
Branch-and-Check with Explanations for the
Vehicle Routing Problem with Time Windows

Edward Lam1,2 and Pascal Van Hentenryck3

1 CSIRO Data61, Eveleigh NSW 2015, Australia
2 University of Melbourne, Parkville VIC 3010, Australia
3 University of Michigan, Ann Arbor MI 48109-2117, USA

Abstract. This paper proposes the framework of branch-and-check with
explanations (BCE), a branch-and-check method where combinatorial cuts
are found by general-purpose conflict analysis, rather than by specialized
separation algorithms. Specifically, the method features a master problem
that ignores combinatorial constraints, and a feasibility subproblem that
uses propagation to check the feasibility of these constraints and performs
conflict analysis to derive nogood cuts. The BCE method also leverages
conflict-based branching rules and strengthens cuts in a post-processing
step. Experimental results on the Vehicle Routing Problem with Time
Windows show that BCE is a potential alternative to branch-and-cut. In
particular, BCE dominates branch-and-cut, both in proving optimality
and in finding high-quality solutions quickly.

1 Introduction

Vehicle Routing Problems (VRPs) generalize the Travelling Salesman Problem
(TSP). The Capacitated Vehicle Routing Problem (CVRP) is a basic variant
that aims to design routes of minimal travel distance that deliver all requests
from a single depot while respecting vehicle capacity constraints. The Vehicle
Routing Problem with Time Windows (VRPTW) additionally requires requests
to be delivered within a given time window.

VRPs have been studied extensively over the past several decades, result-
ing in significant computational progress (e.g., [31]). Solution techniques in-
clude constraint programming (e.g., [28,7,8]), branch-and-bound, branch-and-cut
(e.g., [21,4,18]), branch-and-price (e.g., [10]), and combinations thereof (e.g.,
[13,3,16,25,26]). Branch-and-cut (BC) methods are of particular interest to this
paper. Their key idea is to omit difficult constraints from the original formula-
tion and to remove solutions that violate these constraints using cuts generated
by separation algorithms. Separation algorithms are typically problem-specific,
which limits their applicability and reuse in other problems. Furthermore, devel-
oping and implementing separation algorithms often require significant expertise,
hindering their use in many applications.

This paper addresses the following research question: Is it possible to use a
general-purpose mechanism to generate cuts, and hence, avoid the difficult aspects
of BC. This paper proposes branch-and-check with explanations (BCE) as one



possible answer to this question. BCE divides an optimization problem into a
master problem that ignores a number of difficult constraints, and a subproblem
that checks the feasibility of these constraints and generates cuts using conflict
analysis from constraint programming (CP) and Boolean satisfiability (SAT).
More precisely, BCE uses CP for three purposes: (1) to fix variables in the master
problem through propagation; (2) to generate cuts in the master problem using
conflict analysis; and (3) to probe the feasibility of linear programming (LP)
relaxation solutions and to derive additional cuts through conflict analysis if the
probing process fails. Since the master problem does not operate on the same
decision variables as the subproblem, the conflict analysis needs to continue until
the variables involved in a nogood appear in the master problem.

BCE opens some interesting opportunities. First, it has the advantage of
relying on a general-purpose CP engine for inference and cut separation. Second,
it permits conflict-based branching rules. Finally, BCE can recognize special
classes of cuts after conflict analysis and then strengthen them using well-known
techniques. As a result, BCE offers a natural integration of LP, CP and SAT.

The BCE method is evaluated on the VRPTW. Experimental results indicate
that BCE outperforms a BC algorithm: it proves optimality on more instances
and finds significantly better solutions to instances for which BC cannot prove op-
timality. The results also show that a conflict-based branching rule is particularly
effective in BCE and that cut strengthening produces interesting improvements
to the lower bounds.

The rest of this paper is structured as follows. Section 2 reviews relevant
methods for solving the VRPTW. Section 3 develops the BCE model. Section 4
discusses cut strengthening. Section 5 presents experimental results that compare
the BCE model with the BC model. Section 6 discusses the limitations and
potential improvements of the BCE approach for the VRPTW, as well as its
relevance to branch-and-price. Section 7 concludes this paper.

2 Background

BC algorithms for VRPs are often based on a two-index flow model, which
generalizes the standard formulation of the TSP. The two-index model omits
the subtour elimination, vehicle capacity and time window constraints, which
are added as required through cutting planes. At every node of the search tree,
BC solves separation subproblems to determine if the LP relaxation solution is
feasible with respect to the omitted constraints. If the solution is infeasible, the
solution is discarded using a cut, forcing the solver to find another candidate
solution. Branching and cutting are repeated until the search tree is explored,
upon which the solver proves optimality or infeasibility.

Branch-and-Cut. BC models of the VRPTW rely on several types of cuts. The
BC model in [4] inherits the capacity cuts from BC models of the CVRP. Capacity
cuts generalize the subtour elimination cuts of the TSP to consider vehicle capacity.
Hence, they serve the purpose of excluding both subtours and partial paths that



exceed the vehicle capacity. This model also implements infeasible path cuts to
exclude partial paths that violate the time windows. Infeasible path cuts require
at least one arc in an infeasible partial path to be unused. The BC algorithm from
[18] uses subtour elimination constraints from the TSP instead of the capacity
cuts. Vehicle capacity constraints are enforced by the same infeasible path cuts
that enforce the time windows. The authors also prove that both the subtour
elimination cuts and the infeasible path cuts can be strengthened using ideas
conceived in [22].

