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Abstract

Given a set of agents on a grid, the multi-agent path finding
problem aims to find a path that moves each agent from its
given start location to its target location such that they do not
collide and that the sum of arrival times is minimized. LNS2
is a state-of-the-art algorithm for anytime, suboptimal solving.
It is an upper-bounding algorithm that repeatedly adjusts an
existing solution and, being a local search, is oblivious to opti-
mality. BCP is a state-of-the-art algorithm for exact solving.
It is a lower-bounding tree search that attempts to tighten the
lower bound until a solution appears. As BCP operates on
the lower bound, the first solution it finds is optimal or nearly
optimal, and therefore has poor anytime behavior. This paper
proposes to tightly couple LNS2 and BCP to achieve better
anytime, suboptimal solving while retaining the optimality
guarantee of BCP. Experiments indicate that the combination
achieves better anytime behavior than BCP in general and
better suboptimal performance than LNS2 on congested maps.

Introduction
Given a set of agents on a grid, each with a unique start
location and target location, the multi-agent path finding
(MAPF) problem finds a coordinated plan, which moves
every agent from its start to its target while avoiding colli-
sions with other agents. Exact or optimal MAPF algorithms
guarantee to return a collision-free plan that has the mini-
mum overall cost (e.g., sum-of-individual-costs or makespan).
However, because MAPF is NP-hard (Yu and LaValle 2013),
instances with increasing numbers of agents quickly become
intractable. Attempting to solve large instances using exact
algorithms often results in timeout failure. In contrast, sub-
optimal algorithms relax or even disregard optimality guar-
antees and instead attempt to find low-cost feasible solutions
quickly. A third approach, which combines these strengths, is
the family of anytime MAPF algorithms. These approaches
aim to find feasible solutions quickly and then better/cost-
improving solutions given more time; eventually converging
to a local minima or, in some cases, converging to optimality.

BCP (Lam et al. 2022) is a state-of-the-art exact algorithm
for MAPF and it is anytime in principle. BCP performs a
tree search over a database of paths. The nodes in the search
tree are explored using a best-first selection strategy, which
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prioritizes nodes with the lowest lower bound estimate. It
repeatedly solves nodes with the lowest lower bound estimate
to gradually push up the lower bound until a solution is found.
As BCP selects nodes with the lowest lower bound, the first
solution it finds often provides an upper bound that is close
to the lower bound. But this solution is found very late in
the search, after a large number of nodes have been explored,
and hence leads to poor anytime performance.

LNS2 (Li et al. 2022) is a state-of-the-art algorithm for sub-
optimal MAPF. Starting from an infeasible solution, LNS2
repeatedly replans subsets of agents to find plans with fewer
conflicts, eventually converging to a conflict-free plan. A
related algorithm, MAPF-LNS (Li et al. 2021a), proceeds
similarly but starts from a feasible solution, which it tries to
improve while time remains. In this paper, we refer to their
combination (LNS2 first, then MAPF-LNS while time al-
lows) simply as LNS2. This approach does not maintain any
lower bound and is a pure upper-bounding anytime algorithm.

BCP and LNS2 tackle the problem from orthogonal points
of view. This paper proposes to exploit these two viewpoints
by invoking LNS2 throughout BCP’s search tree. LNS2 is
warm-started using solutions from BCP, and BCP’s database
of paths is enlarged with paths from LNS2. At all times dur-
ing the search, BCP provides a lower bound and upper bound,
and LNS2 provides an upper bound. The incrementally-
improving upper bounds from LNS2 and the incrementally-
improving lower bounds from BCP yield a combination that
displays significantly better anytime behavior.

Experimental results on 3,850 instances across 12 maps
demonstrate that the coupling often finds tighter lower and
upper bounds than standalone BCP and LNS2 but especially
on congested maps. It also proves optimality on hardly any
fewer instances than BCP.

Background and Literature Review
A wide range of new algorithms have been proposed recently
to tackle MAPF, each with different performance characteris-
tics and guarantees. We review a small group of works that
are most closely related.

