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Abstract

There are currently two broad strategies for opti-
mal Multi-agent Pathfinding (MAPF): (1) search-
based methods, which model and solve MAPF di-
rectly, and (2) compilation-based solvers, which re-
duce MAPF to instances of well-known combinato-
rial problems, and thus, can benefit from advances
in solver techniques. In this work, we present
an optimal algorithm, BCP, that hybridizes both
approaches using branch-and-cut-and-price, a de-
composition framework developed for mathemati-
cal optimization. We formalize BCP and compare
it empirically against CBSH and CBSH-RM, two
leading search-based solvers. Conclusive results on
standard benchmarks indicate that its performance
exceeds the state-of-the-art: solving more instances
on smaller grids and scaling reliably to 100 or more
agents on larger game maps.

1 Introduction
Multi-agent Pathfinding (MAPF) is an NP-hard graph opti-
mization problem that involves finding a minimum-cost set
of paths for a team of cooperating agents. Each agent must
move from its start position to its goal position such that no
two agents occupy the same vertex at the same time or cross
an edge in opposite directions at the same time.

One popular technique for optimal MAPF is Conflict-based
Search (CBS) [Sharon et al., 2015]. CBS is a two-level search
algorithm. At the low level, it computes a path for each agent
independently. At the high level, CBS detects conflicts be-
tween pairs of agents and resolves them by splitting the cur-
rent solution into two related subproblems, each of which in-
volves replanning a single agent. Recursively resolving con-
flicts by splitting a subproblem into two children implicitly
defines a search tree. The high-level search explores this
tree using best-first search and terminates when it expands
a collision-free leaf.

Optimal MAPF can also be solved using mixed integer pro-
gramming (MIP) by modeling it as a multi-commodity flow
problem [Yu and LaValle, 2013]. The reduction involves a
time-expanded graph whose vertices are indexed by space
and time, and specialized gadgets to account for conflicts.

Despite this inefficient representation, the model remains rea-
sonably effective on small instances since MIP solvers are
mature industry-grade software supported by decades of aca-
demic research.

This paper proposes an optimal MAPF algorithm, called
BCP, that combines the strengths of CBS (namely, decom-
position and domain-specific reasoning) with the search per-
formance of MIP. The algorithm is based on branch-and-cut-
and-price (also abbreviated BCP), a general framework that
decomposes a difficult optimization problem into a set of eas-
ier problems and then merges the individual results together
in a branch-and-bound search tree [Desrosiers and Lübbecke,
2010; Lübbecke and Desrosiers, 2005; Desaulniers et al.,
2005]. BCP is also a two-level algorithm. At the low level,
it solves a series of single-agent pathfinding problems using
dedicated algorithms, much like CBS. At the high level, it
uses MIP to assign paths to agents and resolve conflicts. The
high-level problem remains NP-hard but possesses structure
that can be exploited by modern MIP technologies.

The contributions of this paper are (1) a novel model of
MAPF based on the BCP framework, (2) extensions of the
basic model that drastically improve its performance, and
(3) experimental results that highlight the advantages of the
approach. The experiments compare two versions of BCP
against two leading CBS variants: CBSH [Felner et al., 2018]
and CBSH-RM [Li et al., 2019]. Results on 1,350 standard
benchmarks across two small grids and two large game maps
indicate that BCP exceeds state-of-the-art performance: (1)
optimizing 99% of the instances compared to 85% by CBSH-
RM, (2) solving 96% of the hardest instances with 100 agents
compared to 34% by CBSH-RM, and (3) achieving an aver-
age run-time of 5 seconds compared to 8 seconds by CBSH-
RM on the 1,143 instances solved by both algorithms. The
remainder of this paper describes BCP and presents the ex-
periments in detail.

2 Background
This section summarizes CBS and the BCP technique applied
to MAPF.

2.1 Conflict-based Search
CBS breaks the MAPF problem into one high-level search
and multiple single-agent low-level search problems. Ini-
tially, each agent plans its optimal path independently using



low-level A*. If none of these paths conflict, then an opti-
mal solution to the MAPF problem is found. Otherwise, the
high-level problem selects a conflict between two agents a1
and a2, and splits the current problem into two subproblems.
In the first subproblem, agent a1 is prevented from using the
conflicting resource (vertex or edge at some time), and its
optimal path is resolved under this new constraint using low-
level search. In the second subproblem, agent a2 is similarly
constrained and resolved. The high-level search continues by
selecting a subproblem with the least possible cost, and either
finding that it has no conflicts and hence produces an optimal
solution, or that it must be split again into another two sub-
problems. This process continues until a solution is found.