Branch-and-Check. Branch-and-check [29,5] is a form of logic-based Benders
decomposition [15]. The method divides a problem into a master and checking
problem. The master problem is first solved to find a candidate solution, which is
checked using the checking subproblem. If the checking subproblem is infeasible
for a candidate solution, a constraint prohibiting this solution, and hopefully
many others, is added to the master problem. Branch-and-check iterates between
the master problem and the checking subproblem until a globally optimal solution
is found. It has been used successfully in various applications (e.g., [14,30]). The
key difference between BC and branch-and-check is that checking subproblems
encompass an entire optimization problem, whereas separation subproblems only
check specific aspects of the problem (i.e., they find cuts from one family).

Constraint Programming. CP with large neighborhood search was instrumental
in finding many best solutions to VRPs more than a decade ago [28,7,8]. The
main difficulty with CP is proving optimality since VRP objective functions are
usually linear, which are known to have weak propagators. This limitations can
be alleviated using the WeightedCircuit global constraint [6], for example.

Conflict Analysis. Conflict analysis has a long history in artificial intelligence
and CP (e.g., [9,17]). Its popularity grew in the last two decades through the
development of SAT solvers (e.g., [23,11]) and their integration in CP solvers (e.g.,
[24,12]). In CP solvers, propagators generate clauses that explain the inferences
for an underlying SAT solver. When a propagator fails, the SAT solver performs
conflict analysis, i.e., it walks the implication graph to derive a constraint, known
as a nogood, that prevents the same failure from reoccurring in other parts
of the search tree. Conflict analysis can also be implemented in mixed integer
programming (MIP) solvers but its performance is still an open question [1].

3 The Branch-and-Check Model of the VRPTW

This section proposes the BCE model of the VRPTW. The model is organized
around a MIP master problem and a CP checking subproblem.

The MIP Master Problem. The BCE model includes the traditional two-index
model. Its data and decision variables are listed in Table 1. The arcs in the



Name Description

T > 0 Time horizon.
T = [0, T ] Time interval.
Q ≥ 0 Vehicle capacity.
Q = [0, Q] Range of vehicle load.
R ∈ {1, . . . ,∞} Number of requests.
R = {1, . . . , R} Set of requests.
s = 0 Start node.
e = R + 1 End node.
N = R∪ {s, e} Set of all nodes.
A Arcs of the network. Defined in Eq. (4).
ci,j ∈ T Distance cost and travel time along arc (i, j) ∈ A.
qi ∈ Q Vehicle load demand of i ∈ N .
ai ∈ T Earliest service start time at i ∈ N .
bi ∈ T Latest service start time at i ∈ N .

xi,j ∈ {0, 1} Decision variable indicating if a vehicle traverses (i, j) ∈ A.

Table 1. Data and decision variables of the two-index flow model of the VRPTW. Sets
enclosed in braces (resp. square brackets) are integer-valued (resp. real-valued).

min
∑

(i,j)∈A

ci,jxi,j (1)

subject to∑
h:(h,i)∈A

xh,i = 1 ∀i ∈ R, (2)

∑
j:(i,j)∈A

xi,j = 1 ∀i ∈ R. (3)

Fig. 1. Initial constraints of the two-index model of the VRPTW.

network are given by

A = {(s, i)|i ∈ R}∪
{(i, j)|i, j ∈ R, i 6= j, ai + ci,j ≤ bj , qi + qj ≤ Q}∪
{(i, e)|i ∈ R}.

(4)

The initial constraints of the model are shown in Fig. 1. The objective function,
Eq. (1), minimizes the total distance cost. Constraints (2) and (3) require every
request to be visited exactly once. Through its LP relaxation, the MIP master
problem provides the lower bounds to the objective value and generates candidate
solutions to be tested in the CP subproblem.



Name Description

yi,j ∈ {0, 1} Decision variable indicating if a vehicle traverses (i, j) ∈ A.
li ∈ [qi, Q] ⊆ Q Vehicle load after service at request i ∈ N .
ti ∈ [ai, bi] ⊆ T Time that a vehicle begins service at request i ∈ N .

Table 2. Decision variables of the CP subproblem.

∨
h:(h,i)∈A

yh,i ∀i ∈ R, (5)

∨
j:(i,j)∈A

yi,j ∀i ∈ R, (6)

¬yh,i ∨ ¬yh,j ∀h, i, j ∈ N : (h, i) ∈ A, (h, j) ∈ A, i 6= j, (7)

¬yh,j ∨ ¬yi,j ∀h, i, j ∈ N : (h, j) ∈ A, (i, j) ∈ A, h 6= i, (8)

NoSubtour(y), (9)

yi,j → lj ≥ li + qj ∀(i, j) ∈ A, (10)

yi,j → tj ≥ ti + ci,j ∀(i, j) ∈ A. (11)

Fig. 2. Initial constraints of the CP subproblem.

The CP Checking Subproblem. The BCE model uses a CP subproblem to
check the solutions found by the master problem for feasibility of the subtour
elimination, vehicle capacity and time window constraints. The decision variables
are listed in Table 2. Using the y binary variables, instead of the conventional
successor and predecessor variables, provides a one-to-one mapping between the
y variables and the x variables of the master problem. The initial constraints
(without the nogoods) are presented in Fig. 2. Constraints (5) to (8) ensure that
every request is visited exactly once. Constraint (9) is a global constraint that
prevents subtours. Its propagator is a simple checking algorithm that prevents
the head of a partial path from connecting to its tail. Constraints (10) and (11)
enforce the vehicle capacity and travel time constraints.