BCP (Lam et al. 2022) is among the leading methods for
optimal MAPF. This approach combines branch-and-bound
(e.g., Rader 2010) together with advanced techniques from
integer programming. BCP maintains a database of paths. At
every node of the tree, BCP uses column generation (e.g.,



Lübbecke and Desrosiers 2005) to find better paths to add
into the database, and solves a continuous relaxation of the
problem of choosing optimal paths for the agents. The con-
tinuous relaxation (e.g., Rader 2010) ignores the discreteness
of the problem and allows each agent to use multiple paths
on the condition that the proportions of all used paths sum
to 100%. A solution (to the continuous relaxation) in which
at least one agent uses more than one path is a fractional
solution. Occasionally, solving the continuous relaxation will
yield an integer solution, in which every agent uses exactly
one path (with 100% proportion), and hence, this integer
solution is a valid MAPF plan. Otherwise, BCP branches,
creating two children nodes in which the fractional solution
is removed. Eventually, an integral solution is found at a leaf
node. The search in BCP is free to solve nodes in any order
and integral solutions can appear anywhere in the tree. BCP
keeps track of the best integral upper bound and the search
continues until the upper- and lower-bounds meet, or until
the available time is exhausted. On termination, BCP returns
the best known integral solution. These characteristics make
BCP an anytime algorithm.

After branching, both of BCP’s child nodes inherit the
lower bound from their parent. A node selection heuristic
then directs the search to the next node to solve. The default
node selection heuristic is best-first search, which favors
nodes with the lowest lower bound estimate coming from
the continuous relaxation. BCP can also be used with depth-
first search, which favors plunging deep into the tree where
integral solutions reside. Given enough time, best-first search
produces trees with fewer nodes than depth-first search but
it can take a long time to find the first solution because the
focus is shallower. Often, the majority of BCP’s run-time
is spent solving the root node in order to establish a global
lower bound. Because solutions appear deep in the tree and
because BCP spends a lot of time at the root node, the first
solution is often found very late into the search or not at all
within a given time limit. Thus, while BCP is an anytime
algorithm in principle, its anytime performance in practice is
extremely poor.

Another popular algorithm for optimal MAPF is Conflict-
based Search (CBS) (Sharon et al. 2015). Similar to BCP, this
algorithm also uses a two-level strategy. It comprises a high-
level tree search, used for conflict resolution, and a low-level
graph search, used for solving constrained single-agent path
finding problems. Some variants, such as CBSH2-RCT (Li
et al. 2021b), further improve performance by adding addi-
tional pruning and bounding techniques. Others, such as Lazy
CBS (Gange, Harabor, and Stuckey 2019) implement lazy
clause generation (Ohrimenko, Stuckey, and Codish 2009)
from constraint programming. In the CBS framework, the
first solution found is usually optimal, which means there is
little opportunity to integrate an anytime component.

For computing suboptimal solutions, two types of algo-
rithms are considered in the literature: bounded-suboptimal
and unbounded suboptimal. Bounded suboptimal algorithms,
such as EECBS (Li, Ruml, and Koenig 2021), a leading
technique from the CBS family, relax the optimality criteria
of exact algorithms. Instead, these approaches guarantee to
return a solution whose cost is not more than some fixed (mul-

tiplicative or additive factor) larger than optimal. Bounded
suboptimal methods can run much faster than exact methods
and they tend to succeed more often.

Unbounded suboptimal algorithms trade away all guar-
antees in exchange for further performance improvements.
LNS2 (Li et al. 2022) is among the leading techniques of
this type. LNS2 begins by finding an initial solution using
prioritized planning (Silver 2005), which plans each agent
in turn and makes no attempt to resolve the conflicts. Af-
ter an initial solution is found, LNS2 chooses a subset of
agents and replans these agents one-at-a-time using prior-
itized planning (Li et al. 2021a). This process is repeated
until terminated by a time limit or iteration limit. LNS2 pro-
gressively improves the upper bound with each successive
solution, which makes it an anytime algorithm. However,
LNS2 makes no attempt to compute a lower bound. Never-
theless, LNS2 is shown to find near-optimal and best-known
solutions for a wide range of problems.

