch-and-cut-and-price takes the master problem of an existing branch-and-price
model and progressively adds cu�ing planes to tighten its linear relaxation. Fukasawa et al. (2006)
categorized cuts in branch-and-cut-and-price as either robust or non-robust.

3.3.1 Robust Cuts

Consider a general constraint in the two-index arc-based model Problem (2):∑
(i,j)∈A

ai,jxi,j ≤ b, (9)

where ai,j ∈ R and b ∈ R are constants. �is cut can be convexi�ed to

∑
c∈C′

 ∑
(i,j)∈A

ai,ja
i,j
c

 yc ≤ b, (10)

in the master problem (Problem (7)), where ai,jc ∈ {0, 1} takes the value 1 if cycle c traverses the arc
(i, j) and takes the value 0 otherwise. Via this translation, all cuts valid in the branch-and-cut model
are automatically valid in the branch-and-price model.

Let ρ be the dual variable of Constraint (10). To account for one additional Constraint (10) in the
master problem, Objective Function (8a) is modi�ed to

max
∑

(i,j)∈A

(wi,j − πi − ai,jρ)xi,j .
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c4 = (1,6,1)
c3 = (2,6,4,2)
c2 = (2,5,3,2)
c1 = (3,4,5,3)

Figure 4: Example of four cycles.

An inequality taking the form of Constraint (10) is called robust (Fukasawa et al., 2006) since it only
modi�es the objective function of the pricing problem by adding one additional term to the reduced
cost. Now,

w̄i,j = wi,j − πi − ai,jρ.

Even though all robust cuts from branch-and-cut are valid in branch-and-price, some families
are rendered useless since they are implicitly described within the de�nition of the variables in the
Dantzig-Wolfe reformulation (e.g., Letchford and Salazar-González, 2006; Røpke and Cordeau, 2009).
�e following example shows that the sailboat inequalities are not implied by the reformulation and
can be violated in a feasible solution to the linear relaxation of the master problem. Examples for the
TNT and tournament cuts can be constructed in a similar fashion.

Proposition 1. �e Dantzig-Wolfe reformulation does not imply the sailboat inequalities.

Proof. Consider the CCMCP with K = 3. Figure 4 shows an example of four cycles c1, . . . , c4 over
six vertices labeled 1 to 6. �e linear relaxation of the master problem containing these four cycles is
given below:

max w1y1 + w2y2 + w3y3 + w4y4
subject to y4 ≤ 1

y2 + y3 ≤ 1
y1 + y2 ≤ 1
y1 + y3 ≤ 1
y1 + y2 ≤ 1

y3 + y4 ≤ 1
y1, y2, y3, y4 ∈ R+.

Consider the path p = (3, 4, 2). �is path induces the sailboat cut

x3,4 + x3,2 + x4,2 − x2,3 ≤ 1,

which is convexi�ed to
y1 + y2 + y3 ≤ 1.

Next, consider the feasible solution ŷ = (0.5, 0.5, 0.5, 0.5). Substituting this solution into the above
cut yields

0.5 + 0.5 + 0.5 ≤ 1.

�is solution violates the cut, and hence, the family of sailboat cuts is not implied by the reformulation.
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3.3.2 Non-robust Cuts

Cuts are classi�ed as non-robust if they are valid for the master problem but cannot be expressed as a
linear combination of the arc variables, i.e., Constraint (10). In general, adding a non-robust cut to the
master problem introduces a dual variable that is di�cult to handle in the pricing problem and results
in increased time complexity (Jepsen et al., 2008).

Below, we review two classes of non-robust cuts as prerequisites for later discussions. We do not
use them in the branch-and-cut-and-price model because an e�cient implementation and detailed
analysis of their performance are beyond the scope of this initial study. In Section 8, we discuss their
potential for future work.

Clique For a set W ⊆ C , clique inequalities specify that every cycle c ∈ W con�icts with every
other cycle c′ ∈W , where c′ 6= c. For a clique W , the clique cut is∑

c∈W
yc ≤ 1. (11)

Clique constraints are facets of the convex hull of the set packing polyhedron (Nemhauser and Wolsey,
1999), i.e., they are facet-de�ning on the master problem (Constraints (7b) and (7c)).

For a VRP, Spoorendonk and Desaulniers (2010) showed empirically that clique inequalities reduce
the number of branch-and-bound nodes but increase the total run-time due to the additional dual
variables.

