
New Valid Inequalities in Branch-and-Cut-and-Price for
Multi-Agent Path Finding

Edward Lam,1,2 Pierre Le Bodic1

1Monash University, Melbourne, Australia
2CSIRO Data61, Melbourne, Australia
{edward.lam, pierre.lebodic}@monash.edu

Abstract
BCP, a state-of-the-art algorithm for optimal Multi-agent Path
Finding, uses the branch-and-cut-and-price framework to de-
compose the problem into (1) a master problem that selects a
set of collision-free low-cost paths, (2) a pricing problem that
adds lower-cost paths to the master problem, (3) separation
problems that resolve various kinds of conflicts in the master
problem, and (4) branching rules that split the nodes in the
high-level branch-and-bound search tree. This paper focuses
on the separation aspects of the decomposition by introduc-
ing five new classes of fractional conflicts and valid inequali-
ties that remove these conflicts to tighten the linear program-
ming relaxation in the master problem. Experimental results
on 12820 instances across 16 maps indicate that including
the five families of inequalities allows BCP to solve an addi-
tional 585 instances, optimize the same instances 41% faster,
and solve 2068 more instances than CBSH-RM and 157 more
than Lazy CBS.

Introduction
Given a group of cooperating agents, each with a start and
goal position, the Multi-agent Path Finding (MAPF) prob-
lem attempts to find a path for all agents from their start
positions to their goal positions such that the paths are free
of collisions and some measure of overall cost is minimized.

Recently, Lam et al. (2019) introduced BCP, an opti-
mal MAPF algorithm that uses the branch-and-cut-and-price
framework from mathematical programming to decompose
MAPF into a number of easier subproblems. BCP is a two-
level algorithm that consists of four key components: (1) a
pricing problem that generates paths for each agent indepen-
dently, (2) separation problems that resolve several kinds of
conflicts, (3) a master problem that assembles the paths and
conflict resolutions together in a linear programming prob-
lem, and (4) branching rules that partition the search space
in the high-level branch-and-bound search tree.

Empirical results indicate that CBSH-RM (Li et al. 2019)
outperformed a basic implementation of BCP. However, the
addition of valid inequalities—special constraints that rea-
son about rectangle and corridor conflicts—allowed BCP to
consistently solve instances far larger than CBSH-RM.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This paper introduces five new families of valid inequal-
ities, each reasoning about a different kind of conflict. Like
the rectangle and corridor reasoning before, these five types
of conflicts are redundant in the sense that BCP is capable
of solving MAPF without them; but their inclusion allows
BCP to solve ever larger instances. Comprehensive experi-
ments on 12820 instances across 16 maps from two sets of
standard benchmarks indicate that equipping BCP with the
five new families of inequalities enables it to solve an addi-
tional 585 instances, and outperform CBSH-RM and Lazy
CBS (Gange, Harabor, and Stuckey 2019) by solving 6375
instances in total; compared to 4307 by CBSH-RM and 6218
by Lazy CBS. Adding the five classes of cuts also permits
BCP to optimize the same instances in 41% less time. The
remainder of this paper formalizes the five new families of
cuts and analyzes the experimental results in detail.

Problem Definition
This paper considers the same grid-based problem as Lam
et al. (2019). The notation is reviewed as follows.

Let L ⊆ Z+ × Z+ be the set of all locations on the grid.
A location l ∈ L is a pair of space coordinates l = (x, y) ∈
Z+ × Z+. A location l2 = (x2, y2) is a neighbor of l1 =
(x1, y1) if and only if |x2−x1|+|y2−y1| = 1. The problem
is defined on a time-expanded directed acyclic graph G =
(V,E). A vertex v ∈ V is a pair v = (l, t), where l ∈ L
is a location and t ∈ Z+ is a time step. There exists an
edge e = (v1, v2) = ((l1, t1), (l2, t2)) ∈ E if t2 = t1 + 1
and either l1 = l2 (a wait action) or l2 is a neighbor of l1
(a move action). Denote the reverse of an edge e as e′ =
((l2, t1), (l1, t2)).

Define A as the set of agents. Every agent a ∈ A has a
start location sa ∈ L and a goal location ga ∈ L, which
may coincide. A path p of length k ∈ Z+ for agent a ∈ A
is a sequence of k locations (l0, l1, l2, . . . , lk−1) such that
l0 = sa, lk−1 = ga, and ((lt, t), (lt+1, t + 1)) ∈ E for all
t ∈ {0, . . . , k−2}. The path p visits the vertices (lt, t) where
t ∈ {0, . . . , k−1} and stays at its goal location after the path
concludes, i.e., p also visits the vertices (ga, t) for all t ∈
{k, . . .}. The path p traverses the edges ((lt, t), (lt+1, t+1))
for all t ∈ {0, . . . , k − 2}. The cost cp of a path is equal to
its length.

An optimal solution to MAPF is a set of paths, one for
each agent a ∈ A, that minimizes the sum of path lengths
such that each vertex in V is visited at most once, and each
edge in E and its reverse are traversed at most once, thus
avoiding vertex conflicts and edge conflicts, respectively.

Related Work
This section reviews several optimal algorithms for MAPF.