2.2 Branch-and-Cut-and-Price
The origins of the BCP method can be traced back more
than half a century to early works in linear programming
(LP) [Dantzig and Wolfe, 1960; Gilmore and Gomory, 1961;
Gilmore and Gomory, 1963]. Today, its theoretical founda-
tions are rigorously proven and well-understood [Desrosiers
and Lübbecke, 2010; Lübbecke and Desrosiers, 2005; De-
saulniers et al., 2005; Barnhart et al., 1998]. Several basic
concepts of MIP that develop into BCP are reviewed below.
Interested readers are advised to consult [Rader, 2010] for an
introduction to MIP, and then the previous references for a
formal treatment of the BCP technique.

Modeling
To solve a problem using MIP, a formal mathematical model
of the problem must first be created. A model consists of
an objective function that measures the quality of a solution,
variables that represent decisions, and constraints that ex-
press relationships between the variables. A solution assigns
a value to each variable such that their values respect the con-
straints. Variables can be categorized as integer or contin-
uous. Integer variables must take a discrete, integral value
in a solution, while continuous variables can take any value
(integral or fractional). A solution is optimal if the objective
function attains a global minimum.

The MIP master problem of the BCP MAPF algorithm se-
lects a minimum cost subset of paths from an extremely large
set of paths subject to three classes of constraints: (1) exactly
one path is selected per agent, (2) every vertex is visited in at
most one of the selected paths, and (3) every edge is traversed
in at most one of the selected paths. Each path is associated
with an integer variable taking value 0 and 1, representing
the proportion that the path is selected. A solution assigns 0
or 1 to every variable subject to the constraints of the three
constraint classes.

Branch-and-bound
NP-hard MIP problems are commonly solved using the
branch-and-bound (BB) algorithm. BB sufficiently enumer-
ates all solutions in a search tree by solving a relaxation prob-
lem at every node. BB begins with a tree containing only the
root node, where it proceeds to solve the relaxation; usually
but not always, an LP relaxation.

An LP relaxation of a MIP model is an identical problem
but drops, or relaxes, the requirement that all integer variables
take integral values. In other words, the integer variables are

allowed to take fractional values, but otherwise preserves all
constraints and variables. Solving this LP relaxation, which
can be done in polynomial time, typically results in a frac-
tional solution, i.e., a solution in which at least one integer
variable takes fractional value, as opposed to an integer solu-
tion, in which all integer variables take integral values.

The BB algorithm uses this fractional solution to branch.
A branching rule is a subroutine that partitions the solution
space of the LP relaxation into two disjoint sets such that a
fractional value appears in neither. BB then solves the LP
relaxation over the two partitions, and the process repeats.
In simpler terms, a branching rule selects an integer variable
taking fractional value in a solution, and creates two children
nodes in which this variable cannot take fractional value. The
fractional solution, and all others with the same fractionality,
are removed at the expense of two more nodes in the search
tree. For example, consider a fractional solution in which
an agent selects two paths, each with 0.5 proportion. One
path traverses edge (i, j) and the other path doesn’t (perhaps
traversing edge (i, k)). Summed over all paths, edge (i, j)
is selected with proportion 0.5. A basic branching rule will
fix the edge (i, j) to proportion 0 in one child, forbidding the
edge, and fix the edge to proportion 1 in the other child, forc-
ing the edge. (The branching rule does not specify anything
about (i, k).) Then, (i, j) will appear with integral proportion
(0 or 1) in every solution to the LP relaxation in both children.
The search is now one step closer towards selecting all edges,
and hence all paths, with integral proportion.

Eventually, solving the LP relaxation naturally returns an
integral solution, so branching will cease, resulting in a leaf
node. At this point, the integer variables take integral values,
so this solution is valid for the original MIP problem. It is
accepted as the new best solution if it is better than the current
best solution, i.e., its objective value is lower than that of the
incumbent solution, if any.

