
Low-Level Search on Time Intervals in Branch-and-Cut-and-Price for Multi-Agent
Path Finding

Edward Lam, Peter J. Stuckey
Monash University, Australia

edward.lam@monash.edu, peter.stuckey@monash.edu

Abstract

Multi-agent path finding is the problem of navigating a set of
agents from their starting locations to their target locations
while avoiding collisions. A leading method for optimal multi-
agent path finding is branch-and-cut-and-price, a framework
based on mathematical optimization. The reference implemen-
tation, named BCP-MAPF, shows highly competitive results
against AI-based search. This paper presents BCP2-MAPF, a
new implementation of branch-and-cut-and-price paired with
a novel low-level path finder based on time intervals. Exper-
imental results demonstrate that BCP2-MAPF significantly
outperforms the other state-of-the-art optimal algorithms BCP-
MAPF, Lazy CBS and CBSH2-RTC.

Introduction
Multi-agent path finding (MAPF) is an abstract computa-
tional problem in artificial intelligence and robotics. Given
a map and a set of co-operative agents, each with a fixed
start and target location, MAPF asks to find collision-free
paths of minimum total cost that navigate every agent from
its starting location to its target. The most common variants
of MAPF prevent two types of collisions known as vertex
conflicts and edge conflicts (Stern et al. 2019). A vertex con-
flict occurs when two agents occupy the same location at the
same time. An edge conflict occurs when two agents swap
locations at any given time. The basic MAPF problem asks to
find conflict-free paths that minimize the sum of arrival times.
Another common objective aims to minimize the makespan,
defined as the time when the last agent arrives at its target.

Despite MAPF being NP-hard (Yu and LaValle 2013), re-
cent advances have produced algorithms that can solve large
instances that were intractable just several years ago. Conflict-
based search (CBS), branch-and-cut-and-price (BCP) and
lazy clause generation (LCG) are the leading approaches
for optimal MAPF. CBS, BCP and LCG are all general tree
search frameworks that can be customized to different prob-
lems, resulting in algorithms and implementations tailored to
specific problem variants.

CBSH2-RTC (Li et al. 2021), currently the fastest ver-
sion of CBS, proposed reasoning techniques for new types
of conflicts. BCP-MAPF (Lam et al. 2022) is the reference
implementation of BCP for MAPF and introduced many unfa-
miliar concepts from mathematical optimization to the MAPF
community. Lazy CBS (Gange, Harabor, and Stuckey 2019),

the reference implementation of LCG for MAPF, attempts to
prevent every agent from increasing its path length by deter-
mining which vertex and edge conflicts cause the path length
to change and then avoiding these vertices and edges.

This paper presents a new implementation of BCP, named
BCP2-MAPF. The main novelties of BCP2-MAPF over BCP-
MAPF are:

• A hybrid best-first depth-first search of the high-level
branch-and-bound tree that balances tightening of the
lower bound and upper bound.

• Constraints for reasoning about corridor conflicts bor-
rowed from CBSH2-RTC and a mechanism for generating
paths that respect these constraints.

• A low-level algorithm that breaks time symmetry by
searching on a graph whose edges represent combined
wait-then-move actions that jump over a time interval.

• A high-level tree search code that is specialized to MAPF
and engineered from scratch for high performance, and
hence removes the dependency on a generic mixed integer
programming solver.

Computational experiments comparing CBSH2-RTC,
Lazy CBS, BCP-MAPF and BCP2-MAPF demonstrate that
BCP2-MAPF substantially outperforms the other solvers. It
solves 1462 out of 2640 instances (55%) from the Moving AI
benchmarks (Sturtevant 2012). In comparison, BCP-MAPF,
Lazy CBS and CBSH2-RTC respectively solve 977 (37%),
957 (36%) and 608 (23%) instances. On the subset of in-
stances solved by all methods, BCP2-MAPF averages 3.3,
10.6 and 11.7 times faster than BCP-MAPF, Lazy CBS and
CBSH2-RTC respectively.

Problem Definition
Define a finite grid map with locations L = {0, . . . ,W−1}×
{0, . . . ,H − 1} where W ∈ Z+ is the width and H ∈ Z+

is the height of the map. Some locations are classified as
obstacles. Agents cannot enter locations marked as obstacles.
For every location l = (x1, y1) ∈ L, define its neighbors
N (l) = {(x2, y2) ∈ L : |x2 − x1| + |y2 − y1| ≤ 1} as
itself and the four locations in the north-south and east-west
orthogonal directions. This paper considers the 4-connected
version of the standard MAPF problem but all contributions
are applicable to other graph layouts.

Let T = Z+ = {0, 1, . . . ,∞} be the infinite set of time
steps. The problem is defined on a time-expanded graph
G = (V, E), where V = L × T is the set of vertices and
E = {((l1, t), (l2, t + 1)) ∈ V × V : l2 ∈ N (l1)} is the
set of edges. A vertex v ∈ V is a location-time step pair.
An edge e ∈ E is a pair of vertices representing moving
from one location to a different location (a move action) or a
staying at same location (a wait action). Define the reverse
e′ = ((l2, t), (l1, t + 1)) of an edge e = ((l1, t), (l2, t + 1))
as the edge going in the opposite direction.

Let A be the set of agents. Each agent a ∈ A has a fixed
start location sa ∈ L and goal location ga ∈ L. The goal
location of each agent can overlap with its start location but
all start locations are unique and all goal locations are unique.