Conflict-based Search
Conflict-based search (CBS), designed by Sharon et al.
(2015), is a tree-search framework for MAPF. CBS begins
with a binary search tree that only contains the root node. At
the root node, CBS finds the shortest-distance path for ev-
ery agent independently using A*. If there are no conflicts
among the paths, this set of paths is optimal and CBS termi-
nates. Otherwise, CBS selects a conflicting (time-indexed)
vertex or edge between two agents a1 and a2, and splits the
current node into two children nodes. In the first child, agent
a1 is prevented from using the conflicting resource by call-
ing A* to find a replacement path for a1 that avoids the re-
source. In the second child, agent a2 is similarly constrained
and its path is replanned.

The sum of path costs of all agents at any given node pro-
vides a lower bound to any solution in its subtree. The tree
search continues by selecting a node with the least lower
bound, and either finding that it has no conflicts, and, hence
produces an optimal solution, or that it must be split again
into two more children nodes. This process continues until
a solution is found. The first solution CBS finds is optimal,
and hence, it is not an anytime algorithm.

Building on the basic CBS algorithm, Felner et al. (2018)
developed CBSH, which uses heuristics to better select
nodes in the search tree. Later, Li et al. (2019) invented rect-
angle symmetry reasoning for their CBSH-RM algorithm,
which dramatically improved the performance of CBSH.

Gange, Harabor, and Stuckey (2019) proposed Lazy CBS,
which implements conflict analysis from Boolean satisfiabil-
ity (SAT) (Marques Silva and Sakallah 1996) and constraint
programming (CP) (Ohrimenko, Stuckey, and Codish 2009).
Lazy CBS records the change in costs from forcing an agent
to avoid a resource upon branching. It then analyzes this in-
formation to learn that certain combinations of branchings
can never be optimal, and consequently prunes all nodes,
even those from disparate parts of the search tree, that con-
tain these branchings.

Compilation-based Solvers
MAPF can be reduced to an instance of another problem,
such as CP (Ryan 2010), answer set programming (Er-
dem et al. 2013), SAT (Surynek et al. 2016b; 2016a) and
mixed-integer programming (MIP) (Yu and LaValle 2013).
A model of MAPF must first be created in order to solve
it using such technology. SAT models consist of variables
that store values representing the actions of the agents, and
clauses that express relationships between the variables.
CP and MIP models contain similar variables but use con-
straints, instead of clauses, to communicate restrictions on
the possible values of the variables.

Then, solving MAPF is as simple as solving the model,
which can be done easily (but not necessarily quickly) using
existing solvers. Furthermore, by formulating MAPF as an
instance of another problem, the latest advances in solver
techniques are immediately applicable. All that is needed is
a “good” model be created, leaving the solving process to
specialized software packages.

Branch-and-cut-and-price
Branch-and-cut-and-price is a general framework for
decomposing a combinatorial optimization problem
into a sequence of easier subproblems (Desrosiers
and Lübbecke 2010; Lübbecke and Desrosiers 2005;
Desaulniers, Desrosiers, and Solomon 2005;
Barnhart et al. 1998). Lam et al. (2019) applied branch-and-
cut-and-price to MAPF and named their implementation
BCP. Note that while BCP is a MIP decomposition tech-
nique, it is different than a direct MIP compilation because
instantiating BCP for MAPF is not as simple as writing a
MIP model and inputting it to a MIP solver, as we will see
in the next section and throughout the paper.

BCP
BCP consists of four main components: a master problem,
separation problems, a pricing problem, and branching rules.

Master Problem
Given a set of possible paths for every agent, the master
problem uses LP to minimize the sum-of-costs by selecting
a path or a set of fractional paths for every agent such that
the paths are (fractionally) free of collisions.

Assume that every agent a ∈ A has a pool Pa of candidate
paths. For all a ∈ A, p ∈ Pa, define λp ∈ [0, 1] as a variable
representing the proportion of selecting path p. Because the
master problem is solved using LP, λp can take fractional
values. The master problem begins as the LP model

min
∑
a∈A

∑
p∈Pa

cpλp (1)

subject to∑
p∈Pa

λp = 1 ∀a ∈ A, (2)

λp ≥ 0 ∀a ∈ A, p ∈ Pa. (3)

Objective Function (1) minimizes the total cost of the se-
lected paths. Constraint (2) ensures that every agent uses
exactly one path. Constraint (3) are the non-negativity con-
straints, which disallow negative proportions of a path.

As currently stated, the master problem faces two issues.
First, it can select paths that exhibit vertex and edge con-
flicts since they are not yet disallowed. Second,

⋃
a∈A Pa

may not yet contain the paths of an optimal solution. BCP
solves the first problem by separation: it checks for conflicts
in the subset of paths selected by the master problem and
resolves them by adding constraints to the master problem.
The second problem is solved by pricing: BCP solves a pric-
ing problem to fill Pa with increasingly shorter paths, if they

exist. BCP iteratively calls the separation and pricing prob-
lems to incrementally build the LP model until there are
enough constraints and paths to prove optimality. Because
the master problem is solved using LP, fractional λp values
in the solution must be removed by branching.