Subset-row Jepsen et al. (2008) developed another class of non-robust cuts, called the subset-row
inequalities, for master problems with a set packing structure. Subset-row cuts are Chvatal-Gomory
rank-1 cuts, de�ned as ∑

c∈C

⌊
1

k

∑
i∈S

aic

⌋
yc ≤

⌊
|S|
k

⌋
, (12)

where S ⊆ V and k ∈ {1, . . . , |S|}. In the special case of |S| = 3 and k = 2 (as well as others),
Constraint (12) reduces to Constraint (11) where

W =

{
c ∈ C :

⌊
1

2

∑
i∈S

aic

⌋
= 1

}
,

and therefore, is facet-de�ning. Unlike the clique inequalities, experiments on a VRP showed that the
subset-row cuts parameterized by |S| = 3 and k = 2 does improve computational run-time, despite
using a separation algorithm that enumerates all such subsets S.

4 �eoretical Contributions
�is section presents several theoretical contributions regarding constraints used in the branch-and-
cut-and-price model of the CCMCP.

4.1 Generalizing the TNT Constraints
�e TNT constraints were developed speci�cally for the case of K = 3. �ey are generalized to any
K ≥ 3 as follows. Let p = (i1, . . . , iK , iK+1) be a minimally cardinality-violated path of lengthK+1,
then Constraints (4a) and (4b) can be generalized to

K∑
j=1

xij ,ij+1
+ 3xiK+1,i1 + 2

K∑
j=2

xij ,i1 + 2xiK+1,i2 ≤ K + 1 (13a)

and
K∑
j=1

xij ,ij+1
+ 3xiK+1,i1 + 2

K∑
j=2

xiK+1,ij + 2xiK ,i1 ≤ K + 1. (13b)
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Proposition 2. Constraints (13a) and (13b) are valid for the CCMCP.

Proof. Notice that both constraints have
∑K

j=1 xij ,ij+1
+ 3xiK+1,i1 + 2xiK ,i1 + 2xiK+1,i2 in common

in the le� hand side. Hence, we rewrite Constraint (13a) as below and prove its validity by sequential
li�ing. Consider

K∑
j=1

xij ,ij+1 + αxiK+1,i1 + βxiK ,i1 + γxiK+1,i2 + δ

K−1∑
`=2

xi`,i1 ≤ K + 1

First, we consider li�ing α. When xiK+1,i1 = 1,
∑K

j=1 xij ,ij+1
≤ K − 2, otherwise a cardinality

violation is induced, hence α can be li�ed to 3.
When xiK ,i1 = 1, xiK+1,i1 = 0, and xiK ,iK+1

= 0, so
∑K

j=1 xij ,ij+1
=
∑K−1

j=1 xij ,ij+1
≤ K − 1,

and therefore β = 2.
When xiK+1,i2 = 1, clearly xi1,i2 = 0 and xiK+1,i1 = 0. When xiK ,i1 = 0, then

∑K
j=2 xij ,i1 ≤

K − 1, and hence γ = 2. When xiK ,i1 = 1, then
∑K−1

j=2 xij ,i1 ≤ K − 3, otherwise a cardinality
violation is induced, so γ = 2 as well.

Finally, we li� δ, If xi`,i1 = 1 for any ` = 2, . . . ,K−1, we have that xi`,`+1
= xiK ,i1 = xiK+1,i1 =

0. When xiK+1,i2 = 0,
∑`−1

j=1 xij ,ij+1
+
∑K

j=`+1 xij ,ij+1
≤ K − 1, so δ = 2. When xiK+1,i2 = 1,∑`−1

j=2 xij ,ij+1
+
∑K

j=`+1 xij ,ij+1
≤ K − 3 otherwise a cardinality violation is induced, hence δ = 2

as well. �is gives us Constraint (13a). �e proof for Constraint (13b) is similar.
We now consider li�ing η in the inequality below.

K∑
j=1

xij ,ij+1 + 3xiK+1,i1 + 2xiK ,i1 + 2xiK+1,i2 + η

K∑
`=3

xiK+1,i` ≤ K + 1

If xiK+1,` = 1 for any ` = 3, . . . ,K , we have that xi`−1,`
= xiK+1,1

= xiK+1,2
= 0. When xiK ,i1 = 0,∑`−2

j=1 xij ,ij+1
+
∑K

j=` xij ,ij+1
≤ K−1, so η = 2. Otherwise,

∑`−2
j=1 xij ,ij+1

+
∑K

j=` xij ,ij+1
≤ K−3

to avoid a cardinality violation, so η = 2 either way.