A path p for agent a ∈ A of length k ∈ T is a sequence of
k locations (l0, l1, l2, . . . , lk−1) such that l0 = sa, lk−1 = ga
and ((lt, t), (lt+1, t+1)) ∈ E for all t ∈ {0, . . . , k−2}. Path
p visits the vertices (lt, t) where t ∈ {0, . . . , k−1} and (ga, t)
for all t ∈ {k, k+1, . . . ,∞} because the agent remains at its
goal location indefinitely after the path ends. Path p traverses
the edges ((lt, t), (lt+1, t+1)) where t ∈ {0, . . . , k−2} and
the edges ((ga, t), (ga, t+ 1)) where t ∈ {k − 1, k, . . . ,∞}.
The cost cp = k−1 of path p is equal to the number of edges,
i.e., the total number of move and wait actions taken to reach
the goal (and wait there indefinitely).

A feasible solution is a set of paths, one for each agent
a ∈ A, such that each vertex is visited at most once (i.e.,
absence of vertex conflicts), and each edge and its reverse
are traversed at most once (absence of edge conflicts). An
optimal solution is a feasible solution that minimizes the sum
of all path costs.

Related Work
Attention to MAPF has exploded in recent years as re-
searchers and industry realize its applications in artificial
intelligence and robotics. MAPF has historically been tack-
led through various traditional techniques, such as joint space
search (Standley 2010), which have proven difficult to scale.
At present, CBS, BCP and LCG are the leading approaches
for optimal MAPF.

CBS made large breakthroughs in scalability by decom-
posing the problem into a two-level tree search (Sharon et al.
2015). On the low level, CBS solves a single-agent prob-
lem by planning the path of each agent individually. On the
high level, CBS assembles the paths together for an overall
plan and resolves conflicts by adding constraints to children
nodes that prevent vertex and edge conflicts. Since then, CBS
has received many extensions, including advanced heuristics
that guide the search and prune redundant search nodes (e.g.,
Felner et al. 2018; Li et al. 2019). CBSH2-RTC is the most
recent and fastest instantiation (Li et al. 2021). It adds so-
phisticated reasoning techniques for rectangle, corridor and
target conflicts.

BCP is also a two-level tree search framework but its main
premise is to compute a strong lower bound at each node
by progressively tightening a continuous relaxation (e.g.,
Lübbecke and Desrosiers 2005; Desaulniers, Desrosiers, and
Spoorendonk 2011; Desrosiers et al. 2024). Its instantiation
for MAPF, named BCP-MAPF (Lam et al. 2022), finds paths

for agents independently, like CBS, but adds these paths into
a database for recall at any node in the search tree. It also
features constraints for resolving numerous kinds of conflicts.

LCG is a search technique for solving constraint pro-
grams coupled with a conflict analysis procedure borrowed
from propositional satisfiability (Ohrimenko, Stuckey, and
Codish 2009). Whenever LCG detects a conflict between
different substructures of a problem, it calculates a cause
of this conflict and adds a constraint that refutes the cause,
preventing the same conflict from occurring again in the fu-
ture. Lazy CBS is the reference implementation of LCG for
MAPF (Gange, Harabor, and Stuckey 2019). It introduces
a method for determining which vertex and edge conflicts
cause to an agent to increase its path length. It then prevents
other agents from accessing these vertices and edges, thereby
allowing the original agent to use these vertices and edges,
and hence avoiding an increase to its path length.

CBS, Lazy CBS and BCP-MAPF all rely on an underly-
ing path finder for their low-level problem. Presently, these
path finders are based on a variant of time-expanded A* that
searches on a graph similar to G. A major drawback of time-
expanded graphs is that they exhibit time symmetry.

Safe interval path planning (SIPP) is one approach to break-
ing this time symmetry (Phillips and Likhachev 2011). Pro-
vided that dynamic obstacles occupy locations during known
time intervals, SIPP searches on a graph whose edges rep-
resent combined wait-then-move actions that jump through
multiple time steps to a time when an obstacle has passed.
These actions impose an ordering, thereby breaking symme-
tries arising from combinations of waiting and moving to
avoid a dynamic obstacle in time-expanded A*. Empirical
results demonstrate that SIPP significantly reduces compu-
tational time compared to time-expanded A*. BCP2-MAPF
introduces a low-level path finder based on similar ideas but
generalizes the wait-then-move actions from uniform cost to
arbitrary non-negative costs required by the BCP framework.

Background

BCP is a technique developed for mathematical optimization
of large-scale problems (e.g., Lübbecke and Desrosiers 2005;
Desaulniers, Desrosiers, and Spoorendonk 2011; Desrosiers
et al. 2024). It consists of a high-level branch-and-bound tree
search in which every node iteratively builds a continuous re-
laxation, called the master problem, to obtain an increasingly
tighter lower bound. The master problem usually assembles
individual plans or patterns that make up a solution to the
original problem and contains constraints that prevent certain
combinations of patterns from appearing in the same solu-
tion. Every pattern is associated with a variable whose value
represents the proportion of selecting the pattern.

The BCP technique was first instantiated for MAPF in
an implementation named BCP-MAPF (Lam et al. 2019,
2022). It includes constraints that prohibit vertex conflicts,
edge conflicts and many other types of conflicts unique to
the continuous relaxation. BCP-MAPF demonstrated results
competitive against and often surpassing other state-of-the-art
solvers to this day.