Resolving Edge Conflicts
Let ype ∈ {0, 1} be a constant that indicates if path p tra-
verses edge e ∈ E. Also define ype = 0 if e 6∈ E. Edge
conflicts are resolved by dynamically adding the constraints∑
a∈A

∑
p∈Pa

(ype + ype′)λp ≤ 1 ∀e ∈ E. (4)

Resolving Vertex Conflicts
Let v = ((x, y), t) ∈ V . For all t ∈ {1, . . .}, define

xpv = yp(((x−1,y),t−1),v) + yp(((x+1,y),t−1),v)+

yp(((x,y−1),t−1),v) + yp(((x,y+1),t−1),v)+

yp(((x,y),t−1),v) ∈ {0, 1}

as a constant that indicates whether path p visits vertex v ∈
V . Vertex conflicts are resolved by adding the constraints∑
a∈A

∑
p∈Pa

xpvλp ≤ 1 ∀v = (l, t) ∈ V : t ∈ {1, . . .}. (5)

Constraints are not necessary at time 0 because the start lo-
cations are assumed to be unique.

Finding Shorter Paths
The pool Pa of candidate paths for every agent a is incre-
mentally filled by the pricing problem, which either (1) finds
one or more paths that could potentially improve upon the
current solution to the master problem, or (2) declares that
no improving path exists.

For every agent a, the pricing problem uses A* to solve
the single-agent shortest path problem with a modified ob-
jective function that measures the cost-effectiveness of a us-
ing a resource (vertex or edge) against all other agents using
the same resource in the current solution of the master prob-
lem. Whenever a constraint of the form∑

a∈A

∑
p∈Pa

(∑
e∈Ea

ype

)
λp ≤ k, (6)

with Ea ⊆ E, k ∈ Z+ and LP dual variable π ≤ 0, is added
to the master problem, the objective function in the pricing
problem is modified to penalize agent a traversing any edge
e ∈ Ea with a cost equal to −π ≥ 0. In particular, this
occurs whenever adding one of Constraint (4) or (5) to the
master problem. We refer the reader to (Lam et al. 2019) for
a detailed presentation.

Branching Rules
Unlike other approaches such as CBS, BCP uses LP to solve
the master problem, and hence, frequently encounters frac-
tional solutions, in which at least one path is selected with a
non-integer proportion. For example, given an agent a ∈ A

and two paths p1, p2 ∈ Pa, we can have λp1 = λp2 = 1
2 .

The master problem often finds fractional solutions as they
usually have a lower sum-of-costs than a solution with only
integral proportions. The role of the branching rules is to
split the problem into two subproblems such that the cur-
rent fractional solution appears in neither subproblem, so
that eventually, the leaves of the search tree only contain in-
tegral solutions. We use the same branching rules as Lam et
al. (2019).

Fractional Conflicts
As currently described, BCP will solve MAPF optimally.
However, it contains many fractional solutions, which
weaken the lower bound. Fractional solutions can be re-
moved by targeting specific kinds of fractional conflicts,
which are conflicts not forbidden by Constraints (5) or (4)
under some fractional assignment. For instance, a vertex can
be used by two paths, each assigned a proportion of 1

2 ; there-
fore, Constraint (5) is satisfied, and the fractional assignment
is valid for the master problem (but not MAPF).

Fractional conflicts are removed by adding redundant
constraints, called valid inequalities or cuts, to the master
problem. Cuts are never violated in an integral solution valid
for MAPF, but merely prune fractional solutions. Valid in-
equalities are constraints no different to the constraints en-
forcing vertex and edge conflicts, and they are found by solv-
ing separation problems in exactly the same way.

BCP currently reasons about two types of fractional con-
flicts: rectangle (Li et al. 2019) and corridor. We refer the
reader to the original work for further details. The main con-
tributions of this article are five new classes of fractional
conflicts designed to further improve the LP lower bound.

Five New Classes of Fractional Conflicts
This section presents the main contributions. The first four
types of fractional conflicts are resolved using constraints of
the form given in Constraint (6), whereas the last constraint
has a different structure.

Wait-Edge Conflicts
An edge conflict (Constraint (4)) permits an edge or its
reverse to be used by at most one agent. Wait-edge con-
flicts generalize the edge conflicts by also prohibiting a
wait within the same constraint. Figure 1 shows an edge
e = ((l1, t), (l2, t+ 1)), its reverse e′ = ((l2, t), (l1, t+ 1))
and another edge ewait = ((l1, t), (l1, t + 1)) that is incom-
patible with both e because of the vertex conflict at (l1, t)
and with e′ because of the vertex conflict at (l1, t+1). Since
the three edges are mutually incompatible, at most one from
{e, e′, ewait} can be used. Then, the wait-edge conflict con-
straints are∑
a∈A

∑
p∈Pa

(
ype + ype′ + ypewait

)
λp ≤ 1 ∀e. (7)

Example 1. Table 1 provides an example of a fractional so-
lution removed by a wait-edge conflict constraint. Suppose
that agents 1, 2 and 3 are using paths p1, p2 and p3 respec-
tively, each with fractional value 1

2 . Under the “Variables”

e l2

ewait

l1
e′

Figure 1: A wait-edge conflict.

Time Variables Constraint LHS
τ p1 p2 p3 (5)|l1 (5)|l2 (4)|e (7)|e
t l1 l2 l1 1 1

2 1 3
2

t+ 1 l2 l1 l1 1 1
2 – –

Table 1: Example of a violated wait-edge constraint.

heading, the table shows the location visited by each path at
times t and t+ 1: p1 moves from l1 to l2 using e, p2 moves
from l2 to l1 using e′, and p3 stays at l1.