4.2 Sailboat Facets
Recall that the sailboat inequalities are facets of the convex hull of the integer points induced by the
two-index model described in Problem (2). A subset of their convexi�cations are also facets of the
master problem in branch-and-cut-and-price, as discussed below.

Proposition 3. For K = 3, the convexi�cation of Constraint (6) induced by a path p = (i1, i2, i3)
such that (i3, i1) 6∈ A is a facet of the convex hull of Constraints (7b) and (7c).

Proof. For K = 3 and a path p = (i1, i2, i3) such that (i3, i1) 6∈ A, Constraint (6) specializes to

xi1,i2 + xi1,i3 + xi2,i3 ≤ 1.

Convexifying this constraint leads to∑
c∈C

(ai1,i2c + ai1,i3c + ai2,i3c )yc ≤ 1. (14)

No cycle can simultaneously use the edges (i1, i2) and (i1, i3) as it would require the cycle to have
two outgoing edges from i1. Similarly, (i1, i3) and (i2, i3) cannot be used simultaneously. Since
K = 3, if (i1, i2) and (i2, i3) are used simultaneously, they must belong to the cycle (i1, i2, i3, i1),
which is not valid because (i3, i1) 6∈ A. Hence, (i1, i2) and (i2, i3) also cannot be used simultaneously.
Consequently, ai1,i2c + ai1,i3c + ai2,i3c ∈ {0, 1}, and so, Constraint (14) is a clique inequality and is
facet-de�ning on the master problem.
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5 Implementation Contributions
�is section presents several contributions on the implementation of the branch-and-cut-and-price
model of the CCMCP.

5.1 A Separator for the Sailboat Cuts for K = 3

�e sailboat cut specialized to K = 3 is

xi1,i2 + xi2,i3 + xi1,i3 − xi3,i1 ≤ 1 (15)

for some path p = (i1, i2, i3). Proposition 4 argues that this constraint can only be violated if xi1,i3 > 0.
Proposition 4. Constraint (15) is violated in the master problem only if xi1,i3 > 0.

Proof. In the case of xi1,i3 = 0 (or (i1, i3) 6∈ A), Constraint (15) realized as

xi1,i2 + xi2,i3 − xi3,i1 ≤ 1,

which cannot be violated. Given that the in-degree and out-degree for any node is at most 1, for any
cycle that uses arc (i2, i3), it must return to i2 either directly or via a third node. Hence, the sum of
the columns that involve arcs (i1, i2) and (i2, i3), when xi3,i1 = 0, is at most 1. Now, when xi3,i1 > 0,
the only feasible cycle that involves (i1, i2), (i2, i3), and (i3, i1) is the cycle formed by exactly these
three arcs. Consequently, xi1,i2 + xi2,i3 is at most 1 + xi3,i1 when xi1,i3 = 0. Hence, in order for a
violation, xi1,i3 > 0.

Algorithm 1 presents a novel separation algorithm for Constraint (15). In step 1, the separator
recovers a feasible solution x̂ to the linear relaxation of the two-index model equivalent to the solution
ŷ of the linear relaxation of the master problem by projection. By Proposition 4, step 2 loops through
all edges that skip i2 in p. Step 3 �nds a vertex i2 ∈ V that forms p. Step 4 computes the le�-hand side
of Constraint (15). Step 5 determines if the constraint is violated. If so, step 6 adds a row to the master
problem.

Algorithm 1: Separator for sailboat cuts when K = 3

1 x̂i,j ←
∑

c∈C ai,j
c ŷc for all (i, j) ∈ A

2 for all (i1, i3) ∈ A such that x̂i1,i3 > 0
3 for all i2 ∈ V such that (i1, i2) ∈ A ∧ (i2, i3) ∈ A
4 lhs← x̂i1,i2 + x̂i2,i3 + x̂i1,i3 − x̂i3,i1

5 if lhs > 1 then
6 create Constraint (15) induced by (i1, i2, i3)
7 end
8 end
9 end

5.2 A Separator for the Sailboat Cuts for K > 3

In the original work, sailboat inequalities were separated by exhaustively generating all cycles and
then determining whether they induce a constraint that is violated by the current solution of the linear
relaxation. We develop a new exact separator based on depth-�rst tree search to �nd paths p that
induce a violated sailboat cut.