The Master Problem
At every node of the high-level tree, BCP2-MAPF solves a
master problem that selects paths from a large database and
resolves conflicts. BCP2-MAPF inherits the master problem
from BCP-MAPF, shown in Problem (1). Let Pa be the set of
paths for agent a ∈ A. Every path p ∈ Pa is associated with
a variable λp ∈ [0, 1] that represents its usage proportion.

min
∑
a∈A

∑
p∈Pa

cpλp (1a)

subject to∑
p∈Pa

λp = 1 ∀a ∈ A, (1b)

λp ≥ 0 ∀a ∈ A, p ∈ Pa. (1c)

Objective Function (1a) minimizes the total cost of the se-
lected paths. Constraint (1b) ensures that the total proportion
of all paths used by each agent sums to 1. Constraint (1c)
are the non-negativity constraints, which disallow negative
proportions of a path. Constraints (1b) and (1c) together en-
sure that λp ∈ [0, 1]. As currently stated, the master problem
allows vertex and edge conflicts. These and other types of
conflicts are dynamically resolved by adding constraints as
required.

Resolving Conflicts
An edge conflict occurs at e ∈ E if e and its reverse e′

are used simultaneously by the paths selected by the master
problem, i.e., ∑

a∈A

∑
p∈Pa

(xp
e + xp

e′)λp > 1,

where xp
e ∈ {0, 1} counts the number of times that path p

uses edge e ∈ E . If this condition is met, an edge conflict
constraint ∑

a∈A

∑
p∈Pa

(xp
e + xp

e′)λp ≤ 1 (2)

is added to the master problem, which is then solved again to
resolve the conflict.

Many types of conflicts, including edge (Constraint (2))
and vertex conflicts, can be resolved using a constraint r
expressed in the general form

∑
a∈A

∑
p∈Pa

(∑
e∈E

αa
r,ex

p
e

)
λp ≤ br, (3)

where br ≥ 0 and αa
r,e ∈ {0, 1} determines if edge e is in-

cluded for agent a according to the definition of the conflict.
Constraint (3) can be interpreted as a bound on the total usage
of the agent-edge pairs {(a, e) ∈ A × E : αa

r,e = 1}. Con-
straints in the form of Constraint (3) are called robust (de Ara-
gao and Uchoa 2003; Fukasawa et al. 2006). Let R1 be the
set of all robust constraints.

A few classes of conflict constraints, such as target and
corridor, cannot be decomposed into a conflict over a set

of agent-edge pairs. These conflicts can be resolved using a
constraint r in the form∑

a∈A

∑
p∈Pa

xp
rλp ≤ br. (4)

Constraint (4) can be interpreted as a bound on the usage
of a resource to at most br ≥ 0, where path p consumes
xp
r ≥ 0 of the resource. Constraints that can be expressed in

the form of Constraint (4) but not Constraint (3) are called
non-robust (de Aragao and Uchoa 2003; Fukasawa et al.
2006). Let R2 be the set of all non-robust constraints.

Generating Paths
The set Pa is dynamically enlarged by calling a low-level
path finder. Instead of finding a path with minimum cost, the
low-level solver needs to find a path with minimum reduced
cost, which can be interpreted as a combination of its cost
and how much it participates in the conflicts.

Every constraint r ∈ R1 ∪ R2 is associated with a dual
variable πr ≤ 0 whose value can be retrieved from the solver
of the master problem, similar to the values of the λp vari-
ables. Let ρa be the dual variable of Constraint (1b). The
reduced cost of a path p for agent a is then defined as

c̄p = cp − ρa −
∑
r∈R1

πr

∑
e∈E

αa
r,ex

p
e −

∑
r∈R2

πrx
p
r . (5)

The reduced cost is the largest possible improvement to the
value of Objective Function (1a) should the path be selected
(i.e., λp = 1). If a path with negative reduced cost is found,
it can potentially improve the objective value, so it is added
to Pa and the master problem is solved again. Finding paths
with the most negative (i.e., minimum) reduced cost intu-
itively decreases the objective value in the fewest iterations,
although this does not always hold in practice.

According to Equation (5), every robust constraint r ∈ R1

adds a penalty −πrα
a
r,e ≥ 0 to the reduced cost of every

edge e in order to discourage competition for the edge. For
example, if the constraint r for an edge conflict at edge e0
has a dual variable whose value is πr = −4.5, then every
new path p that contests the edge (i.e., xp

e0 = 1) will incur
a penalty of −πrα

a
r,e0x

p
e0 = −(−4.5) × 1 × 1 = 4.5 in its

reduced cost. As seen here, penalties due to robust constraints
can be trivially accumulated when extending a partial path
along an edge during the search.

In contrast, a non-robust constraint r ∈ R2 requires a
new mechanism in the low-level solver to correctly penalize
the path by −πr ≥ 0 whenever xp

r is incremented. These
mechanisms highly depend on the definition of each class of
non-robust constraints.

By adjusting the values of all ρa and πr and then asking
the low-level solver to find paths with negative reduced cost,
the master problem will converge to a fractionally-optimal
solution. If any vertex or edge is used with fractional propor-
tion at convergence, then two children nodes are created to fix
these fractional values to 0 and 1, eliminating the fractional
solution. Eventually, the tree search will yield an optimal
conflict-free solution.