Communication between the Two Models. The two models communicate in
three ways: (1) variable assignments in the CP model are transmitted to the MIP
model, (2) candidate solutions from the LP relaxation are probed using the CP
model to determine if they are valid for the VRPTW and (3) nogoods found by
conflict analysis in the CP model are translated into cuts in the MIP model.

Extended Conflict Analysis. When a failure occurs in the CP solver, conflict
analysis derives a First Unique Implication Point (1UIP) nogood that is added to
the CP subproblem. This constraint should also be added to the master problem
but sometimes it cannot be translated into a cut for the master problem because



it contains variables that do not appear in the master problem (i.e., the load and
time variables). As a result, the BCE algorithm features an extended conflict
analysis that continues explaining the failure until the the nogood only contains
variables in master problem. This nogood has the form∨

(i,j)∈C1

yi,j ∨
∨

(i,j)∈C2

¬yi,j ,

where C1, C2 ⊆ A are sets of arcs. This nogood can be rewritten as the cut∑
(i,j)∈C1

xi,j +
∑

(i,j)∈C2

(1− xi,j) ≥ 1.

It is always possible to obtain these cuts since the solver only branches on
variables in the master problem. Observe that the BCE algorithm provides a
general-purpose mechanism to separate cuts in the master problem via the extended
conflict analysis. These cuts, which we call MIP-1UIP nogoods, are automatically
generated and do not rely on specialized separation algorithms.

Probing the LP Relaxation. The BCE algorithm probes whether the current
LP solution is feasible with respect to the subtour elimination, vehicle capacity
and time constraints. It temporarily assigns every yi,j variable to the value of
its corresponding xi,j variable in the LP relaxation, provided that this value is
integral. The resulting tentative assignment can then be propagated by the CP
solver. If a failure occurs, conflict analysis generates nogoods for both the CP
and MIP models. The MIP cut will exclude the current LP solution, forcing it to
find another candidate solution and improving the lower bound.

The Search Algorithm. The BCE algorithm, detailed in Fig. 3, includes the
components described earlier. It blends depth-first and best-first search since
best-first search is more effective for hard optimization problems, such as VRPs,
but complicates the implementation of CP solvers with conflict analysis. The
node selection strategy selects the node with the lowest lower bound from the
set of open nodes and then explores the node subtree using depth-first search
until it reaches a limit on the maximum number of open nodes per subtree. Once
it reaches this limit, all unsolved siblings in the subtree are moved into the set
of open nodes, and then the algorithm starts a new depth-first search from the
node with the next lowest lower bound. Section 6 explains the rationale behind
this search procedure.

Once a node is selected (step 1), the CP subproblem infers the implications
of the decision (step 2). In the case of failure, the CP solver generates nogoods
for both models and then backtracks (step 5b). If the test succeeds, the BCE
algorithm checks for suboptimality using the LP relaxation (step 3). If the node
is suboptimal, it backtracks (step 5b). Otherwise, the BCE algorithm checks the
LP relaxation solution against the omitted constraints and separates cuts using
conflict analysis if necessary (step 4). The BCE algorithm iterates between the
LP relaxation and the feasibility test until no cuts are generated. Then, if the



1. Node Selection: Select an open node. Terminate if no open nodes remain.
2. Feasibility Check: Solve the CP model to determine the implications of the

branching decision of the node. If propagation fails, perform conflict analysis, add
the 1UIP and the MIP-1UIP nogoods to both the CP and MIP models, and go to
step 5b. Otherwise, fix xi,j in the MIP model to the values of the yi,j variables.

3. Suboptimality Check: Solve the LP relaxation. If the objective value is worse
than the incumbent solution, go to step 5b.

4. LP Probing: For all xi,j variables with a value of 0 or 1 in the LP relaxation,
temporarily fix the yi,j variables in the CP model to the same value. Propagate
the CP model. If it fails, perform conflict analysis, generate the 1UIP and the
MIP-1UIP nogoods and go back to step 3.

5. Branching and Backtracking: If all xi,j variables are integral, store the LP
relaxation solution as the incumbent solution and go to step 5b. Otherwise, go to
step 5a because the node is fractional.

(a) Branching: Create two children nodes from a fractional xi,j variable. Fix the
variable to 0 in one child node and to 1 in the other.

(b) Backtracking: If the number of nodes in the current subtree exceeds the limit
or if the subtree is entirely solved, move all unsolved siblings in the subtree
to the set of open nodes and go back to step 1. Otherwise, backtrack to an
ancestor with an unsolved child node, select the child node and go to step 2.

Fig. 3. The BCE Search Algorithm.

node is fractional and not suboptimal, the BCE algorithm executes a branching
step (step 5a). Two branching rules are implemented. The first selects the most
fractional variable and the second selects the variable with the highest activity,
which is defined as the number of nogoods in which the variable has previously
appeared. This branching rule, known as activity-based search or variable state
independent decaying sum (VSIDS) in the literature, guides the search tree
towards subtrees that can be quickly pruned due to infeasibility.

Illustrating the Extended Conflict Analysis. The following discussion illustrates
the extended conflict analysis procedure using the example in Figs. 4 and 5.
Literals shown in a grey are fixed by the data at the root level, and hence, are
always true. They are discarded in the explanations but are shown for clarity.