�e pseudocode is provided in Algorithm 2. Step 1 calculates the same projection as before. Steps
2 and 3 construct a subgraph whose edges have positive value in the solution of the linear relaxation.
Step 4 loops through all vertices as the root in the depth-�rst search. Step 5 initializes an array storing
the vertices of p. Steps 6 and 7 initialize a stack of pairs of a vertex and its depth in the depth-�rst
search. Step 8 is the main loop. Step 9 pops an element o� the stack. Step 10 appends the vertex to the
partial path. Steps 11 to 14 create a row in the master problem if the vertices in the array p specify a
path inducing a violated sailboat inequality. Steps 15 to 17 continue the depth-�rst search while the
length is not violated.
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Algorithm 2: Separator for sailboat cuts when K > 3

1 x̂i,j ←
∑

c∈C ai,j
c ŷc for all (i, j) ∈ A

2 A′ ← {(i, j) ∈ A : x̂i,j > 0}
3 G′ ← (V,A′)
4 for all s ∈ V
5 p← empty array of length K
6 stack ← empty stack storing (i, k) ∈ V × {1, . . . ,K}
7 stack.push((s, 1))
8 while ¬stack.empty()
9 (i, k)← stack.pop()

10 p[k]← i
11 if k = K then
12 lhs←

∑K−1
s=1

∑K
t=s+1 x̂p[s],p[t] − x̂p[K],p[1]

13 if lhs > K − 2 then
14 create Constraint (6) induced by (p[1], . . . , p[K])
15 end
16 end
17 if k < K then
18 for all j ∈ V such that (i, j) ∈ A ∧ j 6∈ {p[1], . . . , p[k]}
19 stack.push((j, k + 1))
20 end
21 end
22 end
23 end

5.3 Separators for the Tournament and TNT Cuts
�e remaining cuts are separated using a depth-�rst search algorithm similar to Algorithm 2. In
previous work, they were also separated by exhaustively generating the path inducing the constraint
and then checking whether the constraint is violated.

5.4 A Heuristic Pricer
Recall that the objective value of the solution to the linear relaxation of the master problem is a valid
dual bound if and only if an exact pricer proves that every column not yet in C ′ has non-positive
reduced cost. Even though a complete pricer is necessary for obtaining a dual bound, faster and/or
polynomial-time heuristic pricers can be used to �nd columns with positive reduced cost since adding
any such column will change the basis, moving one step closer towards linear optimality. Only when
the heuristic pricers fail to �nd columns with positive reduced cost must a (usually exponential-time)
complete pricer be called to verify that no additional columns improve the objective value.

�e discussion below presents a cubic-time heuristic pricing algorithm, and proves that it is, in
fact, exact when K = 3. �e pricer �nds elementary cycles with positive reduced cost by solving
longest path problems on directed acyclic graphs (DAGs) using a label se�ing algorithm. �e pricer
loops through every vertex s ∈ V and a�empts to �nd a longest path from the source vertex s to a
duplicated sink vertex s in a position-expanded DAG Ḡ(s) induced by s.

�e linear-time longest path algorithm for a DAG is well-established, and hence, is not repeated
here. However, the graph Ḡ(s) upon which it is called is uniquely designed for the CCMCP. �e graph
Ḡ(s) is constructed by expanding the original graph G in a manner similar to the time-expanded
graphs that appear in many optimization problems. For a vertex s ∈ V , de�ne Ḡ(s) = (V̄ (s), Ā(s)),
where

V̄ (s) = {(s, 1)}∪
{(i, k) : i > s, i ∈ V, k ∈ {2, . . . ,K}∪
{(s,K + 1)}
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Figure 5: Example of a graph G and Ḡ(2) for K = 3.

and
Ā(s) = {((s, 1), (i, 2)) : i > s, (s, i) ∈ A}∪

{((i, k), (j, k + 1)) : i > s, j > s, (i, j) ∈ A, k ∈ {2, . . . ,K − 1}}∪
{((i, k), (s,K + 1)) : i > s, (i, s) ∈ A, k ∈ {2, . . . ,K}}.

Associate with every arc ((i, k), (j, k+ 1)) ∈ Ā(s) a weight w̄((i,k),(j,k+1)) = w̄i,j . Figure 5 illustrates
an example of constructing Ḡ(s). Restricting the search to only vertices numbered greater than the
source vertex ensures that di�erent permutations of the same cycle are not repeated (Johnson, 1975).

�e pricer then simply �nds a longest path from the source (s, 1) to the sink (s,K + 1). By
exploiting the topological ordering of the acyclic structure, every vertex and every edge is considered
exactly once. �erefore, a longest path can be found in time linear in the number of vertices and edges
in Ḡ(s), i.e., quadratic time O(V K +AK) due to the position-expansion. Since the heuristic pricer
loops through every source vertex s ∈ V , it has overall cubic complexity O(V 2K + V AK).