A Hybrid Best-First Depth-First Search
BCP2-MAPF runs a hybrid search strategy that balances the
focus on improving both the lower bound and upper bound.

Solutions to combinatorial problems often appear deep in
the search tree. Therefore, depth-first search is commonly
applied to find solutions quickly regardless of solution quality.
The main drawback of depth-first search is that early poor
decisions can cause the search to get stuck in a suboptimal
subtree, requiring an exponential amount of effort to close
and proceed to a more-promising subtree near the root.

In contrast, best-first search attempts to find high-quality
solutions. The global lower bound is the lowest lower bound
of all open nodes on the search frontier. Best-first search
focuses on the nodes with the smallest lower bound, which
are often near the root, despite solutions rarely appearing
here. Therefore, best-first search works well in conjunction
with tight lower bounds but could otherwise fail for small
time limits.

Mathematical optimisation solvers, compared to other tech-
niques, typically spend more time on tightening the lower
bound and therefore best-first search will generally find low-
cost solutions quickly due to the stronger lower bounds. Of
course, this observation does not apply to all problems, espe-
cially those that display many symmetries. For these prob-
lems, the symmetries explode the number of equivalent nodes,
requiring significant effort to close.

BCP2-MAPF implements a hybrid search strategy that
periodically performs a best-first node selection and then
proceeds to a limited depth-first exploration of the subtree
rooted at this node. This search strategy is implemented using
a stack for depth-first search and a priority queue for best-first
search. It takes a node off the stack if available otherwise it
pops a node off the priority queue and moves it to the stack.
When a node is generated, it is inserted into the priority queue
if either of the following conditions hold:

• The number of nodes in this subtree exceeds a fixed pa-
rameter, indicating that the subtree is large and another
subtree could be more promising.

• The lower bound of the new node is significantly higher
than the lower bound of the subtree’s root, indicating that
another subtree could have smaller lower bounds. The
following formula proved effective in determining if a
node should be inserted into the priority queue:

node lower bound > ⌈subtree root lower bound⌉+ 2.

Otherwise, the node is inserted into the stack and depth-first
search continues.

Corridor Conflicts
Corridor conflicts arise when two agents traverse a single-
lane section in opposite directions (Li et al. 2021). BCP-
MAPF introduced pseudo-corridor reasoning, which simply
treats each edge as a short corridor (Lam et al. 2019). Pseudo-
corridor conflicts were later generalized to full corridor rea-
soning and implemented in CBSH2-RTC (Li et al. 2021).
Handling corridor conflicts using dedicated reasoning tech-
niques proved effective in maps where they often appear, such

as warehouses and mazes. This section describes how the
same corridor conflicts can be implemented in BCP2-MAPF.

Define a corridor as a sequence of connected locations
such that all internal locations have degree 2 and define its
length m as the number of locations. The first and last loca-
tions are its endpoints.

Figure 1 shows two agents crossing in opposite directions a
corridor of length 5 with endpoints l1 and l2. Without loss of
generality, assume that agent a1 has priority and a2 concedes
the corridor to a1. Then, a1 can reach l1 at time 5 and move
to l3 at time 6. Agent a2 can now enter l1 at time 6 and
proceed through the corridor to reach l2 at time 10. Therefore,
a corridor conflict occurs if both a2 reaches l2 before time
10 and a1 reaches l1 before time 10 by symmetry (Li et al.
2021). Additionally, if there is a detour that allows either
agent to bypass the corridor and avoid the conflict altogether,
the earliest arrival time at the farthest endpoint via this detour
must also be considered (Li et al. 2021).

Define ha(l) as the earliest time that agent a can reach
location l from its start location and h′

a(l) as the earliest time
that agent a can reach location l without using the corridor.
Let the earliest possible arrival time of a1 at l1 for avoiding a
corridor conflict be τa1,l1,a2,l2 = min(ha2

(l2)+m,h′
a1
(l1)),

defined as the earlier of either conceding the corridor to a2
or detouring around the corridor. A corridor conflict occurs
in a corridor of length m if agent a1 visits its farthest end-
point l1 before time τa1,l1,a2,l2 and agent a2 visits its farthest
endpoint l2 before time τa2,l2,a1,l1 . These two conditions are
mutually exclusive and can be captured in the constraint∑

p∈Pa1

ypa1,l1,a2,l2
λp +

∑
p∈Pa2

ypa2,l2,a1,l1
λp ≤ 1,

where ypa1,l1,a2,l2
= 1 if path p of a1 visits l1 before time

τa1,l1,a2,l2 .
Note that ypa1,l1,a2,l2

does not count the number of times
that a1 visits l1 before τa1,l1,a2,l2 , but rather, it indicates
if l1 is visited at least once before τa1,l1,a2,l2 . To correctly
handle the penalty induced by the dual variable of a corridor
conflict constraint, the low-level solver requires a mechanism
to penalize a new path on the first visit to l1 before time
τa1,l1,a2,l2 . This mechanism, called a once-off penalty, is
described in the next section.

A Low-Level Search on Time Intervals
The low-level solver generates paths by exploring a graph.
Bear in mind that this graph is only an abstract concept for

a1

a2

l1 l2

l3

Figure 1: Two agents traversing a corridor of length 5 in
opposite directions.