The BCE solver first branches on ¬y4,6, making it true. The travel time
constraint (Constraint (11)) propagates Jt6 ≥ 30K with the reason

¬y4,6 ∧ Jt3 ≥ 25K ∧ Jc3,6 = 10K ∧ Jt5 ≥ 20K ∧ Jc5,6 = 10K→ Jt6 ≥ 30K

because the predecessor of request 6 must be either 3 or 5, and the earliest time to
reach 6 is at time min(min(t3) + c3,6,min(t5) + c5,6) = 30. The BCE solver then
branches on ¬y3,6. Constraint (5) requires every request to have a predecessor,
which leads to the assignment of y5,6 with the reason

¬y3,6 ∧ ¬y4,6 → y5,6.



Constraint (8) then propagates

y5,6 → ¬y5,2

and

y5,6 → ¬y5,7.

The BCE solver then branches on y0,1, which does not produce any inference,
and then branches on y6,2, which produces the inferences:

y6,2 → ¬y6,7,

¬y6,7 ∧ ¬y5,7 → y2,7,

y6,2 ∧ Jt6 ≥ 30K ∧ Jc6,2 = 10K→ Jt2 ≥ 40K.

Then, the travel time propagator fails with

y2,7 ∧ Jt2 ≥ 40K ∧ Jc2,7 = 10K ∧ Jt7 ≤ 40K→ false.

Conflict analysis deduces the following:

y2,7 ∧ Jt2 ≥ 40K ∧ Jc2,7 = 10K ∧ Jt7 ≤ 40K→ false

y2,7 ∧ Jt2 ≥ 40K ∧ true ∧ true→ false

(¬y6,7 ∧ ¬y5,7) ∧ (y6,2 ∧ Jt6 ≥ 30K ∧ Jc6,2 = 10K)→ false

y6,2 ∧ ¬y5,7 ∧ Jt6 ≥ 30K ∧ true→ false

y6,2 ∧ ¬y5,7 ∧ Jt6 ≥ 30K→ false. (12)

This explanation contains exactly one literal (y6,2) at the current depth, and
hence, is rewritten as the 1UIP clause

¬y6,2 ∨ y5,7 ∨ Jt6 < 30K,

which is added to the CP model. Conflict analysis must continue because the
nogood contains a time literal. It explains Jt6 ≥ 30K in Eq. (12), which results in
the MIP-1UIP explanation

y6,2 ∧ ¬y5,7 ∧ ¬y4,6 → false.

This explanation is rewritten into the disjunction

¬y6,2 ∨ y5,7 ∨ y4,6, (13)

and then into the cut

(1− x6,2) + x5,7 + x4,6 ≥ 1.

Note that the literal y5,7 was not assigned by the search.



0

[0, 0]

1

[30, 60]

2

[20, 60]

3[25, 40]

4 [10, 40]

5

[20, 40]

6 [20, 40]

7 [30, 40]

Others

Others

Fig. 4. Example of a network. Next to every request is its time window. The travel
time across any arc is 10 units of time. The load demands are not shown as they are
not relevant to the discussion.

¬y4,6

t3 ≥ 25

c3,6 = 10

t5 ≥ 20

c5,6 = 10

t6 ≥ 30

¬y3,6

y5,6

¬y5,7 ¬y5,2

y0,1 y6,2

¬y6,7 t2 ≥ 40

y2,7

c6,2 = 10

c2,7 = 10

t7 ≤ 40false

Fig. 5. Example of an implication graph after making the decisions ¬y4,6, ¬y3,6, y0,1
and y6,2 on the network in Fig. 4. Yellow literals are branching decisions. Blue literals
are propagations. Grey literals are propagated at the root level, and hence, can be
excluded from the nogoods since they are always true.



4 Nogood Strengthening

The BCE algorithm presented so far uses a completely general-purpose mechanism
for cut separation. Despite its generality, conflict analysis routinely discovers
classical cuts. These cuts can be strengthened using proven techniques whenever
they are recognized. This section presents a post-processing step that recognizes
then strengthens several types of cuts.

Infeasible Path Cuts. Failure of the load or time constraints (Constraints (10)
and (11)) frequently results in an infeasible partial path cut. Let P = i1, i2, . . . , ik,
with all i1, . . . , ik ∈ N distinct, be a partial path. The partial path P is infeasible
with respect to the load constraint if

∑k
u=1 qiu > Q, and it is is infeasible

with respect to the time constraint if tik > bik , where ti1 = ai1 and tiu =
max(aiu , tiu−1

+ciu−1,iu) for u = 2, . . . , k. When a load or time window constraint
fails, conflict analysis will usually produce the nogood∨

(i,j)∈A(P )

¬yi,j , (14)

where A(P ) = {(i1, i2), . . . , (ik−1, ik)} is the arcs of P . This nogood requires one
arc of P to be unused. It can be written equivalently as requiring at least one
arc that exits P , i.e., ∨

(i,j)∈∆+(P )

yi,j ,

where ∆+(P ) =
⋃k−1
u=1{(iu, j) ∈ A|j 6= iu+1}. This nogood can be translated into

the cut ∑
(i,j)∈∆+(P )

xi,j ≥ 1.

