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Abstract

Given a set of co-operating agents and a set of pickup-delivery
requests located on a 2-dimensional grid, the Multi-Agent
Pickup and Delivery (MAPD) problem assigns the requests to
the agents such that every agent moves from its start position
to the positions of its assigned requests and finally to its end
position without colliding into other agents and that the sum
of arrival times is minimized. This paper proposes an exact
branch-and-cut-and-price algorithm that performs a three-level
search. A high-level integer programming problem is solved
using a branch-and-bound tree search to select an optimal
subset of paths from a large collection of paths, a mid-level
routing problem is solved to find the sequence of requests
assigned to each agent, and a low-level path finding problem
is solved to find the movements that navigate each agent to
the locations of its assigned requests. A small preliminary
experiment indicates that the algorithm, believed to be the first
exact method, can solve instances with up to 25 agents and 50
requests.

Introduction
The Multi-Agent Pickup and Delivery (MAPD) problem is an
abstraction of the problem of controlling robots in automated
warehouses. The problem is defined on a discrete time hori-
zon and a 2-dimensional grid divided into square cells. A set
of co-operating agents is situated on the grid, each initially
at its start cell. At every timestep, an agent can move north,
south, east or west, or wait at its current cell. Every agent
begins at its start cell and must arrive at its designated end
cell before the end of the time horizon.

The problem includes a set of pickup-delivery pairs. Each
pair comprises two requests called the pickup and the deliv-
ery. Each request is located at a given cell and is associated
with a time window. The problem assigns every request pair
to exactly one agent. Every agent must depart its start lo-
cation, visit the cells of its assigned requests within their
time windows and then arrive at its end location. Once an
agent completes a pickup, the agent must then complete the
associated delivery before another pickup can be attempted.

While navigating the grid, agents must not collide into each
other. At most one agent can be at a cell at any given time,
called the vertex conflict condition, and agents cannot cross
over each other into opposite cells, called the edge conflict
condition. The time that an agent reaches its end location

after completing all its requests and waits there indefinitely
(because other agents no longer need to pass through) is
called its finish time. The problem minimizes the sum of
finish times, i.e., the so-called sum-of-costs objective.

This paper introduces a branch-and-cut-and-price algo-
rithm for MAPD called BCP-MAPD. Branch-and-cut-and-
price is an advanced technique from mathematical program-
ming that computes a strong lower bound within a branch-
and-bound tree search by dynamically building a tight linear
relaxation. BCP-MAPD performs a three-level search. A
high-level integer programming problem is solved using a
branch-and-bound tree search to select from a database a
sequence of requests and a path on the map for each agent,
a mid-level routing problem is solved to generate better re-
quest sequences to add into the database, and a low-level
path finding problem is solved to find better movements that
complete the sequence of requests assigned to each agent.
BCP-MAPD is believed to be the first exact algorithm for
MAPD. Preliminary experimental results show that the al-
gorithm can optimally solve instances with up to 25 agents
and 50 pickup-delivery requests. The remainder of this paper
presents the algorithm and the results in detail.

Background and Literature Review
Liu et al. (2019) recognized that MAPD combines parts of
the Multi-Agent Path Finding (MAPF) problem (Stern et al.
2019) and the Pickup and Delivery Problem with Time Win-
dows (PDPTW) from the family of Vehicle Routing Problems
(VRPs) (Vigo and Toth 2014).

The PDPTW is a sequencing problem of assigning pickup-
delivery tasks to agents. Each task is broken up into a pickup
request and delivery request. The PDPTW assigns the pickup-
delivery tasks to the agents such that every request is com-
pleted within its time window and the total travel distance
of all agents is minimized. All agents start at a central depot,
visit the locations of their allocated requests and then return
to the depot. Collisions are not considered in the PDPTW be-
cause the network is defined at a higher-level, for example, a
road network. All current state-of-the-art exact algorithms for
the PDPTW are based on branch-and-cut-and-price. Dumas,
Desrosiers, and Soumis (1991) developed the first branch-
and-price algorithm for the PDPTW, which did not include
any valid inequalities, and used a branching rule that gener-
ated many children at each node. Røpke and Cordeau (2009)



extended this algorithm with several families of valid inequal-
ities and compared two shortest path algorithms for generat-
ing paths. The constraint that a path can visit each customer at
most once is enforced in both the high-level and low-level in
one shortest-path variant, and this constraint is only enforced
at the high-level in the other variant. Baldacci, Bartolini, and
Mingozzi (2011) later added sophisticated lower bounds.