3

4

Location

Ti
m

e

Location

Ti
m

e

sa l1 l2 l3

0

1

2

3

4

5

6

7

8

sa l1 l2 l3

0

1

2

3

4

5

6

7

8

Figure 2: The time-expanded graph (left) includes all move
and wait edges, regardless of whether they have zero (black)
or non-zero (red) penalty. The time-interval graph (right)
only contains edges with non-zero penalty (green), edges
that bypass a penalty (orange and blue) and edges that move
from the start vertex or from the destination of edges of the
previous two types to the next time step (black).

defining the search problem and is never explicitly instan-
tiated. BCP-MAPF defines the search problem on a time-
expanded graph very similar to G. This section describes
how the time intervals from SIPP can be generalized from
uniform-cost actions to arbitrary non-negative costs to define
the low-level search problem in BCP2-MAPF.

The Time-Interval Graph
A time interval of length k ∈ T starting at t ∈ T is a
consecutive sequence of time steps (t, t+ 1, . . . , t+ k − 1)
that is associated with an origin location i ∈ L, a destination
location j ∈ L, which may coincide with the origin, and
a penalty c incurred when departing the origin at any time
during the sequence of time steps to the destination.

Figure 2 compares the time-expanded graph and equivalent
time-interval graph. To avoid a messy illustration, assume
that the agent can only move from left to right. The vertices
of the time-interval graph are the same but the vast majority
are unreachable and hence can be discarded. In the time-
expanded graph (left), the edges indiscriminately exist at
every time step until infinity (or an arbitrarily-imposed finite
time horizon). It is oblivious to the two penalties shown in
red: the move edge ((sa, 2), (l1, 3)) with penalty 3 and the
wait edge ((l2, 6), (l2, 7)) with penalty 4. The time-interval
graph (right) recognizes the times of these penalties and its
edges mostly correspond to jumping to or over the penalties.
Specifically, the edge set consists of:

• Move edges outgoing from the agent’s start vertex or
from the destination vertex of the three types of edges
mentioned below. Shown in black, these edges simply

propel the agent forward just like the time-expanded case.
• Wait-then-move edges that wait and then move with a

penalty. The green edge ((sa, 0), (l1, 3)) corresponds to
waiting at sa from time 0 until time 2 and then moving,
which incurs the penalty at (sa, 2). This edge has cost
2+(1+3) = 6 due to waiting 2 time steps at sa and then
moving with cost 1 plus the penalty 3.

• Wait-then-move edges that bypass a move penalty. For
every edge of the previous type, there is another edge
that arrives one time step later to avoid the move penalty.
The orange edge ((sa, 0), (l1, 4)) bypasses the penalty
incurred by the green edge and has cost 4.

• Wait-then-move edges that bypass a wait penalty. At every
neighbor location of a wait penalty, there is an edge that
first waits from the arrival time of every incoming edge
and then moves to arrive after the wait penalty. The cost of
these edges include the penalties for waiting at the origin
location, if any. The blue edges avoid the red wait penalty
at (l2, 6).

• Wait-then-move edges that bypass a once-off penalty in-
curred for visiting a location at or before a given time.
These edges are discussed later.

The time-interval graph breaks time symmetry by imposing
that agents must wait first before moving to reach a given
vertex. Specifically, one wait-then-move edge prevents all
except one combination of moving and waiting in the time-
expanded graph.

Once-Off Penalties
Robust constraints induce penalties on the edges, which are
handled by adding wait-then-move edges described previ-
ously. The corridor and target non-robust constraints induce
penalties on the first time that a location is visited before
or after the associated time. Penalties on the first visit to
a location cannot be implemented via multiple edge costs
at consecutive time steps because the cost will be incurred
multiple times should a path visit the location subsequently.
This type of penalty, called a once-off penalty, necessitates a
distinct mechanism to handle.

Assuming that the only non-robust constraints are the tar-
get and corridor conflict constraints, a once-off penalty in-
duced by a target or corridor conflict constraint r ∈ R2 is
defined by a value for the associated dual variable πr ≤ 0,
a location lr ∈ L, a time tr ∈ T and a time direction
dr ∈ {“≤”, “≥”} that indicates if the penalty is to be
paid upon visiting li at a time equal to or earlier than tr
if dr = “≤”, or equal to or later than tr if dr = “≥”. The
time direction dr is “≤” for all corridor conflict constraints r
and dr is “≥” for all target conflict constraint r.

Every partial path p is now associated with an additional bit
vector (qp1 , . . . , q

p
|R2|) ∈ {0, 1}|R2| whose elements indicate

whether each penalty has been paid.
Consider the extension of a partial path p along a wait-

then-move edge that waits from (l1, t1) until (l1, t2 − 1)
then moves to (l2, t2). For every corridor constraint r (i.e.,
dr = “≤”) whose penalty is not yet paid (i.e., qpr = 0), the
penalty −πr ≥ 0 is added to the reduced cost c̄p′ of the

extended partial path p′ if l2 = lr and t2 ≤ tr. For every
target constraint r (i.e., dr = “≥”) whose penalty is not yet
paid, the penalty −πr ≥ 0 is accumulated if either l1 = lr
and t2 − 1 ≥ tr, or l2 = lr and t2 ≥ tr. Next, the penalty is
marked as paid by setting qp

′

r to 1. Then, future visits to lr
will not incur the penalty again.