A benefit of solving a relaxation at every node is that its
optimal objective value provides a lower bound to the objec-
tive value of every solution in the entire subtree, and hence,
can be used to prune the subtree if this lower bound is higher
than the current best solution, i.e., the upper bound. In other
words, any solution in this subtree cannot be better than the
solutions already found, and hence, this subtree need not be
explored. Therefore, higher lower bounds from tight relax-
ations can tremendously improve the speed of the search.

Even though a branching rule defines how to create two
children nodes, it does not specify which node should be
solved next. That is the role of a node selector. The standard
node selector in BB prefers nodes in a best-first manner (low-
est lower bound) but occasionally performs depth-first diving.

Because all integer variables will take integral values at
some depth in the search tree, BB will terminate in finite
but exponential time due to the combinatorics of branching.
Since branching removes fractional solutions, never integer
solutions, and bounding removes suboptimal solutions, never
optimal solutions, BB is correct and optimal.

Branch-and-price
Recall that the master problem selects paths from a large set
P of paths. We might imagine that all possible paths for every



agent must be enumerated in P , from which it selects a subset
of optimal paths. Since MAPF allows cycling and waiting, an
infinite number of paths is possible. However, based on math-
ematical arguments, a finite, usually exponential-size subset
P ′ of P is sufficient to prove optimality; all other paths can-
not appear in an optimal solution. This is obvious: for exam-
ple, in a MAPF problem with one agent, nonsensically long
paths looping round and round cannot contribute to an opti-
mal solution since a shorter path without the loops exists.

Branch-and-price (BP) is a variant of BB that omits some
or all variables/paths initially from the master problem, and
reinstates them during the search. Omitting variables is
equivalent to fixing their value to zero. Because some vari-
ables have been fixed, part of the LP solution space is not
searched. Since an optimal LP solution could lie in this part,
the optimal objective value to this LP problem no longer pro-
vides a valid lower bound at this node.

The set P ′ is initialized with a few paths (possibly zero)
and is iteratively filled by calling a pricer, an algorithm that
generates better paths and adds them to P ′ for the master
problem to select. The pricer identifies omitted variables that
enlarge the solution space in the direction that must be ex-
plored, or guarantees that there are none. If variables are
found, they are added to the master problem, which is solved
again. Note that the master problem may or may not choose
the new variables. This proceeds until a sufficient portion of
the original solution space is considered, at which point the
pricer proves that none of the omitted variables could improve
the current LP objective value even if included. Hence, the
current LP optimal objective value (with many variables re-
maining omitted) provides exactly the same bound as a prob-
lem that includes all variables, which means BP enumerates
the same solutions as BB, despite not considering all vari-
ables. This implies the correctness and optimality of BP.

Branch-and-cut
Solutions with a vertex (resp. edge) collision are removed by
a constraint stating that the vertex (resp. edge) can be used
by at most one path. Even though the time horizon extends
to infinity, there is no need to check for conflicts at vertices
and edges not currently in use or those at some distant time
after all agents have reached their target. Therefore, only
a finite, usually exponential-size subset of all collision con-
straints need to appear in the master problem.

Branch-and-cut (BC) extends BB by omitting constraints
from the master problem and adding them during the search.
After solving the LP relaxation, BC calls a procedure known
as a separator for every class of constraints (e.g., vertex colli-
sion and edge collision). A separator checks the paths chosen
by the master problem and determines whether these paths
exhibit a conflict of its class. It either adds to the master
problem one or more constraints violated in the current LP
solution, or concludes that all constraints of its class are sat-
isfied. The new constraints will prohibit more than one agent
from using the vertex or edge in all future solutions. This
process repeats until no violated constraints are found.

Vertex collision and edge collision are two classes of con-
straints categorized as problem constraints. Problem con-
straints are necessary and sufficient to correctly model the

problem. A class of constraints can also be categorized as re-
dundant. Redundant constraints are not necessary for mod-
eling and solving the problem, but rather, they tighten the
LP relaxation by cutting off fractional solutions, leading to
a stronger lower bound and/or an integral LP solution in the
next iteration; subsequently resulting in the subtree being
pruned by bound or integrality much earlier than otherwise.

If a class of problem constraints and its separator are cor-
rect, its constraints will only remove portions of the LP so-
lution space that do not contain solutions valid according to
the problem definition. If a class of redundant constraints and
its separator are correct, its constraints will only remove frac-
tional solutions, never integer solutions. Therefore, BC (with
many constraints remaining omitted) obtains the same opti-
mal solutions as BB (with all constraints included).