MAPF considers a set of agents, each with a start cell
and end cell, on a 2-dimensional grid. The problem finds a
path for every agent from its start cell to its end cell such
that the agents do not collide into each other and that the
sum of finish times is minimized. MAPF does not contain a
set of requests but simply attempts to navigate every agent
from its start cell straight to its end cell without vertex and
edge conflicts. The current state-of-the-art for exact MAPF
are three tree search algorithms: (1) CBS, which performs
a high-level tree search and solves low-level path finding
problem at every node of the search tree (Li et al. 2021), (2)
Lazy CBS, which adds conflict-driven clause learning from
Boolean satisfiability (SAT) and constraint programming to
CBS (Gange, Harabor, and Stuckey 2019), and (3) a branch-
and-cut-and-price algorithm (Lam et al. 2022).

The MAPD problem can be roughly divided into a PDPTW
component that constructs a sequence of requests for each
agent and a MAPF component that finds a path for every
agent to perform their assigned requests. The main difference
between the PDPTW and MAPD is that the travel distances in
the PDPTW is given as a look-up matrix, whereas in MAPD,
they are computed as the solution to a MAPF problem, which
varies due to the collisions, if any.

Problem Definition
The MAPD problem is defined on a 2-dimensional grid
with width W ∈ Z+ and height H ∈ Z+. Define L =
{0, . . . ,W − 1} × {0, . . . ,H − 1} as the set of locations. A
location l = (x, y) ∈ L is a pair of a horizontal coordinate
x and a vertical coordinate y on the grid. Define O ⊂ L
as the set of obstacles. Agents cannot move into an obsta-
cle. A location l2 = (x2, y2) ∈ L is a neighbor of location
l1 = (x1, y1) ∈ L in the
• north direction if x2 = x1 and y2 = y1 − 1,
• south direction if x2 = x1 and y2 = y1 + 1,
• west direction if x2 = x1 − 1 and y2 = y1, and
• east direction if x2 = x1 + 1 and y2 = y1.

Under this definition, the north-west corner of the grid is the
origin (0, 0).

Let T = {0, . . . , T − 1} be the set of discrete timesteps
where T ∈ Z+. The problem is defined on a time-expanded
directed acyclic graph G = (V, E), where V = L × T is
the set of vertices and E = {(((x1, y1), t1), ((x2, y2), t2)) ∈
V×V : |x2−x1|+|y2−y1| ≤ 1∧t2 = t1+1∧(x2, y2) ̸∈ O}
is the set of edges. A vertex v ∈ V is a location-timestep pair.
An edge e ∈ E represents a movement from a location at
some timestep to a neighbor location (a move action) or a
movement to the same location in the next timestep (a wait
action). The reverse e′ = ((l2, t1), (l1, t1 + 1)) of an edge
e = ((l1, t1), (l2, t1 + 1)) is a movement in the opposite
direction.

Let A be the set of agents. Each agent a ∈ A has a start
location sa ∈ L and a goal location ga ∈ L. While the start
location and goal location of an agent may be identical, all
start locations are unique and all goal locations are unique. A
path p of length k ∈ {1, . . . , T} for agent a is a sequence of
k locations (l0, l1, l2, . . . , lk−1) such that l0 = sa, lk−1 = ga
and ((lt, t), (lt+1, t+1)) ∈ E for all t ∈ {0, . . . , k−2}. Path
p visits the vertex (lt, t) for all t ∈ {0, . . . , k− 1} and (ga, t)
for all t ∈ {k, . . . , T − 1} because the agent remains at its
goal location after the path ends. Path p traverses the edges
((lt, t), (lt+1, t+1)) for all t ∈ {0, . . . , k−2} and the edges
((ga, t), (ga, t+ 1)) for all t ∈ {k − 1, . . . , T − 2}. It has a
cost cp = k − 1 equal to the number of actions required to
reach the goal location (and wait there indefinitely).