Using existing techniques [18], such a cut can be strengthened into∑
(i,j)∈∆̃+(P )

xi,j ≥ 1,

where

∆̃+(P ) =

k−1⋃
u=1

({
(iu, j) ∈ A : iu ∈ R, j ∈ R, j 6= i1, . . . , iu+1,

u∑
v=1

qiv + qj ≤ Q, tiu + ciu,j ≤ bj

}
∪ {(iu, e) ∈ A}

)

is the arcs that branch off P to a feasible request. In other words, the strengthening
discards arcs that are not feasible when taking into account the load and time
window constraints.



Subtour Elimination Cuts. The propagator of Constraint (9) will fail if the solu-
tion contains a subtour S = i1, i2, . . . , ik, where i1 = ik and all i1, i2, . . . , ik−1 ∈ R
are distinct. Conflict analysis will usually find the nogood∨

(i,j)∈A(S)

¬yi,j , (15)

where A(S) = {(i1, i2), . . . , (ik−1, ik)} is the arcs of S. Using the same reasoning
as for the infeasible path cuts, this nogood can be rewritten as the cut∑

(i,j)∈∆+(S)

xi,j ≥ 1. (16)

If aj + cj,i > bi, then no vehicle can depart j for i while respecting the time
windows. Hence, i must precede j with respect to time, written as i ≺ j. Let
π(j) = {i ∈ N|i ≺ j} be the set of requests that precedes j with respect to time.
Proposition 1 strengthens Constraint (16) using these precedence relations [18].
Constraint (16) can also be similarly strengthened using the precedence relations
in reverse, i.e., successor relations.

Proposition 1. Let S̄ = N \ S be the nodes not in a subtour S, then for any
u ∈ S, Constraint (16) can be strengthened to∑

(i,j)∈A:
i∈S\π(u),
j∈S̄\π(u)

xi,j ≥ 1.

Proof. Consider a subtour S and a feasible path F that visits the request u. Let
v ∈ R be the last request of F visited by S. By definition, v is visited by S, i.e.,
v ∈ S. Furthermore, since F is a feasible path, v cannot precede u with respect
to time, i.e., v /∈ π(u). Hence, v ∈ S \ π(u). Now consider the successor of v,
denoted by succ(v) ∈ N . By the definition of v, succ(v) cannot be visited by S,
i.e., succ(v) /∈ S. Again, succ(v) cannot precede u with respect to time since F is
a feasible path. Hence, succ(v) ∈ S̄ \ π(u). Considering every request in S as v
results in the proposition.

General Cuts. Conflict analysis can derive cuts that are do not have the form
of Constraint (14) nor Constraint (15). These cuts contain both true literals
and false literals, such as those of Constraint (13). They originate from fixing
an arc to be unused (i.e., setting xi,j = 0 for some (i, j) ∈ A), which can result
in tightening the bounds of a time or load variable. Consequently, an assigned
arc can become infeasible. Hence, the originating nogood will contain both true
and false literals. We are not aware of VRP cuts in the literature that mix true
literals and false literals. This is possibly because tightening bounds is too costly
for every call to a separation algorithm. CP maintains the bounds internally as
part of propagation, and hence, the bounds are readily available. Because of this,
these cuts seem to be fundamentally linked to CP. It is an open research issue to
understand whether these cuts can be strengthened.



5 Experimental Results

The Solvers. The BCE solver includes a small CP solver and calls Gurobi 6.5.2
to solve the LP relaxations. The algorithm presented in Fig. 3 has a limit of 500
nodes for the depth-first search. This number was chosen experimentally as it
was superior to limits of 100, 1,000, 5,000, and 10,000 nodes. The experiments
consider four versions of the solver: with and without cut strengthening, and
with the two branching rules. The four versions are compared against published
results of a BC model [18], as well as a pure CP model and a pure MIP model.
The CP model is the standard VRPTW model based on successor variables (e.g.,
[19,27]), and is solved using Chuffed. The MIP model is the three-index flow
model (e.g., [31]), and is solved using Gurobi. The reported results for the BC
model are given an hour of CPU time on a Pentium III CPU at 600 MHz. To be
fair, our solvers are run for 10 minutes on a Xeon E5-2660 V3 at 2.6 GHz.

The Results. The solvers are tested on the Solomon benchmarks with 100
requests. The results are reported in Table 3. The pure CP model failed to find
any feasible solution and is omitted from the table. The pure MIP model proves
optimality on only one instance and finds poor solutions to three other instances.
These results were expected and are given to confirm the need for the other
approaches. The rest of this section compares the BC and BCE approaches.

Upper Bounds. The four BCE methods find the same or better solutions than
the BC algorithm for all instances except C204. Of the best solutions found, all
but two (R201, C204) can be found using the activity-based branching rule. For
the C instances, BC and BCE with activity-based search and cut strengthening
are comparable since they both dominate on seven of the eight instances. For
the R and RC instances, BCE with activity-based search improves upon the BC
method, which generally finds solutions with costs about five times higher.

Lower Bounds. First observe that BCE with activity-based search and cut
strengthening proves optimality on one more instance (RC201) than BC, which is
quite remarkable. The bounds found by the BC model are superior to those from
all BCE methods except for instance RC201, on which BCE with activity-based
search and cut strengthening finds a tighter bound. This is not surprising since the
BC algorithm implements families of cuts not present in the BCE model. These
families of cuts capture logic that the constraints in the checking subproblem do
not. As will be mentioned in Section 6, stronger dual bounds should be available
once the BCE model is expanded with optimization constraints.