�e heuristic pricer may �nd paths that visit (i, k) and (i, k′) for some k′ 6= k, i.e., a non-elementary
cycle that visits i more than once. In this case, it simply discards the cycle; therefore, it is incomplete.
�e proposition below argues that cycles are never discarded when K = 3, and hence, the heuristic
pricer is actually complete for K = 3.

Proposition 5. �e heuristic pricer is exact for K = 3.

Proof. In the case of K = 3, the algorithm begins by expanding from the source (s, 1) towards some
vertex (i, 2), i.e., the vertex i in the second position of a cycle. Next, it either closes the cycle by
expanding (i, 2) to the sink (s, 4) or continues to some other vertex (j, 3), at which point it can only
expand to the sink. Since (i, i) 6∈ A, then j 6= i, and hence, i and j appear at most once in the cycle.
�erefore, the heuristic pricer exactly solves Problem (8) when K = 3.

6 �e Implementation
�e implementation of the branch-and-cut-and-price model of the CCMCP includes all the components
introduced in Sections 4 and 5. �is section discusses the remaining components not yet presented.
�ese components are not novel.

6.1 A Complete Pricer
We implement a basic exact pricer that solves the longest path problem with resource constraints using
exhaustive enumeration similar to the pricer invented by Abraham et al. (2007). It �rst computes the
reduced cost w̄i,j of every arc (i, j) ∈ A. Next, it loops through each vertex s ∈ V as the source. Let
G̃(s) = (Ṽ , Ã) be a subgraph of G where Ṽ = {s, . . . , |V |} and Ã = {(i, j) ∈ A : i, j ∈ Ṽ }. �at is,
G̃(s) contains the vertices of G with an index at least s.
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�e pricer then searches G̃(s) using a trie rooted at s. Whenever s appears as a leaf with depth
between 3 and K , the path from the root to the leaf represents a cycle c = (s, . . . , s). If the sum of the
reduced costs of its edges is positive, it can potentially improve the current master problem solution,
and hence, is added as a new column. Using depth-�rst search, every possible cycle is examined for a
positive reduced cost.

6.2 Branching Rule
It is well-known that branching on the cycle variables of the Dantzig-Wolfe master problem causes
considerable di�culty in the pricing problem. �erefore, it is common to branch on the variables of
the original arc-based model. We implement a branching rule that branches on these arc variables
using pseudocosts (Benichou et al., 1971; Achterberg et al., 2005).

Every arc (i, j) ∈ A is associated with a down pseudocost and an up pseudocost, which represent
some measure of the improvement to the dual bound upon �xing xi,j = 0 and xi,j = 1 respectively.
A�er optimizing the linear relaxation of the root node, the pseudocosts are initialized using strong
branching, which tentatively branches on fractional arc to compute their down and up pseudocosts.
Since there may be a large number of fractional arcs, we perform strong branching only on a subset of
the arcs, with the down and up pseudocosts of the remaining arcs initialized to their average value.

7 Experimental Results
�is section presents experimental results.

7.1 Experiments Set-up
�e branch-and-cut-and-price (BCP) model is implemented in SCIP 6.0.2 with CPLEX 12.9 as the
underlying linear programming solver. �e model includes the TNT, tournament and sailboat inequali-
ties, the heuristic pricer introduced in Section 5.4, the exact pricer mentioned in Section 6.1, and the
pseudocosts arc branching rule presented in Section 6.2. �e exact pricer is ignored if K = 3 since the
heuristic pricer is proven to be complete. �e number of fractional arcs on which strong branching
occurs is set as a parameter to 100.

BCP is compared against the state-of-the-art PICEF and PIEF. �e implementation of PICEF and PIEF
are retrieved from the original authors. It calls Gurobi 7.5.2 as a black-box mixed integer programming
solver. Note that SCIP is roughly eight to nine times slower than Gurobi on benchmark problems
according to the evaluations by Mi�elmann (2019).

�e three models are evaluated on the set of instances generated by Dickerson et al. (2012) and made
publicly available on the PrefLib repository (Ma�ei and Walsh, 2013). �ese instances are generated to
capture the essence of real kidney exchange problems. Eighty of these instances are applicable to the
CCMCP since the others involve chains, i.e., they are instances for the CCCCP. �e 80 instances range
from 16 to 2048 vertices and vary between 10% to 32% arc density. Each instance is solved for K = 3
and K = 4, totaling 160 runs.