Every corridor constraint r induces a penalty −πr for
visiting lr at or before time tr. This penalty can be bypassed
by arriving at lr after tr. To facilitate this bypass, the time-
interval graph also requires the addition of wait-then-move
edges at every neighbor location l of lr that wait from every
arrival time at l until tr, then move to arrive after the penalty
(i.e., arrive at (lr, tr + 1)).

Every target constraint r induces a penalty for visiting lr at
or after time tr. Since this penalty can be incurred indefinitely
into the future, it cannot be bypassed and hence no wait-then-
move edge needs to be added to the time-interval graph.

The Dominance Rule
Dominance rules are commonly used to discard partial paths
found during one invocation of the low-level search. In ad-
dition to breaking time symmetry, the time-interval graph
allows for stronger dominance rules that can compare two
partial paths ending at the same location but at different times,
instead of only comparing paths ending at the same location
at the same time.

In the time-expanded graph, if two partial paths end at the
same location at the same time, the path with higher cost is
dominated and can be discarded. In the time-interval graph,
if two partial paths end at the same location at different times
and extending the earlier path to the time of the later path
(e.g., by waiting) yields a path with the same or lower cost,
then the later path can be discarded.

Consider two partial paths in Figure 2. A partial path p1
that solely consists of the edge ((sa, 0), (l1, 1)) ends at (l1, 1)
with cost 1. Another partial path p2 that includes only the
green edge ends at (l1, 3) with cost 6. Extending p1 from
(l1, 1) to (l1, 3) by waiting costs 2, giving a new partial path
p′1 with cost 1+ 2 = 3. Since p′1 has lower cost than p2, path
p1 dominates p2 and p2 is pruned.

This dominance rule can be strengthened by calculating
the minimum reduced cost of a path from (l1, 1) to (l1, 3),
instead of merely waiting. However, this stronger bound re-
quires an expensive search and is unlikely to be beneficial
given that there are relatively few wait penalties in compari-
son to the total number of edges. Therefore, this improvement
is not considered any further.

Formally, consider two partial paths p1 and p2 ending at
the same location l but possibly at different times tp1

and tp2
.

Path p1 dominates p2 if

tp1
≤ tp2

and

c̄p1 −
t2−1∑
t=t1

∑
r∈R1

πrα
a
r,((l,t),(l,t+1))x

p
((l,t),(l,t+1))

−
∑

r∈R2:q
p1
r =0∧q

p2
r =1

πr ≤ c̄p2 .

The first summation is the penalties of waiting until the time
t2 of the second path. The second summation is the once-
off penalties paid by the second path but not yet paid by
the first path. This dominance rule says that, should the first
path wait until the time of the second path, pay the extra
penalties paid by the second path and still cost the same or
less than the second path, then the second path is dominated.
By dominating across time, more states can be removed from
the search.

This dominance rule can also be used in the time-expanded
search but checking the condition is much more complex.
Furthermore, it needs to ensure that a descendant is not domi-
nated by an ancestor. Iterating through the ancestors of every
extension to a partial path to check the dominance condition
is surely a very expensive computation.

Note that checking ancestry is unnecessary in the time-
interval graph. Consider an extension p′ of a partial path p
that moves away from its current location l, returns to this
location l and then is immediately dominated by the ancestor
p. This dominance is valid in the time-interval graph because
there are wait-then-move edges outgoing from every arrival
time. For every wait-then-move edge outgoing from p′, there
is a corresponding wait-then-move edge outgoing from p
that arrives at the same vertex. In conjunction with the fact
that p′ is dominated, every extension of p′ has an equivalent
extension of p that arrives at the same destination vertex
with the same or lower cost. Therefore, a descendant can be
dominated by an ancestor but doing so does not prune any
feasible path.

A Data Structure for the Time Intervals
A high-performance implementation of these algorithms
proved annoyingly elusive. Several simpler implementations
ran much slower than the reference code BCP-MAPF. The
difficulty originates in the interaction between components.
For example, loop bodies that were once tight and branch-
less in a standard A* code now contains nested loops for
looking up various data structures for the penalties. This sec-
tion describes a data structure for efficient look-up of the
wait-then-move edges and their costs.

The expansion step in the time-expanded search of BCP-
MAPF first takes a vertex and then looks up the cost of each
outgoing edge from this vertex. Because each look-up is
performed independently, the edge penalties can be stored in
a hash table, allowing constant-time look-up.

In contrast, the expansion step in the time-interval search
of BCP2-MAPF takes a vertex and then iterates through all
later wait-then-move edges. Therefore, the penalties at each
location and each outgoing direction need to be stored in an
ordered list. This order requirement prevents the use of a hash
table, requiring a sorted array, linked list, binary tree, skip list
or similar. The best performing data structure is a linked list
whose nodes are allocated in a contiguous section of memory
(i.e., a memory pool). Storing nodes close together mitigates
some of the poor cache locality issues of linked lists. The
sorted array performed surprisingly poorly, presumably due
to the insertions at arbitrary positions during its construction.