The Impact of Branching Rules. Activity-based branching performs significantly
better than most-fractional branching. Without cut strengthening, activity-
based branching finds solutions better than most-fractional branching on all
instances except C201, on which all four BCE methods prove optimality. With
cut strengthening, activity-based search performs better on 19 of the 27 instances,
and worse on only one instance. This is not surprising given that branching on
the most fractional variable is known to perform worse than random selection [2].



The Impact of Cut Strengthening. Cut strengthening improves the lower bounds
for both branching rules. For the C instances, cut strengthening is critical for
proving optimality. For the RC instances except RC208, BCE with activity-based
branching and cut strengthening finds solutions better than the other methods.
Cut strengthening interferes with the activity-based branching rule for about
half of the R instances. The cause of this interference is not yet understood.

The results indicate that BCE is an interesting avenue for solving hard VRPs.
The BCE model finds superior primal solutions despite its simplicity and the
fact that it is missing many families of cuts and that the checking subproblem
does not reason about optimality nor variables with fractional values in the LP
relaxation solution. For practitioners without the expertise in BC, BCE provides
an interesting and practically appealing alternative.

6 Future Research Directions

The BCE algorithm, presented in this paper as a proof-of-concept, can be
improved in many ways. This section explores some potential improvements.

Branching. The branching rules simply assign a fractional variable to 0 in one
child and 1 in the other. These branching rules make the search tree highly
unbalanced, considerably degrading the performance of the solver. Future imple-
mentations should test branching on cutsets, which is the standard branching
rule seen in BC models of VRPs. It would also be interesting to test branching
on variables in the CP model (e.g., branching on time windows) by propagating
these decisions and enforcing the implications in the MIP model.

Search Strategy. VRPs greatly benefit from best-first search. For simplicity, the
BCE implementation uses depth-first search, which allows literals to be stored in
a stack data structure. It is obviously possible to implement conflict analysis in
best-first search but efficient implementations remain an open question today. As
explained in Section 3, the BCE implementation blends depth-first search with
periodic best-first selection to explore attractive parts of the search tree.

Subtour Elimination. The propagator of Constraint (9) is extremely simple
and only eliminates assignments that would create a cycle. This contrasts with
separation algorithms, which are able to separate cuts using fractional solutions.
It would be highly desirable to study the impact of more advanced propagators
and explanations for subtour elimination in CP.

Cut Strengthening. The CP model contains all the omitted constraints; namely,
the subtour elimination, vehicle capacity and time window constraints. As a
result, conflict analysis can deduce nogoods based on the combined infeasibility
of multiple constraints. In contrast, separation algorithms only reason about one
family of cuts. It is an open question whether conflict analysis can automatically
strengthen the cuts by reasoning about a conjunction of constraints. This will
reduce the need to develop dedicated cut strengthenings.



Branch-and-Check – Most-Fractional Branch-and-Check – Activity-based

No Strengthening With Strengthening No Strengthening With Strengthening Branch-and-Cut MIP

Instance LB UB Time LB UB Time LB UB Time LB UB Time LB UB Time LB UB Time

R201 1055.8 1198.0 - 1117.7 1143.3 - 1054.7 1177.6 - 1114.3 1149.9 - 1132.7 1155.6 - 975.6 - -
R202 762.8 1213.0 - 852.1 1219.6 - 763.2 1133.4 - 850.7 1109.3 - 888.6 4980.0 - 715.3 - -
R203 660.1 1244.8 - 709.8 1253.6 - 659.9 1025.2 - 707.7 1052.2 - 748.1 4980.0 - 620.3 - -
R204 625.3 1166.7 - 639.2 1193.3 - 625.8 858.4 - 638.3 887.4 - 661.9 4980.0 - 584.9 - -
R205 796.3 1222.0 - 889.6 1069.9 - 794.3 1091.3 - 876.9 1052.5 - 900.0 4980.0 - 732.3 - -
R206 686.3 1171.6 - 751.4 1157.4 - 686.0 1040.1 - 745.3 1018.9 - 783.6 4980.0 - 644.8 - -
R207 648.1 1187.5 - 681.5 1168.5 - 647.5 940.7 - 685.8 941.4 - 714.8 4980.0 - 603.1 - -
R208 623.2 1097.4 - 633.5 1187.7 - 623.4 855.0 - 635.3 832.5 - 651.8 4980.0 - 577.2 - -
R209 687.5 1238.1 - 756.6 1172.5 - 686.5 1046.6 - 753.1 1073.8 - 785.8 4980.0 - 648.2 - -
R210 679.7 1225.6 - 749.9 1240.3 - 679.8 1105.6 - 750.8 1024.9 - 798.3 4980.0 - 636.6 - -
R211 621.2 1335.5 - 633.0 1355.9 - 621.2 1004.2 - 632.1 1065.1 - 645.1 4980.0 - 577.2 4224.9 -

C201 589.1 589.1 0.0 589.1 589.1 0.0 589.1 589.1 0.0 589.1 589.1 0.0 589.1 589.1 11.5 589.1 589.1 15.2
C202 548.7 679.8 - 589.1 589.1 131.2 548.2 629.9 - 589.1 589.1 12.6 589.1 589.1 202.9 524.3 - -
C203 526.5 948.3 - 563.4 672.2 - 524.7 686.5 - 565.9 601.2 - 586.0 632.3 - 507.3 - -
C204 516.3 946.7 - 552.9 1086.7 - 514.7 884.5 - 555.9 660.9 - 584.4 597.1 - 488.3 - -
C205 546.9 685.8 - 586.4 586.4 0.2 546.5 613.1 - 586.4 586.4 16.3 586.4 586.4 334.4 511.4 - -
C206 539.9 776.9 - 586.0 586.0 11.8 538.2 702.6 - 586.0 586.0 10.6 586.0 586.0 419.0 504.7 4997.5 -
C207 542.7 851.1 - 585.8 585.8 20.6 538.3 635.2 - 585.8 585.8 8.3 585.8 585.8 527.5 503.9 - -
C208 534.5 857.2 - 585.8 585.8 60.0 533.1 652.4 - 585.8 585.8 11.2 585.8 585.8 569.7 500.3 - -