Let there be R ∈ Z+ pickup-delivery tasks. Let R↑ =
{0, . . . , R − 1} and R↓ = {R, . . . , 2R − 1} be the set
of pickup and delivery requests respectively. For all i =
0, . . . , R − 1, the pickup r↑ = i ∈ R↑ and the delivery
r↓ = R + i ∈ R↓ are paired. Every request r ∈ R↑ ∪ R↓

is located at Lr ∈ L and must occur between
¯
Tr ∈ T and

T̄r ∈ T inclusive, where
¯
Tr ≤ T̄r.

The MAPD problem assigns every pickup-delivery pair
(r↑, r↓), r↑ ∈ R↑, to an agent and assigns a path to every
agent. If a pickup-delivery pair (r↑, r↓) is assigned to an
agent, then the path assigned to the agent must visit the
vertices (Lr↑ , tr↑) ∈ V and (Lr↓ , tr↓) ∈ V at some time
tr↑ ∈ {

¯
Tr↑ , . . . , T̄r↑} and t↓r ∈ {

¯
T ↓
r , . . . , T̄

↓
r }, where t↑r ≤

t↓r . At any given time, an agent can carry at most one item,
i.e., tr↓1 ≤ tr↑2

or tr↓2 ≤ tr↑1
for any two different requests

r↑1 , r
↑
2 ∈ R↑ with r↑1 ̸= r↑2 .

The paths assigned to the agents must be free of vertex
collisions and edge collisions, i.e., if an agent is assigned the
path p1 = (lp1

0 , . . . , lp1

k1−1) and a different agent is assigned
the path p2 = (lp2

0 , . . . , lp2

k2−1), the conditions lp1

t ̸= lp2

t and
lp1

t ̸= lp2

t+1 ∨ lp2

t ̸= lp1

t+1 must hold for all t ∈ T .
A feasible solution consists of paths that satisfy all these

conditions. An optimal solution is a feasible solution that
minimizes the sum of path costs.

The Algorithm
This section briefly reviews the branch-and-cut-and-price
technique and presents a branch-and-cut-and-price algorithm
for MAPD named BCP-MAPD.

Overview
Branch-and-cut-and-price is a method for solving a difficult
combinatorial optimization problem via a sequence of easier
subproblems (Desrosiers and Lübbecke 2010; Lübbecke and
Desrosiers 2005). The intuition behind a branch-and-cut-
and-price algorithm for MAPF, named BCP-MAPF, is given
by Lam (2019).

BCP-MAPD consists of four main components. The mas-
ter problem selects a fractionally-optimal subset of paths
from a huge but incomplete database of paths. The master
problem is explicitly allowed to select multiple paths for each
agent subject to the requirement that the proportions of the
paths selected for each agent sum to 100%. The pricer finds
lower-cost paths for each agent to add into the database. The



separators resolve conflicts in solutions to the master problem
and add extra reasoning by prohibiting certain combinations
of selections in the master problem. The branching rules re-
move the fractionalities in the master problem by building a
search tree that guesses whether an agent does or does not
take an edge, incrementally forcing the master problem to
select fewer and fewer paths for each agent until eventually
it finds a solution that selects one path with 100% proportion
for each agent. A complete exploration of the search tree will
yield an optimal solution if one exists.