Branch-and-cut-and-price
If variables are omitted, adding a constraint could cut off all
currently known paths for an agent. Therefore, the pricer
needs to be called again after a separator adds constraints in
order to find alternative paths that satisfy the new constraints,
or to ensure that the existing paths remain feasible and opti-
mal. The culmination of all the previous components leads to
the framework named BCP, which retains the same correct-
ness and completeness guarantees as BC and BP.

To summarize, the master problem, which selects paths
from P ′, the pricer, which adds better paths to P ′, and the
separators, which resolve conflicts on the paths selected by
the master problem, are repeatedly solved at a node until the
chosen paths are fractionally free of conflicts and fractionally
optimal. If any path is fractionally chosen, a branching rule
creates two children nodes that do not contain the fraction-
ality, bringing the search closer towards an integer solution.
Assuming the correctness and completeness of all the com-
ponents described previously, BCP the framework and the
MAPF algorithm are correct and complete: the algorithm will
find an optimal solution in finite but exponential time if and
only if one exists (excluding implementation issues such as
bugs and numerical instability, as with any other approach).

For many graph-related optimization problems, especially
the Vehicle Routing Problems which bear many similari-
ties with MAPF, models with an exponential number of
variables and constraints can be mathematically proven to
have an LP relaxation tighter than all other known models
(e.g., [Letchford and Salazar-González, 2006]), and solving
these exponential-size MIP models with BCP far outperforms
solving smaller polynomial-size MIP models with BB (e.g.,
[Fukasawa et al., 2006]).

3 BCP-B
This section formalizes the MAPF problem and presents a
basic, minimally-working algorithm, called BCP-B, that uses
the BCP technique for optimal MAPF. This basic variant is
extended in the next section.

3.1 Problem Definition
Define a location l = (x, y) ∈ Z+ × Z+ as a pair of space
coordinates, and L as the set of all locations. A location l2 =
(x2, y2) is a neighbor of l1 = (x1, y1) in the



• north direction if x2 = x1 and y2 = y1 − 1,

• south direction if x2 = x1 and y2 = y1 + 1,

• west direction if x2 = x1 − 1 and y2 = y1, and

• east direction if x2 = x1 + 1 and y2 = y1.

Let a vertex v = (l, t) ∈ L × Z+ be a pair of a location
and a time coordinate, and let V be the set of vertices. De-
fine E as the set of edges, where an edge e = (v1, v2) =
((l1, t1), (l2, t2)) is a pair of vertices such that t2 = t1 + 1
and either l1 = l2 or l2 is a neighbor of l1. That is, an edge
indicates a wait action or connects two adjacent locations in
one timestep. Furthermore, denote the reverse of an edge e as
e′ = ((l2, t1), (l1, t2)). Define a directed graph G = (V,E).
Since there is no time horizon and edges connect vertices with
increasing time, G is infinite but acyclic.

Define A as the set of agents, where every agent a ∈ A
has a start location sa ∈ L and a goal location ga ∈ L,
which may coincide. A path p of length k ∈ Z+ for agent
a ∈ A is a sequence of k locations (l0, l1, l2, . . . , lk−1) such
that l0 = sa, lk−1 = ga, and ((lt, t), (lt+1, t + 1)) ∈ E for
all t ∈ {0, . . . , k − 2}. The path p visits the vertices (lt, t)
where t ∈ {0, . . . , k − 1} and continues to visit vertices at
its goal location after the path concludes, i.e., p also visits the
vertices (ga, t) for all t ∈ {k, . . .}. The path p traverses the
edges ((lt, t), (lt+1, t + 1)) where t ∈ {0, . . . , k − 2}. The
cost cp of a path is equal to its length.

Then, an optimal solution to the MAPF problem is a set of
paths, one path for each agent a ∈ A, that minimizes the sum
of path lengths such that each (time-indexed) vertex is visited
at most once, and each (time-indexed) edge and its reverse are
traversed at most once. These two conditions are respectively
referred to as vertex conflicts and edge conflicts.

3.2 Master Problem
For every agent a ∈ A, assume the existence of a large pool
Pa of candidate paths. The master problem chooses one path
for every agent such that the sum of path costs is minimized.
Additional constraints that prevent conflicts are added dy-
namically whenever a conflict is detected.