All models are run on a single thread on an Intel Xeon E5-2660 V3 CPU at 2.6 GHz. Each run is
given a time limit of 30 minutes and a memory limit of 4 GB.

7.2 Results and Analysis
Figure 6 plots the percentage of the instances optimized a�er a particular duration. On K = 3, BCP
solves all 80 instances in under one minute. PICEF solves 65 instances, with the last of these 65
instances solved a�er 21 minutes. PIEF solves 64 instances, with the last of these solved a�er 13
minutes. On K = 4, BCP again outperforms PICEF and PIEF by solving 69 instances compared to 50
by both PICEF and PIEF. Overall, BCP solves more instances, despite the nearly order-of-magnitude
di�erence in performance between SCIP and Gurobi.

�e instances with 256 or fewer vertices appear to be trivial: all three models solve them in a few
seconds at most. Table 1 compares several statistics over the instances with 512 or more vertices for
K = 3.
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Figure 6: Percentage of instances solved a�er a given duration. Higher is be�er.

Generating the large matrix in PIEF and PICEF caused major issues. PIEF and PICEF failed to build
the model within one hour and was subsequently terminated respectively on 16 and 12 of the instances.
�is issue did not arise in BCP, which begins with zero columns.

On the instances that PIEF and PICEF solve, they are usually solved during presolve or in the root
node. However, this is still very time-consuming for the larger instances. In particular, PICEF scales
very poorly, despite not including the time taken to generate all cycles in the statistics reported in the
table. BCP solves all instances except instance 276 in several seconds, and almost always at the root
node, which indicates that the Dantzig-Wolfe reformulation a�ains a strong linear relaxation.

For K = 4, PIEF and PICEF failed to construct the matrix on all the instances with 512 or more
vertices. Table 2 shows the statistics for BCP, which successfully solves all but one of the instances with
up to 1024 vertices, and times out on all instances with 2048 vertices. Even though BCP outperforms
PIEF and PICEF in general, it is clear that BCP cannot solve huge instances.

A very signi�cant �nding is that the complete pricer did not �nd a column with positive reduced
cost at any stage of the runs. �is indicates that the heuristic pricer explores a su�ciently large portion
of the search space, and that the exact pricer only needs to verify that the heuristic pricer found all
fractionally-optimal columns. �e reason for such an excellent result is not yet understood.

It was hoped that the various families of cuts would substantially tighten the linear relaxation
but this is not the case: the tournament, TNT and sailboat cuts are rarely separated. Of the 160 runs,
cuts were separated in only 23. For these 23 runs, the number of rows generated in each family, and
also the number of columns, is reported in Table 3. Of the three families of inequalities, the sailboat
inequalities are separated most o�en. �is �nding corroborates with the results by Mak-Hau (2018),
which concluded that the tournament and TNT cuts are ine�ective when the sailboat cuts are present
in the two-index model. However, a new �nding is that even the sailboat cuts appear to provide
minimal bene�ts in the Dantzig-Wolfe reformulation, presumably due to the tight relaxation.

8 Future Directions
As the seminal study into branch-and-cut-and-price for the CCMCP, many directions for future work
are available.

�e outstanding performance of the heuristic pricer indicates that be�er pricing algorithms warrant
further investigation. �is research direction is particular important since the bo�leneck in column
generation usually lies in the pricing algorithm.
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PIEF PICEF BCP

Instance |V | Density Status Time Nodes Obj Bound Status Time Nodes Obj Bound Status Time Nodes Obj Bound

191 512 27.03% Optimal 11 1 351 351 Optimal 17 1 351 351 Optimal 7 6 351 351
192 512 27.50% Optimal 7 1 337 337 Optimal 16 1 337 337 Optimal 0 1 337 337
193 512 24.31% Optimal 7 1 300 300 Optimal 161 1 300 300 Optimal 0 1 300 300
194 512 25.93% Optimal 9 1 313 313 Optimal 214 1 313 313 Optimal 0 1 313 313
195 512 25.78% Optimal 8 0 322 322 Optimal 212 1 322 322 Optimal 0 1 322 322
196 512 24.65% Optimal 8 1 313 313 Optimal 130 0 313 313 Optimal 0 1 313 313
197 512 25.60% Optimal 9 1 334 334 Optimal 17 1 334 334 Optimal 0 1 334 334
198 512 25.12% Optimal 6 0 332 332 Optimal 14 1 332 332 Optimal 0 1 332 332
199 512 24.67% Optimal 9 1 313 313 Optimal 16 1 313 313 Optimal 0 1 313 313
200 512 24.09% Optimal 7 0 312 312 Optimal 18 1 312 312 Optimal 0 1 312 312