Let the navigation graph Gnav = (Vnav, Enav) = G explic-
itly denote the time-expanded graph G, which is used for nav-
igating the agents on the map. Define the sequencing graph
Gseq = (V seq, E seq) with vertices V seq = R↑ ∪R↓ ∪ {⊤,⊥}
where ⊤ and ⊥ are source and sink vertices representing the
start and goal location of an agent. The edges

E seq ={(⊤,⊥)}∪
{(⊤, r↑) : r↑ ∈ R↑}∪
{(r↑, r↓) : r↑ ∈ R↑}∪
{(i, j) : i ∈ R↓, j ∈ R↑, i ̸= R+ j}∪
{(r↓,⊥) : r↓ ∈ R↓}

are partitioned into five subsets, which respectively represent
moving from the start location to the goal location without
completing any request, from the start location to a pickup,
from a pickup to its corresponding delivery, from a delivery
to a different pickup, and from a delivery to the goal loca-
tion. The main idea behind BCP-MAPD is to simultaneously
search for paths on the sequencing graph and the navigation
graph. To avoid ambiguity, we refer to vertices and edges in
the sequencing graph as requests and legs.

The Master Problem
Define a request sequence s = (⊤, r1, . . . , r·,⊥) as a path on
Gseq from the source ⊤ to the sink ⊥, where r1, . . . , rn ∈ R
are not necessarily unique. For every path p, associate it with
a request sequence s containing the requests completed in
the path. Note that a request r does not necessarily need to be
completed on a path even if the path visits the location of r
because, e.g., another agent is completing the request. Define
a plan i = (s, p) as a pair of a request sequence and a path,
which together define an order of completing the requests
and a path on the map to complete these requests.

The master problem uses linear programming to mini-
mize the sum-of-costs of selecting a set of plans for every
agent such that the selected proportions of each plan sum
to 100%, the paths within the selected plans are fractionally
free of conflicts and every request is completed with 100%
proportion within all selected plans (across all agents). Let
Λa = {(sa,1, pa,1), . . . , (sa,·, pa,·)} be the set of plans of
agent a ∈ A.

For all a ∈ A and i = (s, p) ∈ Λa, let λa,i ∈ [0, 1] be a
decision variable indicating the proportion of selecting plan
i, and let αr

a,i ∈ {0, 1} be a constant indicating the number
of times that request r ∈ R↑ ∪ R↓ appears in the request
sequence of plan i.

The master problem begins as the linear program:

min
∑
a∈A

∑
i=(s,p)∈Λa

cpλa,i (1a)

subject to∑
i∈Λa

λa,i = 1 ∀a ∈ A, (1b)

∑
a∈A

∑
i∈Λa

αr
a,iλa,i = 1 ∀r ∈ R↑, (1c)

λa,i ≥ 0 ∀a ∈ A, i ∈ Λa. (1d)

Objective Function (1a) minimizes the total cost of the
chosen paths. Constraint (1b) requires the proportions of the
selected plans for every agent to sum to 100%. Constraint (1c)
requires every pickup request to be completed with 100%
proportion once across all selected plans. By the definition of
Gseq, the corresponding delivery will be completed next after
a pickup. Constraint (1d) are the non-negativity constraints
standard in linear programming. Constraints (1b) and (1d) to-
gether ensure that λa,i ∈ [0, 1]. Constraints enforcing vertex
conflicts and edge conflicts are initially omitted and added
dynamically as necessary. BCP-MAPD incrementally builds
the sets Λa and the vertex and edge conflict constraints.

Resolving Vertex and Edge Conflicts

Additional constraints prohibiting vertex conflicts and edge
conflicts are dynamically added to the master problem when-
ever the selected paths have conflicts. Separators check the
solution to the master problem and add constraints resolv-
ing conflicts whenever they occur. We use the same separa-
tors and constraints for vertex and edge conflicts as BCP-
MAPF (Lam et al. 2022).

Generating Sequences and Paths

The sets Λa of plans are exponential in the instance size.
Therefore, only a small but sufficient number of plans are
generated on-demand. The pricer generates the plans for
every agent by solving a two-level shortest path problem
that finds a request sequence and a path that completes that
sequence.

The high-level shortest path problem finds a request se-
quence by searching for a path on Gseq. The current imple-
mentation runs a forward search starting from the source
⊤. For every extension of the partial path along an edge/leg
in Gseq, a low-level shortest path problem is solved on Gnav

to navigate the agent from its current location to the next
location of the leg. This two-level shortest path problem is
excruciatingly difficult to solve.