For all a ∈ A, p ∈ Pa, define λp ∈ [0, 1] as a variable
representing the proportion of selecting path p. A solution to
the master problem maps every λp to a value between 0 to 1.

The initial master problem (before adding additional con-
straints) is specified as the linear program:

min
∑
a∈A

∑
p∈Pa

cpλp (1)

subject to∑
p∈Pa

λp ≥ 1 ∀a ∈ A, (αa) (2)

λp ≥ 0 ∀a ∈ A, p ∈ Pa. (3)

Objective Function (1) minimizes the total cost of the selected
paths. Constraint (2) ensures that every agent uses at least
one path. By minimizing the total cost, no agent will use
more than one path in an optimal solution. Let αa ≥ 0 be
the dual variable of Constraint (2) as defined by LP duality.

Constraint (3) are non-negativity constraints, which disallow
negative proportions of a path.

As currently stated, the master problem allows both vertex
and edge conflicts. These are resolved by adding constraints
found using the separators described as follows.

3.3 Resolving Vertex Conflicts
Define xpv ∈ {0, 1} as a constant that indicates if path p visits
vertex v ∈ V . The separator for vertex conflicts begins by
calculating the number xv of times v is used:

xv =
∑
a∈A

∑
p∈Pa

xpvλp. (4)

The variable xv is positive if and only if at least one path p
that uses v (i.e., the constant xpv = 1) is selected (i.e., the
variable λp > 0). A vertex conflict occurs at v if and only if
xv > 1. The separator then removes every solution that uses
v more than once by adding the constraint∑
a∈A

∑
p∈Pa

xpvλp ≤ 1 ∀v ∈ V. (βv) (5)

Denote its dual variable as βv . From duality theory, βv ≤ 0.

3.4 Resolving Edge Conflicts
Edge conflicts are settled in a similar manner. Let ype ∈ {0, 1}
be a constant that indicates if path p traverses edge e ∈ E.
The separator first calculates the number ye of times e is used:

ye =
∑
a∈A

∑
p∈Pa

ypeλp.

An edge conflict occurs at e whenever ye + ye′ > 1. The
conflict is resolved by adding the constraint∑
a∈A

∑
p∈Pa

(ype + ype′)λp ≤ 1 ∀e ∈ E. (γe) (6)

Let the dual variable of Constraint (6) be γe ≤ 0.

3.5 Finding Better Paths
The pool Pa of candidate paths for any agent a is incremen-
tally filled by a pricer that either (1) finds one or more paths
that could potentially improve the current master problem so-
lution, or (2) declares that no improving path exists.

For every agent a, the pricer must solve the single-agent
shortest path problem with a modified objective function. The
output of the pricer is at least one path p for agent a with cost
cp > 0. Within the pricer, xpv ∈ {0, 1} and ype ∈ {0, 1}
are binary decision variables, not constants, that respectively
indicate whether p visits vertex v and traverses edge e. The
modified objective function is

min c̄p := cp − αa −
∑
v∈V

βvx
p
v −

∑
e∈E

γe(y
p
e + ype′), (7)

which can be interpreted as follows. Recall from Sections 3.2
to 3.4 that αa ≥ 0, βv ≤ 0 and γe ≤ 0. If a chooses to
use path p, it pays a penalty −βv ≥ 0 if it visits a conflicting
vertex v and pays −γe ≥ 0 if it traverses a conflicting edge
e. The term αa offsets the cost cp of p to measure whether



the new path is cost-effective compared to all existing paths
of a. From LP theory, p can contribute to a better solution if
and only if c̄p < 0. In this case, p is added to Pa, leading to
another round of separation and pricing. If the pricer cannot
find a path p with c̄p < 0 for any agent a ∈ A, then no path
can improve upon the current master problem solution, which
is declared (fractionally) optimal.

BCP-B implements the pricer by adapting an existing A*
code to the modified path cost. Every edge e initially has cost
1. The penalty−γe is added to the cost of e and e′, and−βv is
added to all five incoming edges to v. Then, the A* algorithm
finds a path p and outputs

ĉp := cp −
∑
v∈V

βvx
p
v −

∑
e∈E

γe(y
p
e + ype′).

The output path p is accepted into Pa if ĉp < αa.