The values of the left-hand side (LHS) of Constraints (4),
(5) and (7) at different times and locations are listed under
the heading “Constraint LHS”. From the table, we can read
that p1 and p3 both use location l1 at time τ = t. As both
paths are equal to 1

2 , the LHS of Constraint (5) is equal to 1,
as shown under (5)|(l1,τ).

The table shows that Constraints (4) and (5) have a LHS
less than or equal to 1; so choosing half of p1, p2 and p3
satisfies the vertex and edge conflict constraints, but Con-
straint (7) is violated with a LHS of 3

2 . Removing wait-edge
conflicts tightens the master problem because it removes
fractional solutions that are otherwise feasible.

Constraint (7) contains all the terms in Constraint (4);
hence, it is strictly stronger and can completely replace Con-
straint (4).

Unlike Constraint (4), Constraint (7) is asymmetric since
swapping l1 and l2 results in a different constraint. This can-
not be reconciled by, e.g., including the edge ((l2, t), (l2, t+
1)) in Constraint (7) since this edge is compatible with ewait.

Wait-Delay Conflicts
A wait-edge conflict spans all agents due to the summation
over a ∈ A in Constraint (7). Contrastingly, wait-delay con-
flicts only cover a pair of agents a1, a2 ∈ A, a2 6= a1. Con-
sider the example in Figure 2. Agent a2 is attempting to visit
l1 = (x, y) at times t or t+1 but is impeded by another agent
a1 waiting at l1, i.e., traversing e1 = ((l1, t), (l1, t+1)). Let

E2 = {((l1, t− 1), (l1, t)),

(((x− 1, y), t− 1), (l1, t)),

(((x+ 1, y), t− 1), (l1, t)),

(((x, y − 1), t− 1), (l1, t)),

(((x, y + 1), t− 1), (l1, t)),

(((x− 1, y), t), (l1, t+ 1)),

(((x+ 1, y), t), (l1, t+ 1)),

(((x, y − 1), t), (l1, t+ 1)),

(((x, y + 1), t), (l1, t+ 1))} ∩ E.

The first five edges of E2 lead into (l1, t), and the last four
edges lead into (l1, t+ 1) from an adjacent location; hence,

Time Variables Constraint LHS
τ p1 p21 p22 (5)|l1 (5)|l2 (4)|l1,l2 (8)|e1

t− 1 l1 l2 l1 1 1
2 1 –

t l1 l1 l2 1 1
2 1 3

2
t+ 1 l1 l2 l1 1 1

2 – –

Table 2: Example of a violated wait-delay constraint.

agent a2 can use at most one edge from E2. Note that E2

excludes ((l1, t), (l1, t + 1)) because this edge is compati-
ble with the first five edges. Since a1 traversing e1 and a2
traversing any edge e2 ∈ E2 is incompatible, the wait-delay
conflict constraints are∑
p∈Pa1

ype1λp +
∑
p∈Pa2

∑
e2∈E2

ype2λp ≤ 1 ∀a1, a2, e1. (8)

a1
l1 a2 l2

Figure 2: A wait-delay conflict.

Example 2. Table 2 reports a fractional solution cut by
the wait-delay constraints but not the vertex and edge con-
straints. Let l2 = (x + 1, y) be the location east of l1,
as shown in Figure 2. Agent 1 uses path p1 = ((l1, t −
1), (l1, t), (l1, t+ 1)) with proportion 1

2 . Agent 2 uses paths
p21 = ((l2, t − 1), (l1, t), (l2, t + 1)) and p22 = ((l1, t −
1), (l2, t), (l1, t + 1)), each with proportion 1

2 . The path p21
uses the third edge listed inE2, and p22 uses the seventh edge
in E2. The wait-delay constraint for e1 is violated with a
LHS of 3

2 , but the vertex conflict constraint for (l1, t − 1),
(l1, t) and (l1, t + 1) are not violated, nor the edge conflict
constraint for ((l1, t− 1), (l2, t)) and ((l1, t), (l2, t+ 1)).

Exit-Entry Conflicts
Exit-entry conflicts are very similar to wait-delay conflicts.
Figure 3 shows an agent a1 ∈ A moving from l1 = (x1, y1)
to l2 = (x2, y2) at time t, i.e., it takes the edge e1 =
((l1, t), (l2, t+1)). Consider another agent a2 ∈ A, a2 6= a1,
with a set of edges

E2 = {((l1, t), (l1, t+ 1)),

((l1, t), ((x1 − 1, y1), t+ 1)),

((l1, t), ((x1 + 1, y1), t+ 1)),

((l1, t), ((x1, y1 − 1), t+ 1)),

((l1, t), ((x1, y1 + 1), t+ 1)),

((l2, t), (l2, t+ 1)),

(((x2 − 1, y2), t), (l2, t+ 1)),

(((x2 + 1, y2), t), (l2, t+ 1)),

(((x2, y2 − 1), t), (l2, t+ 1)),

(((x2, y2 + 1), t), (l2, t+ 1)),

((l2, t), (l1, t+ 1))} ∩ E.

Time Variables Constraint LHS
τ p1 p21 p22 (5)|l1 (5)|l2 (9)|e1
t l1 l1 l2 1 1

2
3
2

t+ 1 l2 l1 l2
1
2 1 –

Table 3: Example of a violated exit-entry constraint.