The pricer needs to find sequences and paths that mini-
mize the reduced cost instead of the regular cost function.
The reduced cost bounds the maximum improvement to the
cost of the current solution to master problem if the new
sequence-path pair is added. The reduced cost is calculated
by subtracting the dual variables of the constraints in the mas-
ter problem, as in standard column generation apporaches.



Enforcing Integrality

Because the master problem can select paths with fractional
proportion, it is embedded in a branch-and-bound tree search
to remove these fractionalities. Nodes in the search tree cor-
respond to guesses as to whether an edge in the sequencing
graph or the navigation graph is used or not used. Branching
rules are subroutines that make these choices.

After the pricer reports that no more columns can poten-
tially improve the cost of the master problem solution and all
separators report that all conflicts are resolved in the master
problem solution, then the master problem has been solved
at the node and the branching rules are executed to find and
remove a fractionality in the master problem solution by
creating children nodes.

Two branching rules are used. The first removes fraction-
alities in the request sequences. It selects a leg from the
sequencing graph that is used by more than one agent and
creates two children nodes in the search tree. The first child
forces the agent to take the leg and the second child node
forbids the leg. This branching rule is called until a point
when all legs in the sequencing graph are used by at most
one agent.

The second branching rule is then called to remove frac-
tionalities in the paths. This branching rule selects an edge
on the navigation graph that is used by more than one agent
within a leg on the sequencing graph and then creates three
children nodes. The first child says that the leg is used and
the edge must be used during the leg. The second child says
that the leg is used and the edge cannot be used during the
leg. The third child says that leg cannot be used. If decisions
about the leg are incompatible with earlier decisions, then
the new node is infeasible and not considered further. These
three children nodes partition the search space, so that any
solution will appear in exactly one subtree. These decisions
are also enforced in the pricer, to ensure that all new paths
respect these decisions.

While it is possible to branch on an edge (i.e., requiring the
agent to take or avoid an edge at any time during its plan), it
is not easy to force an agent to take an edge because it is not
yet decided during which leg this edge occurs. The three-way
branching scheme avoids searching all legs to find optimal
paths that satisfy the branching decision.

Other Constraints

Typical in mathematical programming approaches, the master
problem is tightened with other constraints that provide addi-
tional reasoning. We implement a range of constraints (Lam
et al. 2022; Lam and Le Bodic 2020) for MAPF as well as
the subset row constraints (Jepsen et al. 2008) for VRP. Note
that a huge range of constraints have been developed for
the VRPs but most are theoretically (Letchford and Salazar-
González 2006) and/or experimentally (Costa, Contardo, and
Desaulniers 2019) shown to be ineffective within a branch-
and-cut-and-price setting due to the extremely tight formula-
tion.

Results
We conduct a small experiment to show that this exact ap-
proach is viable. Each instance is run for 2 hours. Due to the
huge computation times, results for only one map are cur-
rently available. The experiments are run on the 31x79-w5
warehouse map commonly seen in MAPF studies and with
up to 50 agents and 50 pickup-delivery pairs. Figure 1 shows
the success rate over six instances for each pair of num-
ber of agents and number of requests. These preliminary
results demonstrate that computing optimal solutions to this
challenging problem is possible, even if the run times are
currently excessive.
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Figure 1: Success rate. Higher is better.

Conclusion and Future Directions
This paper presents a branch-and-cut-and-price algorithm
for MAPD named BCP-MAPD. BCP-MAPD is believed to
the first exact algorithm for MAPD. Early results indicate
that it can solve small instances with up to 25 agents and 50
requests.

Over seven decades of work, algorithms for the family of
VRPs are pushing towards hundreds of customers (Costa,
Contardo, and Desaulniers 2019). Modern branch-and-cut-
and-price algorithms can be described as a “bag of tricks”
because they contain a large library of subroutines, each for
tackling one part of the overall problem. Future work on BCP-
MAPD should follow in this direction, so that suboptimal
nodes can be pruned earlier and ultimately improving run
time.
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