3.6 Resolving Fractional Solutions
The master problem solves a linear program, which typically
produces fractional solutions, e.g., given an agent a ∈ A and
two paths p1, p2 ∈ Pa, we can have λp1 = λp2 = 0.5. When-
ever the pricer declares a solution with fractional values is
optimal, branching must proceed to resolve the fractionality.
At the very least, branching must split the problem into two
subproblems such that the current fractional solution appears
in neither subproblem.

BCP-B branches on an agent-vertex pair, stipulating that
an agent a must visit a vertex v in one child and must not
visit v in the other child. The branching rule first computes
the constants xv as for Equation (4) and builds the set

Uv = {a ∈ A :
∑
p∈Pa

xpvλp > 0}

of agents using the vertex v. At this stage, all violated Con-
straint (5) appear in the master problem, and hence, xv ≤ 1
for all v ∈ V . The branching rule then selects a vertex

v = arg min
(l,t)∈V

{t : 0 < xv < 1 ∧ |Uv| ≥ 2}.

That is, it chooses a vertex with the earliest time that has frac-
tional value and is used by two or more agents. Next, it selects
an agent

a = arg min
a∈Uv

{cp : p ∈ Pa ∧ λp > 0}.

That is, it chooses an agent a that is (fractionally) using a path
visiting v and has a path of the shortest length among all paths
used by all agents visiting v. The branching rule then creates
two children nodes. In one child, a must visit v. In the other
child, amust not visit v. This is in turn enforced in the master
problem and the pricer at each child.

The master, separation and pricing problems are then
solved in both subproblems and the process repeats. Node
selection and node pruning occur as in a regular branch-and-
bound. Globally optimal solutions appear in the leaves of the
search tree, where all variables have integral value.

a1

a2
l1 l2 l3 l4

Figure 1: An example of a corridor conflict.

4 BCP
BCP-B includes Constraints (2), (3), (5) and (6), which are
problem constraints necessary and sufficient for correctly
modeling MAPF. BCP tightens the LP relaxation of BCP-
B using redundant constraints that resolve corridor conflicts
and rectangle symmetry conflicts. BCP also branches on path
length in addition to the vertex branching in BCP-B.

4.1 Resolving Corridor Conflicts
Corridor conflicts can appear when two agents fractionally
cross a space of unit height and some length in opposite di-
rections. In an integer solution, BCP-B forbids all types of
conflicts, namely, vertex conflicts and edge conflicts, via Con-
straints (5) and (6). However, these constraints may not be
violated by two agents fractionally crossing a corridor.

Consider two agents a1 and a2 trying to cross the cor-
ridor in Figure 1. Even though the illustration portrays a
corridor as a space surrounded by side obstacles, a corri-
dor conflict can occur anywhere two agents cross, regardless
of obstacles. Agent a1 has two paths p1,1 = (l1, l2, l3, l4)
and p1,2 = (l1, l1, l2, l3, l4), which differs by a wait at time
0. Agent a2 also has two paths p2,1 = (l4, l3, l2, l1) and
p2,2 = (l4, l3, l3, l2, l1). Assume that a master problem so-
lution assigns value 0.5 to all four paths. Vertex conflicts do
not occur in this solution since (l2, 2) and (l3, 2) are each
used with value 1. Similarly, edge conflicts do not appear be-
cause ((l2, 1), (l3, 2)) and its reverse, and ((l2, 2), (l3, 3)) and
its reverse are each used with value 1.

These fractional solutions naturally arise very frequently in
the LP relaxation. Pruning them is critical to tightening the
lower bound, and hence, improves the performance of BCP.
Corridor conflicts are removed using the constraint∑
p∈Pa1

yp((l1,t),(l2,t+1))λp +
∑

p∈Pa1

yp((l1,t+1),(l2,t+2))λp+

∑
p∈Pa2

yp((l2,t),(l1,t+1))λp +
∑

p∈Pa2

yp((l2,t+1),(l1,t+2))λp ≤ 1

∀(a1, a2, l1, l2, t), (8)

where a1, a2 ∈ A, l1, l2 ∈ L and t ∈ N such that a1 6= a2,
and l1 and l2 are neighbors. Constants ype are defined as in
Section 3.4.