RC201 1086.5 1403.6 - 1245.8 1261.8 - 1081.0 1338.3 - 1261.8 1261.8 44.5 1250.1 1288.2 - 938.3 - -
RC202 704.5 1465.9 - 912.7 1418.6 - 699.2 1204.2 - 916.9 1152.3 - 940.1 6609.4 - 641.0 - -
RC203 615.0 1402.7 - 750.2 1359.6 - 610.8 1149.0 - 748.8 1117.6 - 781.6 6609.4 - 563.1 - -
RC204 583.9 1410.2 - 657.8 1352.4 - 581.0 1007.1 - 657.0 923.5 - 692.7 6609.4 - 532.4 - -
RC205 822.5 1511.6 - 1075.5 1307.0 - 818.8 1249.8 - 1055.8 1240.9 - 1081.7 6609.4 - 746.3 - -
RC206 785.4 1485.4 - 964.3 1273.9 - 784.9 1270.2 - 950.7 1202.8 - 974.8 6609.4 - 698.2 - -
RC207 647.3 1486.3 - 794.6 1424.5 - 642.9 1193.5 - 800.9 1172.1 - 832.4 6609.4 - 594.9 - -
RC208 572.7 1629.8 - 624.0 1776.1 - 573.9 1039.5 - 624.3 1078.4 - 647.7 6609.4 - 527.1 5299.5 -

Table 3. Solutions to the Solomon instances with 100 requests. The table reports the lower bound, upper bound and time to prove
optimality for each of the solvers. The best upper bound for each instance is shown in bold. The CP model is omitted as it is unable to
find feasible solutions to any instance.



Optimization Constraints. The objective function has been omitted from the
checking subproblem because propagators for linear function are known to be
weak. Sophisticated propagators for the WeightedCircuit constraint should
be implemented, as they may produce considerably stronger nogoods.

Application to Branch-and-Price. Branch-and-cut-and-price, which includes
column generation and cut generation, is the current state-of-the-art exact
method for solving classical VRPs. Preliminary experiments with an existing
branch-and-price solver show that BCE is not beneficial with column generation
for the VRPTW as nogoods will not be generated in step 4 of Fig. 3 because the
paths already respect the time and capacity constraints. However, step 2 can fail
due to incompatibility between the branching decisions of a node. This infeasibility
cannot be detected by the pricing problem because it has no knowledge of the
global problem, nor detected by the master problem until all paths are generated
because artificial variables satisfy the constraints in the interim. Incompatible
branching decisions can induce nogoods but this seldom occurs in branch-and-
price because its LP relaxation bound is asymptotically tight, allowing it to
discard nodes due to suboptimality much earlier than infeasibility. Hence, branch-
and-price-and-check is unlikely to prove useful in solving classical VRPs. It is,
however, useful for rich VRPs with inter-route constraints (e.g., [20]) because
the pricing subproblem, being a shortest path problem, has no knowledge of the
interactions between routes in the parent problem.

7 Conclusion

This paper proposed the framework of branch-and-check with explanations (BCE)
as a step towards the grand unification of linear programming, constraint program-
ming and Boolean satisfiability. BCE finds cuts using general-purpose conflict
analysis instead of specialized separation algorithms. The method features a
master problem, which ignores a number of constraints, and a checking subprob-
lem, which uses inference to check the feasibility of the omitted constraints and
conflict analysis to derive nogood cuts. It also leverages conflict-based branching
rules and can strengthen cuts using traditional insights from branch-and-cut in a
post-processing step.

Experimental results on the Vehicle Routing Problem with Time Windows
show that BCE is a viable alternative to branch-and-cut. In particular, BCE
dominates branch-and-cut, both in proving optimality (with cut strengthening)
and in finding high-quality solutions.

BCE offers an interesting alternative to existing branch-and-cut approaches.
By using a general-purpose constraint programming solver to derive cuts, BCE
can greatly simplify the modelling of problems that traditionally use branch-
and-cut. This, in turn, avoids the need for dedicated separation algorithms.
BCE is also capable of identifying well-known classes of cuts and strengthening
them in a post-processing step. Finally, BCE significantly benefits from conflict-
based branching rules, opening further opportunities typically not available in
branch-and-cut.