The first five edges in E2 exit (l1, t), the next five edges
enter (l2, t + 1), and the last edge is the reverse of e1. Note
that some of the edges in E2 can be duplicates, which are
removed by the union operator. All edges inE2 use the same
time step, and hence, are pairwise incompatible. The first
five edges have a vertex conflict with e1 at (l1, t). The next
five edges have a vertex conflict with e1 at (l2, t + 1). The
final edge is incompatible with e1 by the definition of an
edge conflict. Using this reasoning, the exit-entry conflict
constraints are∑
p∈Pa1

ype1λp +
∑
p∈Pa2

∑
e2∈E2

ype2λp ≤ 1 ∀a1, a2, e1. (9)

a1
l2a2 l1

a2

Figure 3: An exit-entry conflict.

Example 3. Table 3 displays a fractional solution invali-
dated by an exit-entry constraint. Agent 1 uses path p1 =
((l1, t), (l2, t+1)). Agent 2 uses paths p21 = ((l1, t), (l1, t+
1)) and p22 = ((l2, t), (l2, t+1)). All three paths are selected
with value 1

2 . The vertex conflict constraint is not violated at
l1 nor l2, but the exit-entry constraint is violated at e1.

Two-Edge Conflicts
Figure 4 illustrates three distinct locations l1, l2, l3 such
that l1 and l3 are neighbors of l2. Consider two edges
e1 = ((l1, t), (l2, t + 1)) and e2 = ((l2, t), (l3, t + 1)).
An agent a1 ∈ A can use at most one of these two edges
since they occur at the same time. Denote their reverses as
e′1 = ((l2, t), (l1, t+ 1)) and e′2 = ((l3, t), (l2, t+ 1)). If a1
uses either e1 or e2, then another agent a2 ∈ A, a2 6= a1,
cannot simultaneously use e′1 or e′2. The edge e′1 is incom-
patible with e1 since it is the reverse, and with e2 because
of the vertex conflict at (l2, t). For the same reasons, e′2 is
incompatible with e2 and e1. Using this idea, the two-edge
conflict constraints are∑
p∈Pa1

(ype1 + ype2)λp +
∑
p∈Pa2

(ype′1
+ ype′2

)λp ≤ 1

∀a1, a2, e1, e2. (10)

Example 4. Table 4 shows a fractional solution removed
by a two-edge constraint. Agent 1 uses path p1 =

a1

l2
a2

l1

l3

Figure 4: A two-edge conflict.

((l1, t), (l2, t+1)). Agent 2 uses paths p21 = ((l2, t), (l1, t+
1)) and p22 = ((l3, t), (l2, t+ 1)). All three paths are chosen
with value 1

2 . The table shows that the two-edge constraints
are violated but not the vertex and edge constraints.

Goal Conflicts
The previous four types of conflicts reason about a set of in-
compatible edges traversed by a set of agents; hence, adding
one of Constraints (7) to (10) changes the pricing problem
with new cost penalties on the edges, as described earlier.
Goal conflicts differ in that they reason about events that
occur on whole paths, and cannot be expressed using agent-
edge pairs, i.e., a constraint in the form of Constraint (6).

Figure 5 shows an example of a goal conflict, in which
an agent apass ∈ A is (fractionally) passing through the goal
location l of another agent agoal ∈ A, agoal 6= apass, at some
time t after agoal has already (fractionally) reached its goal.
Goal conflicts are resolved using the constraint∑
p∈Pagoal

Gp≤tλp +
∑

p∈Papass

1pl,≥tλp ≤ 1 ∀agoal, apass, t, (11)

whereGp≤t takes value 1 if path p finishes at time t or earlier,
and takes value 0 otherwise, and 1pl,≥t takes value 1 if path p
visits location l at time t or later, and takes value 0 otherwise.

agoalapass
l

Figure 5: A goal conflict.

Example 5. Consider Figure 5. Agent agoal uses path p1
that reaches its goal l at time 3, and then waits indefi-
nitely; hence, Gp1≤3 = 1. Agent apass uses path p2 that passes
through l at time 4; hence, 1p2l,≥3 = 1. The goal constraint
for (agoal, apass, 3) is

p1 + p2 ≤ 1,

which states that p1 and p2 are incompatible since agoal is
blocking l from time 3 onwards.

Unlike the previous four types of conflicts, there is cur-
rently no mechanism in the pricing problem to penalize the
occurrence of the two events corresponding to Gp≤t = 1

and 1pl,≥t = 1. Indeed, implementing this constraint requires
deep modifications to the A* pricing algorithm to record a
state of whether an event has occurred during the search.

Time Variables Constraint LHS
τ p1 p21 p22 (5)|l1 (5)|l2 (5)|l3 (4)|e1 (4)|e2 (10)|e1,e2
t l1 l2 l3

1
2

1
2

1
2 1 1

2
3
2

t+ 1 l2 l1 l2
1
2 1 0 – – –

Table 4: Example of a violated two-edge constraint.

Let ηagoal,apass,t ≤ 0 be the dual variable of Con-
straint (11). When pricing apass, the path must be penalized
by −ηagoal,apass,t ≥ 0 if and only if it visits l at or after time
t. The penalty is incurred exactly once, no matter how many
times the path visits l after t. Therefore, placing a penalty on
the five incoming edges to (l, t′) for all t′ ≥ t is not valid
since entering and exiting l repeatedly will penalize the path
multiple times. Instead, a state is introduced to the A* al-
gorithm to track the occurrence of the event and penalize
the path on the first time it visits l at time t or later. Upon
expanding the vertex (l, t′) for any t′ ≥ t, the penalty is in-
curred and a state is recorded to mark that the penalty has
been paid. Future expansions through (l, t′′) for any t′′ > t′

will not incur the penalty again.
When pricing agoal, a dummy goal vertex ⊥ is added with

edges leading to ⊥ from the original goal cell. All edges
leading to ⊥ at or before time t incurs a cost −ηagoal,apass,t.