The correctness of Constraint (8) is reasoned as follows. In
an integer solution, if a1 uses ((l1, t), (l2, t + 1)), it arrives
at l2 at t + 1, and hence, cannot simultaneously use ((l1, t +
1), (l2, t+2)). Also, a2 cannot use ((l2, t), (l1, t+1)) because
it would incur an edge conflict, nor use ((l2, t+1), (l1, t+2))
because it would incur a vertex conflict at (l2, t+1). By sym-
metry, at most one of those four edges can be used, which is



a1

a2

Figure 2: An example of a rectangle symmetry conflict.

precisely Constraint (8). In a sense, this constraint combines
Constraints (5) and (6) for two specific agents.

Let πa1,a2,l1,l2,t ≤ 0 be the dual variable of Constraint (8).
Adding one of Constraint (8) to the master problem will also
modify the objective function of the pricer by appending

−πa1,a2,l1,l2,ty
p
((l1,t),(l2,t+1))−πa1,a2,l1,l2,ty

p
((l1,t+1),(l2,t+2))

to Objective Function (7) when pricing agent a1, and

−πa1,a2,l1,l2,ty
p
((l2,t),(l1,t+1))−πa1,a2,l1,l2,ty

p
((l2,t+1),(l1,t+2))

when pricing agent a2.

4.2 Resolving Rectangle Symmetry Conflicts
Rectangle symmetry conflicts were recently introduced by [Li
et al., 2019]. The idea is that any two agents entering and
exiting a rectangle at precisely the right time must sustain
a vertex conflict somewhere within the rectangle. Consider
two agents a1 and a2 entering the gray rectangle in Figure 2.
If the two agents use a single-agent-optimal path, the agents
will always conflict somewhere within the rectangle. Let the
edges of the two sides used by a1 be E1, shown in thick red
lines. Let the edges of the two sides used by a2 be E2, shown
in dashed blue lines. In BCP, these rectangle symmetries are
removed using the constraint∑
p∈Pa1

∑
e∈E1

ypeλp +
∑

p∈Pa2

∑
e∈E2

ypeλp ≤ 3 ∀(a1, E1, a2, E2), (9)

where a1 6= a2, and E1 ⊂ E and E2 ⊂ E are the edges
timed precisely for entering and exiting the rectangle in an
optimal-length path (no delay in the interior). Constraint (9)
states that at most three of the four sides can be used at those
exact timesteps. The correctness of this constraint relies on
the proof given in [Li et al., 2019].

Let ρa1,E1,a2,E2
≤ 0 be the dual variable of Constraint (9).

Adding one of Constraint (9) will modify the objective func-
tion of the pricer by appending, respectively, the terms

−
∑
e∈E1

ρa1,E1,a2,E2
ype and −

∑
e∈E2

ρa1,E1,a2,E2
ype

to Objective Function (7) when pricing agents a1 and a2.

4.3 Branching on Path Length
Bounding the length of all paths for a particular agent bounds
its cost in the entire subtree. In particular, fixing the length of
an agent fixes its cost, regardless of the vertices it visits. Con-
trastingly, fixing a vertex to be used or unused only indirectly
affects the cost by rerouting the agent. Therefore, it is ben-
eficial to fix path lengths early in the search. BCP employs

a tiered branching rule that first branches on path length and
only branches on vertices (as in Section 3.6) once every path
used by an agent has the same length.

The branching rule begins by calculating the set S of agents
fractionally using paths of different lengths; defined as

S = {a ∈ A : ∃p1, p2 ∈ Pa, λp1
> 0, λp2

> 0, cp1
6= cp2

}.

From S, it chooses an agent a and a path p of shortest length
that is fractionally used, i.e.,

(a, p) = arg min
a∈S,p∈Pa

{cp : λp > 0}.

It then creates two children nodes. In one child, a only uses
paths with length less than or equal to cp. In the other child,
a only uses paths with length greater than or equal to cp +
1. Branching on path lengths removes the current fractional
solution and cannot remove an integer solution.

5 Experiments
This section compares the performance of BCP-B and BCP
against CBSH and CBSH-RM.

5.1 Set-up
BCP-B and BCP are implemented using the MIP solver SCIP
6.0.0 [Gleixner et al., 2018] with CPLEX as the LP solver.
Codes for CBSH [Felner et al., 2018] and CBSH-RM [Li et
al., 2019] are obtained from their authors. All four solvers
are single-threaded and are run on an Intel Xeon E5-2660 V3
CPU at 2.6 GHz with a time-out of five minutes. The solvers
are evaluated on the same instances as [Li et al., 2019], which
consist of 1,350 standard benchmarks over two small grids
and two large game maps sourced from the Moving AI repos-
itory [Sturtevant, 2018]. The 20x20 map is an empty 20× 20
grid. In 10obs-20x20, 10% of the empty space is replaced
with obstacles. The maps den520d and lak503d are consider-
ably larger and have structured obstacles. Fifty instances are
tested for every different number of agents.