Another complication is the vertex and edge constraints,
which place the same penalty on the same vertex/edge of all

agents. BCP-MAPF retrieves the dual solution and naively
creates the same penalty on the same edges in the low-level
graph of every agent. Because the edge penalties are backed
by a hash table in BCP-MAPF, this operation is cheap, despite
the large number of copies. In BCP2-MAPF, this copying is
a major bottleneck for large numbers of agents (e.g., 200)
because every insertion into a linked list requires iterating
from the start to find the insertion position.

To overcome this issue, a copy-on-write data structure is
developed. This data structure consists of a hash table that
maps every location and outgoing direction to a linked list
of intervals sorted by time. This hash table, described as
global, is initially shared across all agents. The penalties
from the vertex and edge conflict constraints, which span
all agents, are first created. Next, the code loops through
all agent-specific robust constraints (e.g., pseudo-corridor)
to add the associated penalties. Whenever this procedure
encounters an agent that still shares the global hash table,
it makes a copy of the global hash table and duplicates the
penalties at the location and direction of the penalty. Then, the
penalty is inserted into this agent-specific copy of the linked
list. The penalties at the other locations or directions remain
shared. This shared data structure means that the penalties
originating from the vertex and edge conflict constraints are
created once in the global hash table, which can be used by
all agents not involved in agent-specific constraints.

Computational Results
The experiments are carried out on 16 maps from the Moving
AI benchmarks (Sturtevant 2012). These maps are selected to
span a wide range of structures, including cities, video games,
empty squares, mazes and warehouses. The experiments are
conducted on 11 different numbers of agents on 15 instances
of the random category, which indicates that the start and
goal locations of the agents are randomly distributed. The
experiments are run on a total of 2640 instances. All instances
for each solver are run in parallel with a time limit of 5
minutes on an Intel Xeon Gold 6338 CPU with 64 cores.

Comparison Against Other Solvers
Overall, BCP2-MAPF, BCP-MAPF, Lazy CBS and CBSH2-
RTC respectively take a total of 6777, 7219, 9244 and 10495
minutes to solve 1462 (55%), 977 (37%), 957 (36%) and
608 (23%) instances. Instances that time out are counted as
5 minutes. For the 461 instances solved by all four methods,
the total time taken is 13, 41, 134 and 148 minutes respec-
tively, indicating that BCP2-MAPF is 3.3 times faster than its
nearest competitor BCP-MAPF, 10.6 times faster than Lazy
CBS and 11.7 times faster than CBSH2-RTC.

Figure 3 plots the percentage of instances solved catego-
rized by map and number of agents. The results show that
BCP2-MAPF performs consistently well across all maps. It
dominates CBSH2-RTC on all maps and dominates BCP-
MAPF except for orz900d. BCP2-MAPF has the greatest
lead against the competing CBSH2-RTC and Lazy CBS al-
gorithms on the five game maps. It also closes all tested
instances on the small empty square empty-8-8, which have
at most 32 agents. However, it is inferior to Lazy CBS when

the square is enlarged and the number of agents increase in
the empty-32-32 map and when 10% of the map is replaced
with obstacles in random-32-32-10. BCP2-MAPF is also no
match for Lazy CBS on warehouse-10-20-10-2-2, the ware-
house with corridors of width 2, where corridor reasoning is
rendered inapplicable.

Comparison of the Contributions
Figure 3 also shows an ablation study of the three main
contributions of BCP2-MAPF. The complete BCP2-MAPF
solves 1462 instances, compared to 1401 without the hybrid
search, 1343 without corridor reasoning and 1299 without
time intervals.

The time-interval graph makes the biggest contribution
because it breaks time symmetries, of which many intrinsi-
cally exist due to the problem definition. This difference is
most prominent on the maps with higher congestion, such as
brc202d, orz900d, random-32-32-20, maze-128-128-1 and
maze-128-128-2. The time expansion performs similarly well
on maps with more open space, including Berlin 1 256,
lt gallowstemplar n, empty-32-32, random-32-32-10 and
maze-128-128-10.

The corridor conflicts make negligible difference except on
maze-128-128-1, maze-128-128-2 and warehouse-10-20-10-
2-1, where many long corridors appear. Without explicit han-
dling of corridors, BCP2-MAPF reverts to pseudo-corridor
conflicts, which require many iterations to clear.

The hybrid best-first depth-first search enables BCP2-
MAPF to close the final instance of empty-8-8. It also assists
in empty-32-32 but has more muted impact across the other
maps. Nevertheless, it still contributes to solving an addi-
tional 61 instances, so overall it is clearly beneficial.

Conclusion
This paper presents a new implementation of branch-and-cut-
and-price for multi-agent path finding named BCP2-MAPF.
Its main novelties are a low-level search that breaks time
symmetries using a graph based on time intervals, corridor
reasoning techniques borrowed from CBSH2-RTC and a hy-
brid best-first depth-first search that balances improving both
the lower and upper bounds. The implementation, consisting
of more than 22000 lines of code, is engineered from scratch
and underwent substantial tuning for high performance.

Experimental results on 2640 instances across 16 maps
indicate that BCP2-MAPF far exceeds the capabilities of
other state-of-the-art solvers, including the reference imple-
mentation BCP-MAPF and the competing CBSH2-RTC and
Lazy CBS techniques. BCP2-MAPF is 3.3, 10.6 and 11.7
times faster than BCP-MAPF, Lazy CBS and CBSH2-RTC
respectively on the subset of instances solved by all methods.
It dominates CBSH-RTC and BCP-MAPF except for a few
instances. It also outperforms Lazy CBS on all maps except
the larger (but still small) empty square and the warehouse
with corridors of width 2.