Experiments
This section presents results from two experiments. The first
compares the improvements gained from using the different
inequalities, and the second compares BCP against CBSH-
RM and Lazy CBS.

Set-up
The following five algorithms are discussed:

• BCP-0 is the base algorithm that only contains Con-
straints (4) and (5) and none of the valid inequalities. This
variant was previously called BCP-B by Lam et al. (2019).

• BCP-2 includes the rectangle and corridor reasoning pre-
sented by Lam et al. (2019). This algorithm was then
called BCP.

• BCP-7 adds the five new classes of cuts to BCP-2 and is
the main contribution of this paper.

• CBSH-RM by Li et al. (2019) is a recent variant of CBS
that handles rectangle symmetries.

• A recent version of Lazy CBS by Gange, Harabor, and
Stuckey (2019) that considers rectangle symmetries.

BCP is implemented in the MIP solver SCIP 6.0.2 (Gleixner
et al. 2018) with CPLEX 12.10 as the LP solver. All algo-
rithms are single-threaded and are run on an Intel Xeon E5-
2660 V3 CPU at 2.6 GHz with a time limit of five minutes.

The algorithms are evaluated on two sets of standard
benchmarks. The first contains 670 instances across two
maps representative of warehouses. The second consists of
12150 instances across 14 maps from the Moving AI repos-
itory (Sturtevant 2019). This collection includes 29 maps in
total, and each map contains scenarios categorized as even or

Algorithm Instances Solved

BCP-0 3942
BCP-0 + Rectangle 4829 (+887)
BCP-0 + Corridor 4536 (+594)
BCP-0 + Wait-edge 3956 (+14)
BCP-0 + Wait-delay 3939 (–3)
BCP-0 + Exit-entry 4706 (+764)
BCP-0 + Two-edge 4297 (+355)
BCP-0 + Goal 4041 (+99)
BCP-2 5790 (+1848)
BCP-7 6375 (+2433)

Table 5: Number of instances solved by extending BCP-0
with inequalities.

random according to the distribution of the start and goal po-
sitions. Due to the large number of instances, the algorithms
are compared using the random instances from a subset of
14 maps selected to span a wide variety of structures. Results
for the even instances are very similar during preliminary
testing, and hence, are not reported here. In total, there are
12820 instances over 16 maps, as shown inset in Figure 6.

Comparison of the Inequalities
Table 5 lists the number of additional instances solved after
adding inequalities to the basic BCP-0. The rectangle and
corridor constraints from previous work remain very suc-
cessful. Including the wait-edge constraints merely solves
an extra 14 instances. Adding the wait-delay constraints is
detrimental by solving 3 fewer instances. The other con-
straints make a much larger improvement. The exit-entry
constraints perform nearly as well as the rectangle inequal-
ities, which is surprising since comparing Constraints (8)
and (9) reveals that the exit-entry constraints are very sim-
ilar to the wait-delay constraints, which perform the worst
of all seven families of cuts. Overall, the five new classes of
inequalities enables BCP-7 to solve 585 more instances than
BCP-2 and 2433 more than BCP-0, indicating that at least
some of the new inequalities are a substantial improvement.

Comparison to CBSH-RM and Lazy CBS
Figure 6 plots the success rate of the algorithms. To illus-
trate the anytime behavior of BCP, the charts also plot the
percentage of instances for which BCP-7 finds a solution
and can prove that it is within 1% of the optimal cost.

On the smaller 10x30-w5 warehouse map, BCP-7 outper-
forms the other algorithms, solving 66 more instances than
Lazy CBS. On the larger 31x79-w5 warehouse map, Lazy
CBS solves 4 more instances with 48 agents than BCP-7. Of

the 670 warehouse instances, BCP-7 optimizes 620 in total,
and 645 to within an optimality gap of 1%. Overall, the ad-
ditional constraints in BCP-7 enable it to solve many more
of the harder warehouse scenarios in comparison to BCP-2,
highlighting the improvements gained in using the new con-
straints.

Lazy CBS achieves stellar performance on the two city
maps Berlin 1 256 and Paris 1 256; significantly outclass-
ing all other algorithms on these maps with wide boulevard-
like regions. Even accepting a 1% optimality gap in BCP-7
is not enough to compete with the optimal solutions found
by Lazy CBS.

The performance of the algorithms vary drastically on
the three Dragon Age Origins maps brc202d, orz900d and
ost003d. BCP-7 solves the most instances on brc202d,
which features many long, straight hallways. CBSH-RM
performs remarkably better than Lazy CBS on orz900d,
which also contains narrow corridors. On the ost003d map
with larger open spaces, CBSH-RM performs poorly, and
Lazy CBS outperforms all other algorithms. The next two
maps lt gallowstemplar n and w woundedcoast maps, from
Dragon Age 2, contains tight doorways and winding hall-
ways. BCP-7 solves the most instances, and Lazy CBS is
outperformed by BCP-2. Results on the five Dragon Age
maps demonstrate that Lazy CBS underperforms on maps
with long corridors, conceding to even BCP-2 and CBSH-
RM in some cases.