5.2 Results
Figure 3 shows the percentage of instances optimally solved
by the four algorithms, categorized by map and the number
of agents. BCP displays exceptional performance in compar-
ison to the other three algorithms. It is obvious that the im-
provements detailed in Section 4 are worthwhile: BCP has the
highest success rate, while BCP-B has the lowest, tied with
CBSH. BCP optimizes 1,335 of the 1,350 instances compared
to 1,145 by CBSH-RM. On the den520d instances with 120
agents, BCP and CBSH-RM respectively solve 49 and 36 in-
stances. On the hardest lak503d map with 100 agents, BCP
closes 48 instances in comparison to CBSH-RM at 17.

Of the 1,335 instances optimized by BCP, 829 of them are
solved at the root node, i.e. no branching occurred. On the
other 506 instances with branching, the root node optimality
gap averages 0.1%, with the largest at 1.3%. These results
demonstrate that the lower bounds from BCP are extremely
tight, making the problems reasonably easy.

BCP found feasible solutions to all 15 instances on which
it timed out. On these instances, the optimality gap averages
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Figure 3: Success rate for each map and number of agents. Higher is better.
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Figure 4: Average run-time computed over the instances solved optimally by all algorithms. Lower is better.

0.5%, with a maximum of 1.7%. A lower bound 1 lower
than the feasible solution is found for 7 of the 15 instances,
indicating that their optimal solutions are at most 1 lower than
what is already found, if any.

Figure 4 plots the average run-time averaged over the in-
stances solved by all four algorithms. These charts confirm
that BCP has similar run-times for the easier instances but
substantially shorter run-times for the harder instances.

6 Related Work
Multi-agent Pathfinding is a special case of Multi-agent Plan-
ning; a well known problem that is often solved by modeling
the set of agents as one large agent with many degrees of free-
dom [Torreño et al., 2018]. This approach, sometimes called
joint planning, fails completely even for small instances of
MAPF [Standley, 2010]. To improve on joint planning, state-
of-the-art methods for optimal MAPF depend on some of the
following decompositions and reasoning.
Operator decomposition. Algorithms of this type plan in
the joint space of all agents but in a way that tries to avoid an
explosion in branching factor. OD [Standley, 2010] is a well-
known example that interleaves the planning of single agents
to dramatically reduce the branching factor of the search. An-
other approach, EPEA*, is a partial expansion [Goldenberg
et al., 2014] solver, which defers generating all but the most
promising successors of a node. OD and EPEA* are both
optimal and are often effective on MAPF problems with up
to dozens of agents and with low congestion. In more chal-
lenging settings, these same methods often exhaust available
memory long before finding a solution.

Compilation-based solvers. Algorithms of this type trans-
form MAPF into related problems for which efficient algo-
rithms exist. Examples include SAT [Surynek et al., 2016],
ASP [Erdem et al., 2013] and multi-commodity flow [Yu
and LaValle, 2013]. These approaches reason about the en-
tire problem at once but use simple time-expanded models
and currently without any specialized constraints and reason-
ing techniques developed specifically for MAPF. Such ap-
proaches exhibit state-of-the-art performance but typically do
not scale well to large maps with many agents.

Two-level search-based solvers. Algorithms of this type
reason about single agents at the low level and about the inter-
actions between single-agent plans at the high level. Perhaps
the most prominent example is CBS [Sharon et al., 2015],
which includes a large family of optimal and bounded subop-
timal variants [Felner et al., 2017]. Such leading MAPF algo-
rithms can scale to large maps with many agents, often with
the help of reasoning techniques developed specifically for
MAPF; e.g. lower-bounding heuristics [Felner et al., 2018],
branching strategies [Boyarski et al., 2015] and specialized
constraints [Li et al., 2019].

7 Conclusion
This paper introduced BCP, a novel algorithm for Multi-agent
Pathfinding that substantially improves upon current state-of-
the-art methods, including the recent algorithm CBSH-RM.
These results demonstrate that close collaboration between
the mathematical optimization and artificial intelligence com-
munities can result in significant advances.
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