231 1024 25.82% Failed – – – – Optimal 210 1 658 658 Optimal 0 1 658 658
232 1024 25.53% Failed – – – – Optimal 245 1 662 662 Optimal 0 1 662 662
233 1024 25.07% Failed – – – – Timed Out 1800 0 567 12974210 Optimal 0 1 635 635
234 1024 24.79% Optimal 777 1 641 641 Optimal 1267 1 641 641 Optimal 0 1 641 641
235 1024 25.51% Failed – – – – Failed – – – – Optimal 0 1 660 660
236 1024 25.39% Optimal 819 1 655 655 Failed – – – – Optimal 0 1 655 655
237 1024 24.09% Optimal 422 1 597 597 Optimal 1046 1 597 597 Optimal 0 1 597 597
238 1024 25.39% Failed – – – – Timed Out 1800 0 612 12556027 Optimal 0 1 671 671
239 1024 25.80% Failed – – – – Timed Out 1800 0 606 13078507 Optimal 0 1 673 673
240 1024 24.63% Optimal 219 1 639 639 Optimal 1309 1 639 639 Optimal 0 1 639 639

271 2048 24.59% Failed – – – – Failed – – – – Optimal 2 1 1284 1284
272 2048 24.39% Failed – – – – Failed – – – – Optimal 2 1 1249 1249
273 2048 23.84% Failed – – – – Failed – – – – Optimal 2 1 1232 1232
274 2048 23.91% Failed – – – – Failed – – – – Optimal 1 1 1242 1242
275 2048 25.02% Failed – – – – Failed – – – – Optimal 2 1 1301 1301
276 2048 25.13% Failed – – – – Failed – – – – Optimal 33 8 1311 1311
277 2048 25.91% Failed – – – – Failed – – – – Optimal 1 1 1316 1316
278 2048 24.24% Failed – – – – Failed – – – – Optimal 1 1 1268 1268
279 2048 24.81% Failed – – – – Failed – – – – Optimal 2 1 1271 1271
280 2048 25.33% Failed – – – – Failed – – – – Optimal 1 1 1295 1295

Table 1: Statistics comparing PIEF, PICEF and BCP on the instances with 512 or more vertices and K = 3. For each instance, the table reports the instance ID, the
number of vertices, the arc density, and for each of the models, the status, the total run-time in seconds, the number of branch-and-bound nodes, the primal (lower)
bound and the dual (upper) bound.
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�e pricers presented in this paper and in every other paper lack dominance rules. Without
dominance rules, every cycle must be excluded either via bounds or via enumeration (e.g., Irnich and
Desaulniers, 2005). It is well-established in the literature for VRPs that generating a large number
of columns in each round of pricing together with strong dominance rules are essential for high-
performance. One CCMCP pricer from the literature uses mixed integer programming, which provides
bounds but cannot generate a large number of columns. Other researchers, including us, use a tree
search that enumerates every possible cycle without considering bounds. Dominance rules will prevent
every cycle from being examined. Preliminary experiments with some dominance rules showed that it
was slower than the depth-�rst search pricer due to very few opportunities for dominance since the
paths are very short, unlike VRPs. For this reason, developing dominance rules that are e�ective in
practice could be di�cult.

Other families of cuts should also be studied. �e tournament, TNT and sailboat inequalities
are discovered in previous work by studying the polyhedron of an arc-based formulation. �ese
cuts become robust cuts in the master problem a�er applying Dantzig-Wolfe reformulation. �e
experiments show that many instances are solved at the root node without any cuts being separated,
indicating that the relaxation is very tight, and hence, suggests that robust cuts in general are unlikely
to prove bene�cial. �e natural avenue is to devise non-robust cuts, i.e., inequalities over the set
packing master problem. Preliminary experiments evaluating the impact of the subset-row cuts
(Constraint (12)) using the same naive separator from the original article, which enumerates all subsets
S such that |S| = 3, found that the inequalities drastically worsened performance. Since the subset-row
inequalities parametrized by |S| = 3 reason about incompatibilities across the columns that use the
three vertices in S, the cuts are not expected to be e�ective because the CCMCP naturally has small
values of K , which is exactly the number of non-zero coe�cients in each column (before additional
rows). Nevertheless, other non-robust cuts should be developed as they can reason about the set
packing structure.