On the empty 8 × 8 map empty-8-8, BCP-7 dominates
all other approaches. Conversely, Lazy CBS dominates on
the larger 32 × 32 map empty-32-32. The next two maps
random-32-32-10 and random-32-32-20 have a given pro-
portion designated as obstacles; they respectively transform
10% and 20% of the cells in empty-32-32 to obstacles. The
performance of Lazy CBS drops as the obstacles increase.
Lazy CBS performs better on empty-32-32 and random-
32-32-10, while BCP-7 performs better on empty-8-8 and
random-32-32-20.

All algorithms perform poorly but similarly on the ex-
tremely difficult maze map maze-128-128-1. CBSH-RM,
Lazy CBS, BCP-2 and BCP-7 respectively solve 57, 53, 57
and 54 of the 250 instances. Surprisingly, CBSH-RM and
BCP-2 solve the most instances, indicating that the new con-
straints guide BCP-7 (by branching) to regions of the search
space that do not contain an optimal solution. Tolerating a
1% optimality gap allows BCP-7 claim 70 instances.

CBSH-RM, Lazy CBS, BCP-2 and BCP-7 respectively
optimize 323, 405, 404 and 465 test cases on the wider
mazes maze-128-128-2 and maze-128-128-10. Despite the
larger open spaces on the maze maze-128-128-10, it con-
tains a large number of choke points; enabling BCP-7 to out-
perform Lazy CBS. Substantially more instances are solved
to an optimality gap of 1% by BCP-7 on these two maps.

Of all 12820 instances, 5769 are optimized by both BCP-
2 and BCP-7. BCP-2 and BCP-7 respectively solve 3183
and 3759 of these 5769 instances at the root node (i.e., no
branching occurred), and the total time to prove optimality is
decreased from 143391 to 84518 seconds, a 41% reduction.
These results indicate that the new constraints dramatically
improve the performance of BCP.

Overall, CBSH-RM, Lazy CBS, BCP-2 and BCP-7 op-
timize 4307, 6218, 5790 and 6375 of the 12820 instances.
These results show that both BCP and Lazy CBS scale well
to high numbers of agents considered out-of-reach just a few
years ago, but that neither algorithm closes the MAPF prob-
lem. The main findings from these experiments are consis-
tent and conclusive:

• CBSH-RM, considered the state-of-the-art until very re-
cently, solves the fewest instances in total, but succeeds
in some of the difficult maps with long hallways.

• The performance of Lazy CBS is highly dependent on the
structure of the maps. Lazy CBS dominates the other al-
gorithms on the empty and sparse maps, but is challenged
by the congested maps with long, narrow hallways.

• BCP-2 maintains consistent performance across all maps,
including the maps with long corridors.

• BCP-7 excels at most maps, but especially those with nar-
row corridors, choke points and specific regions of high
contention.

• The five new families of valid inequalities implemented
in BCP-7 allow it to solve many more instances and solve
the same instances faster than BCP-2.

Conclusion and Future Work
This paper adds five new families of valid inequalities to
BCP. Four of the five classes of cuts only modify the edge
costs in the pricing problem to penalize agents traversing
edges involved in a cut. The fifth family of cuts requires the
pricing algorithm to consider state; agents are penalized at
the first time they pass through the goal cell of another agent,
but accounting for this state does not increase the total time
complexity of the pricing algorithm.

A new variant of BCP with the five classes of constraints
is compared empirically against CBSH-RM, Lazy CBS, and
the previous version of BCP with only the rectangle and cor-
ridor fractional conflicts. The new BCP algorithm outper-
forms the other three algorithms by solving more instances.
This result indicates that the new inequalities are worthwhile
and enable BCP to maintain its exceptional performance.

With BCP being a recent development, many opportu-
nities for future work are available. Following the suc-
cess of Lazy CBS, conflict analysis can also be imple-
mented in BCP using logic-based Benders decomposition
(Davies, Gange, and Stuckey 2017) and branch-and-check
(Lam and Van Hentenryck 2016; Lam and Van Henten-
ryck 2017). Research directions can also mirror the history
of branch-and-cut-and-price algorithms in other domains.
The family of Vehicle Routing Problems is the standard test
suite for branch-and-cut-and-price algorithms. Implement-
ing some of their confirmed advances (Costa, Contardo, and
Desaulniers 2019), such as reduced cost fixing or dual stabi-
lization, in BCP should prove beneficial. Future research can
also continue to design more classes of fractional conflicts to
further tighten the LP relaxation of the master problem.

10 15 20 25

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

10x30-w5

20 28 36 44 52

0%

20%

40%

60%

80%

100%

Agents
Pe

rc
en

ta
ge

So
lv

ed

31x79-w5

0 60 120 180 240 300

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

Berlin 1 256

0 60 120 180 240 300

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

Paris 1 256

0 30 60 90 120 150

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

brc202d

0 20 40 60 80 100

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

orz900d

0 40 80 120 160 200

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

ost003d

0 40 80 120 160 200

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

lt gallowstemplar n

0 30 60 90 120

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

w woundedcoast

0 8 16 24 32

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

empty-8-8

0 50 100 150 200 250

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

empty-32-32

0 40 80 120 160 200

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

random-32-32-10

0 30 60 90 120

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

random-32-32-20

0 4 8 12 16

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

maze-128-128-1

0 10 20 30 40

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

maze-128-128-2

0 20 40 60 80 100

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

maze-128-128-10

CBSH-RM Lazy CBS BCP-2 BCP-7 BCP-7 (1% Gap)

Figure 6: Success rate of the algorithms by map. Higher is better.