References

1. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optimiza-
tion 4(1), 4 – 20 (2007)

2. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Research
Letters 33(1), 42 – 54 (2005)

3. Baldacci, R., Mingozzi, A., Roberti, R.: New route relaxation and pricing strategies
for the vehicle routing problem. Operations Research 59(5), 1269–1283 (2011)

4. Bard, J.F., Kontoravdis, G., Yu, G.: A branch-and-cut procedure for the vehicle
routing problem with time windows. Transportation Science 36(2), 250–269 (2002)

5. Beck, J.C.: Checking-up on branch-and-check. In: Cohen, D. (ed.) Principles and
Practice of Constraint Programming – CP 2010, Lecture Notes in Computer Science,
vol. 6308, pp. 84–98. Springer Berlin Heidelberg (2010)

6. Benchimol, P., Hoeve, W.J., Régin, J.C., Rousseau, L.M., Rueher, M.: Improved
filtering for weighted circuit constraints. Constraints 17(3), 205–233 (2012)

7. Bent, R., Van Hentenryck, P.: A two-stage hybrid local search for the vehicle routing
problem with time windows. Transportation Science 38(4), 515–530 (2004)

8. Bent, R., Van Hentenryck, P.: A two-stage hybrid algorithm for pickup and delivery
vehicle routing problems with time windows. Computers & Operations Research
33(4), 875–893 (2006)

9. Dechter, R.: Learning while searching in constraint-satisfaction-problems. In: Pro-
ceedings of the 5th National Conference on Artificial Intelligence. Philadelphia, PA,
August 11-15, 1986. Volume 1: Science. pp. 178–185 (1986)

10. Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research 40(2), 342–354
(1992)

11. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) Theory and Applications of Satisfiability Testing: 6th International Conference,
SAT 2003, Santa Margherita Ligure, Italy, May 5-8, 2003, Selected Revised Papers,
pp. 502–518. Springer Berlin Heidelberg (2004)

12. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.)
Principles and Practice of Constraint Programming - CP 2009: 15th International
Conference, CP 2009 Lisbon, Portugal, September 20-24, 2009 Proceedings. pp.
352–366. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

13. Fukasawa, R., Longo, H., Lysgaard, J., De Aragão, M.P., Reis, M., Uchoa, E.,
Werneck, R.F.: Robust branch-and-cut-and-price for the capacitated vehicle routing
problem. Mathematical Programming 106(3), 491 – 511 (2006)

14. Gendron, B., Scutellà, M.G., Garroppo, R.G., Nencioni, G., Tavanti, L.: A branch-
and-benders-cut method for nonlinear power design in green wireless local area
networks. European Journal of Operational Research 255(1), 151–162 (2016)

15. Hooker, J.: Logic-based methods for optimization. In: Borning, A. (ed.) Principles
and Practice of Constraint Programming, Lecture Notes in Computer Science, vol.
874, pp. 336–349. Springer Berlin Heidelberg (1994)

16. Jepsen, M., Petersen, B., Spoorendonk, S., Pisinger, D.: Subset-row inequalities
applied to the vehicle-routing problem with time windows. Operations Research
56(2), 497 – 511 (2008)

17. Jussien, N., Barichard, V.: The palm system: explanation-based constraint pro-
gramming. In: Proceedings of TRICS: Techniques foR Implementing Constraint
programming Systems, a post-conference workshop of CP 2000,. pp. 118–133 (2000)



18. Kallehauge, B., Boland, N., Madsen, O.B.G.: Path inequalities for the vehicle
routing problem with time windows. Networks 49(4), 273–293 (2007)

19. Kilby, P., Prosser, P., Shaw, P.: A comparison of traditional and constraint-based
heuristic methods on vehicle routing problems with side constraints. Constraints
5(4), 389–414 (2000)

20. Lam, E., Van Hentenryck, P.: A branch-and-price-and-check model for the vehicle
routing problem with location congestion. Constraints 21(3), 394–412 (2016)

21. Lysgaard, J., Letchford, A.N., Eglese, R.W.: A new branch-and-cut algorithm
for the capacitated vehicle routing problem. Mathematical Programming 100(2),
423–445 – 0025–5610 (2004)

22. Mak, V.: On the Asymmetric Travelling Salesman Problem with Replenishment
Arcs. Ph.D. thesis, University of Melbourne (2001)

23. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: Proceedings of the 38th annual Design Automation
Conference. pp. 530–535. ACM (2001)

24. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

25. Pecin, D., Pessoa, A., Poggi, M., Uchoa, E.: Improved Branch-Cut-and-Price for
Capacitated Vehicle Routing, pp. 393–403. Springer International Publishing (2014)

26. Ropke, S., Cordeau, J.F.: Branch and cut and price for the pickup and delivery
problem with time windows. Transportation Science 43(3), 267–286 (2009)

27. Rousseau, L.M., Gendreau, M., Pesant, G.: Using constraint-based operators to
solve the vehicle routing problem with time windows. Journal of Heuristics 8(1),
43–58 (2002)

28. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.F. (eds.) Principles and Practice of
Constraint Programming — CP98, Lecture Notes in Computer Science, vol. 1520,
pp. 417–431. Springer Berlin Heidelberg (1998)

29. Thorsteinsson, E.: Branch-and-check: A hybrid framework integrating mixed integer
programming and constraint logic programming. In: Walsh, T. (ed.) Principles
and Practice of Constraint Programming — CP 2001, Lecture Notes in Computer
Science, vol. 2239, pp. 16–30. Springer Berlin Heidelberg (2001)

30. Tran, T.T., Araujo, A., Beck, J.C.: Decomposition methods for the parallel machine
scheduling problem with setups. INFORMS Journal on Computing 28(1), 83–95
(2016)

31. Vigo, D., Toth, P.: Vehicle Routing: Problems, Methods, and Applications, Second
Edition. Society for Industrial and Applied Mathematics (2014)


	Branch-and-Check with Explanations for the Vehicle Routing Problem with Time Windows