Branching rules are another avenue for future research. Preliminary experiments on a Ryan-Foster
branching rule (Foster and Ryan, 1976) showed worse performance in general due to the additional
considerations required in the pricing problem. E�cient implementations of pricing algorithms that
can tolerate such branching rules should be considered in future work.

9 Conclusion
�is paper implemented the �rst branch-and-cut-and-price (BCP) model of the Cardinality-constrained
Multi-cycle Problem (CCMCP), which is one of the two graph optimization problems used in modeling
kidney exchange. �e model includes a new heuristic pricing algorithm and new separators for the
convexi�cations of existing inequalities over arc-based formulations. �is paper also generalized a
family of inequalities developed in prior work and presented minor polyhedral results demonstrating
that a subset of one of the convexi�ed families of cuts, namely the sailboat cuts, are facet-de�ning on
the master problem.

BCP, which includes all the components described above, is shown to empirically outperform
the state-of-the-art position-indexed chain-edge formulation (PICEF) and the position-indexed edge
formulation (PIEF). BCP solves 149 of 160 benchmark instances, compared to 115 by PICEF and 114 by
PIEF. BCP achieves these remarkable results despite the eight to nine times performance di�erence in
comparing the academic solver SCIP against the commercial solver Gurobi.

An inconvenient conclusion from this study is that the various families of robust cuts are not as
important as hoped. Very few of the constraints are separated in practice, indicating the tightness of
the Dantzig-Wolfe reformulation. Future work should explore the impact of non-robust inequalities
since recent advances in Vehicle Routing Problems are a�ributed to the development of new families
of non-robust cuts, e.g., Costa et al. (2019).
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BCP

Instance |V | Density Status Time Nodes Obj Bound

191 512 27.03% Optimal 24 1 352 352
192 512 27.50% Optimal 26 1 337 337
193 512 24.31% Optimal 18 1 300 300
194 512 25.93% Optimal 22 1 313 313
195 512 25.78% Optimal 23 1 322 322
196 512 24.65% Optimal 15 1 313 313
197 512 25.60% Optimal 22 1 334 334
198 512 25.12% Optimal 19 1 332 332
199 512 24.67% Optimal 21 1 313 313
200 512 24.09% Optimal 23 1 312 312

231 1024 25.82% Optimal 1308 1 659 659
232 1024 25.53% Optimal 661 1 662 662
233 1024 25.07% Timed Out 1800 2 633 635
234 1024 24.79% Optimal 508 1 641 641
235 1024 25.51% Optimal 678 1 660 660
236 1024 25.39% Optimal 652 1 655 655
237 1024 24.09% Optimal 470 1 597 597
238 1024 25.39% Optimal 673 1 672 672
239 1024 25.80% Optimal 691 1 673 673
240 1024 24.63% Optimal 558 1 639 639

271 2048 24.59% Timed Out 1800 1 1196 –
272 2048 24.39% Timed Out 1800 1 1212 –
273 2048 23.84% Timed Out 1800 1 1154 –
274 2048 23.91% Timed Out 1800 1 1202 –
275 2048 25.02% Timed Out 1800 1 1205 –
276 2048 25.13% Timed Out 1800 1 1220 –
277 2048 25.91% Timed Out 1800 1 1255 –
278 2048 24.24% Timed Out 1800 1 1235 –
279 2048 24.81% Timed Out 1800 1 1235 –
280 2048 25.33% Timed Out 1800 1 1289 –

Table 2: Statistics for BCP on the instances with 512 or more vertices and K = 4.
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K Instance Columns Tournament TNT Sailboat

3 118 345 0 0 2
3 151 616 0 0 1
3 153 703 0 0 2
3 158 746 0 1 2
3 191 1582 8 16 4
3 192 1498 0 0 1
3 195 1318 0 0 2
3 197 1438 0 0 1
3 231 3235 4 8 5
3 233 3085 0 0 1
3 234 3651 0 0 1
3 237 2866 0 0 4
3 238 3329 3 2 3
3 240 3584 0 0 2
3 271 6782 0 0 1
3 272 7833 0 0 1
3 273 6752 0 0 2
3 275 7212 0 0 1
3 276 7079 0 0 1
3 279 6230 0 0 3

4 35 56 0 0 1
4 75 128 0 0 2
4 231 3722 0 0 1

Table 3: Number of columns found by the heuristic pricer and the number of cuts generated.
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