Acknowledgements
We would like to thank Jiaoyang Li for providing the code to
CBSH-RM and the warehouse test cases, and Graeme Gange
for the code to Lazy CBS.

Pierre Le Bodic is supported by the Australian Research
Council Discovery Project DP200100025.

References
Barnhart, C.; Johnson, E. L.; Nemhauser, G. L.; Savels-
bergh, M. W. P.; and Vance, P. H. 1998. Branch-and-price:
Column generation for solving huge integer programs. Op-
erations Research 46(3):316–329.
Costa, L.; Contardo, C.; and Desaulniers, G. 2019. Exact
branch-price-and-cut algorithms for vehicle routing. Trans-
portation Science 53(4):946–985.
Davies, T. O.; Gange, G.; and Stuckey, P. J. 2017. Au-
tomatic logic-based Benders decomposition with MiniZinc.
In AAAI, 787–793.
Desaulniers, G.; Desrosiers, J.; and Solomon, M. M. 2005.
Column Generation. Springer US.
Desrosiers, J., and Lübbecke, M. E. 2010. Branch-price-
and-cut algorithms. In Wiley Encyclopedia of Operations
Research and Management Science. John Wiley & Sons,
Inc.
Erdem, E.; Kisa, D. G.; Oztok, U.; and Schüller, P. 2013.
A general formal framework for pathfinding problems with
multiple agents. In Proceedings of the Twenty-Seventh AAAI
Conference on Artificial Intelligence, AAAI’13, 290–296.
AAAI Press.
Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar,
T. K. S.; and Koenig, S. 2018. Adding heuristics to conflict-
based search for multi-agent path finding. In ICAPS, 83–87.
Gange, G.; Harabor, D.; and Stuckey, P. 2019. Lazy CBS:
Implict conflict-based search using lazy clause generation.
In Proceedings of the International Conference on Auto-
mated Planning and Scheduling (ICAPS).
Gleixner, A.; Bastubbe, M.; Eifler, L.; Gally, T.; Gam-
rath, G.; Gottwald, R. L.; Hendel, G.; Hojny, C.; Koch, T.;
Lübbecke, M. E.; Maher, S. J.; Miltenberger, M.; Müller,
B.; Pfetsch, M. E.; Puchert, C.; Rehfeldt, D.; Schlösser, F.;
Schubert, C.; Serrano, F.; Shinano, Y.; Viernickel, J. M.;
Walter, M.; Wegscheider, F.; Witt, J. T.; and Witzig, J. 2018.
The SCIP Optimization Suite 6.0. Technical report, Opti-
mization Online.
Lam, E., and Van Hentenryck, P. 2016. A branch-and-price-
and-check model for the vehicle routing problem with loca-
tion congestion. Constraints 21(3):394–412.
Lam, E., and Van Hentenryck, P. 2017. Branch-and-check
with explanations for the Vehicle Routing Problem with
Time Windows. In Beck, J. C., ed., Principles and Practice
of Constraint Programming: 23rd International Conference,
CP 2017, Melbourne, VIC, Australia, August 28 – Septem-
ber 1, 2017, Proceedings, 579–595. Springer, Cham.
Lam, E.; Le Bodic, P.; Harabor, D.; and Stuckey, P. J. 2019.
Branch-and-cut-and-price for multi-agent pathfinding. In

Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence (IJCAI-19), 1289–1296. In-
ternational Joint Conferences on Artificial Intelligence Or-
ganization.
Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig, S.
2019. Symmetry-breaking constraints for grid-based multi-
agent path finding. In AAAI.
Lübbecke, M. E., and Desrosiers, J. 2005. Selected topics in
column generation. Operations Research 53(6):1007–1023.
Marques Silva, J. a. P., and Sakallah, K. A. 1996. GRASP–a
new search algorithm for satisfiability. In Proceedings of the
1996 IEEE/ACM International Conference on Computer-
aided Design, ICCAD ’96, 220–227. IEEE Computer So-
ciety.
Ohrimenko, O.; Stuckey, P. J.; and Codish, M. 2009. Prop-
agation via lazy clause generation. Constraints 14(3):357–
391.
Ryan, M. 2010. Constraint-based multi-robot path plan-
ning. In 2010 IEEE International Conference on Robotics
and Automation, 922–928.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219:40–66.
Sturtevant, N. 2019. Moving AI: Pathfinding benchmarks.
https://movingai.com/benchmarks.
Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016a.
Boolean satisfiability approach to optimal multi-agent path
finding under the sum of costs objective. In Proceedings of
the International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 1435–1436.
Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016b.
Efficient SAT approach to multi-agent path finding under the
sum of costs objective. In Proceedings of the European Con-
ference on Artificial Intelligence (ECAI), 810–818.
Yu, J., and LaValle, S. M. 2013. Planning optimal paths
for multiple robots on graphs. In 2013 IEEE International
Conference on Robotics and Automation, 3612–3617. IEEE.