Of the three scientific contributions, the low-level search
has the greatest impact on its performance, allowing it to
solve many more instances of the larger game maps brc202d
and orz900d. The other advances achieve a more modest
result but still enable several more instances to be solved.

200 240 280 320 360 400

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

Berlin 1 256

200 240 280 320 360 400

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

Paris 1 256

100 130 160 190 220 250

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

brc202d

50 80 110 140 170 200

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

orz900d

100 120 140 160 180 200

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

w woundedcoast

150 170 190 210 230 250

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

ost003d

100 120 140 160 180 200

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

lt gallowstemplar n

2 8 14 20 26 32

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

empty-8-8

100 120 140 160 180 200

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

empty-32-32

80 100 120 140 160 180

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

random-32-32-10

40 60 80 100 120 140

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

random-32-32-20

2 6 10 14 18 22

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

maze-128-128-1

10 16 22 28 34 40

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

maze-128-128-2

20 40 60 80 100 120

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

maze-128-128-10

100 120 140 160 180 200

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

warehouse-10-20-10-2-1

200 240 280 320 360 400

0%

20%

40%

60%

80%

100%

Agents

Pe
rc

en
ta

ge
So

lv
ed

warehouse-10-20-10-2-2

BCP2 BCP2 w/o hybrid search BCP2 w/o corridor conflicts BCP2 w/o time intervals BCP Lazy CBS CBSH2-RTC

Figure 3: Success rate of the algorithms by map. Higher is better.

Acknowledgments
This research is supported by the Australian Research Coun-
cil under grant DE240100042.

References
de Aragao, M. P.; and Uchoa, E. 2003. Integer program re-
formulation for robust branch-and-cut-and-price algorithms.
In Mathematical Program in Rio: a conference in honour of
Nelson Maculan, 56–61.
Desaulniers, G.; Desrosiers, J.; and Spoorendonk, S. 2011.
Cutting planes for branch-and-price algorithms. Networks,
58(4): 301–310.
Desrosiers, J.; Lübbecke, M.; Desaulniers, G.; and Gauthier,
J.-B. 2024. Branch-and-Price. Les Cahiers du GERAD G-
2024-36, Groupe d’études et de recherche en analyse des
décisions.
Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar, T.
K. S.; and Koenig, S. 2018. Adding Heuristics to Conflict-
Based Search for Multi-Agent Path Finding. Proceedings
of the International Conference on Automated Planning and
Scheduling, 28(1): 83–87.
Fukasawa, R.; Longo, H.; Lysgaard, J.; De Aragão, M. P.;
Reis, M.; Uchoa, E.; and Werneck, R. F. 2006. Robust Branch-
and-Cut-and-Price for the Capacitated Vehicle Routing Prob-
lem. Mathematical Programming, 106(3): 491 – 511.
Gange, G.; Harabor, D.; and Stuckey, P. 2019. Lazy CBS: Im-
plicit Conflict-Based Search Using Lazy Clause Generation.
In Proceedings of the Twenty-Ninth International Conference
on Automated Planning and Scheduling (ICAPS), volume 29,
155–162.
Lam, E.; Le Bodic, P.; Harabor, D.; and Stuckey, P. J. 2019.
Branch-and-Cut-and-Price for Multi-Agent Pathfinding. In
Proceedings of the Twenty-Eighth International Joint Confer-
ence on Artificial Intelligence (IJCAI-19), 1289–1296. Inter-
national Joint Conferences on Artificial Intelligence Organi-
zation.
Lam, E.; Le Bodic, P.; Harabor, D.; and Stuckey, P. J. 2022.
Branch-and-cut-and-price for multi-agent path finding. Com-
puters & Operations Research, 144: 105809.
Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S.
2019. Improved Heuristics for Multi-Agent Path Finding
with Conflict-Based Search. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI).
Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; Gange, G.;
and Koenig, S. 2021. Pairwise symmetry reasoning for
multi-agent path finding search. Artificial Intelligence, 301:
103574.
Lübbecke, M. E.; and Desrosiers, J. 2005. Selected topics in
column generation. Operations Research, 53(6): 1007–1023.
Ohrimenko, O.; Stuckey, P. J.; and Codish, M. 2009. Propaga-
tion via lazy clause generation. Constraints, 14(3): 357–391.
Phillips, M.; and Likhachev, M. 2011. SIPP: Safe interval
path planning for dynamic environments. In 2011 IEEE
International Conference on Robotics and Automation, 5628–
5635.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. 2015.
Conflict-Based Search for Optimal Multi-Agent Pathfinding.
Artificial Intelligence, 219: 40–66.
Standley, T. S. 2010. Finding optimal solutions to cooperative
pathfinding problems. In Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence (AAAI-10), 173–
178.
Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, S.; Bo-
yarski, E.; and Bartak, R. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. In Proceedings of the
Symposium on Combinatorial Search (SoCS), 151–158.
Sturtevant, N. R. 2012. Benchmarks for Grid-Based Pathfind-
ing. IEEE Transactions on Computational Intelligence and
AI in Games, 4(2): 144–148.
Yu, J.; and LaValle, S. 2013. Structure and Intractability of
Optimal Multi-Robot Path Planning on Graphs. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 27(1):
1443–1449.