Integrating BCP and LNS2
Solutions to the continuous relaxation in BCP are often frac-
tional and permit each agent to use multiple paths on the
condition that every path is used with a fractional proportion
that all sum to 100%. BCP then calls subroutines, known as
primal heuristics, that take a fractional solution and adjust it
according to a programmed strategy in the hope of finding
an integral solution. BCP currently runs the primal heuristics
built into its underlying integer programming solver, which
are applicable to many other problems beyond MAPF. Be-
cause of their generality, these primal heuristics have no
understanding of the MAPF problem and only operate on
the paths already existing in BCP’s database. Basically, the
built-in primal heuristics randomly assign one existing path
to each agent and hope that this produces a valid MAPF plan.
These primal heuristics cannot generate new paths to com-
plement the existing paths. In the proposed coupling, LNS2,
which understands the MAPF problem, is developed into a
primal heuristic that can generate new paths.

In its default configuration, LNS2 is initialized using a
solution found by prioritized planning. In the proposed cou-
pling, LNS2 is initialized using the paths selected by BCP for
each agent with highest proportion. LNS2 is then run until a
time limit. In the world of metaheuristics, this corresponds to
a restart strategy, which helps with escaping local minima. If
LNS2 finds a solution whose cost is better than the current
upper bound in BCP, the new solution overwrites the incum-
bent plan. Furthermore, paths in the LNS2 solution that do
not yet exist in BCP are also added to the database, allowing
BCP to choose them in future iterations.

Using this bidirectional communication, solutions to the
continuous relaxation from BCP are used to initialize LNS2
and solutions from LNS2 are used to generate paths and
solutions for BCP. While this concept is simple to understand,
there are major challenges in the implementation.

Primal heuristics must respect the decisions made by
branching. For example, if the solver requires an agent to use
one particular edge due to branching, solutions from primal
heuristics must respect this decision. BCP runs two branching
rules for creating children nodes in its search tree. The first



branching rule stipulates that an agent’s arrival time must
be either before or after a given time. The second branch-
ing rule requires an agent to either visit an edge or avoid
an edge. LNS2 currently has no mechanism to enforce the
path length for an agent nor to enforce the use of an edge.
We allow LNS2 to ignore the branching decisions in BCP
and therefore cannot haphazardly add paths found by LNS2
into BCP’s database. Instead, we hack into the underlying
integer programming solver and force it to backtrack to the
root node where no decisions are made, add the paths, and
then repropagate down from the root node to the current
node. Implementing this backtracking and repropagation is
tricky as the underlying integer programming solver does not
natively support this functionality.

Experimental Results
Experiments are run on 3,850 instances over 12 maps. Ten
instances are run for each map and each number of agents.
The maps are categorized into five classes: three warehouses,
one city, two maps from computer games, four randomly
generated squares and two randomly generated mazes. More
agents are added to the first warehouse map 10x30-w5 be-
cause the original instances are too small. The other maps are
retrieved from the Moving AI repository (Stern et al. 2019).
All instances are run for 60 seconds.

The following five anytime algorithms are compared:
• BCP BFS: Running BCP with best-first search.
• BCP DFS: Running BCP with depth-first search.
• LNS2: Running LNS2.
• BCP then LNS2: Running BCP for half the time (30

seconds) and then running LNS2 for the remaining half,
with no communication between the two.

• BCP with LNS2: Running LNS2 for 30 seconds to ini-
tialize the path database of BCP at the root node, and
then running LNS2 initialized with the highest-proportion
paths from BCP for 0.2 seconds at all later nodes in BCP.

All variants of BCP are exact and will find an optimal solution
eventually. If BCP terminates with a suboptimal solution, it
is because it has not yet found an optimal solution within
the time limit. All solvers are implemented in C++ and are
available from the authors’ websites.

Figure 1 plots the optimality gap averaged over the ten
instances. The optimality gap

upper bound − lower bound
upper bound

measures the relative difference between the lower bound and
upper bound. If an algorithm fails to find a solution to any of
the ten instances, it is shown as ∞ in the plots. For standalone
LNS2, the lower bound for the purpose of computing the
optimality gap is the sum-of-costs of the individually-optimal
paths of the agents.

BCP is the weakest and begins to fail at the fewest num-
ber of agents. Depth-first search sometimes performs better
than best-first search but still fails at medium-size instances.
Pursuing the lower bound is just not productive use of time
given the short time limit.

BCP BCP
BCP BCP then with

Map BFS DFS LNS2 LNS2 LNS2

10x30-w5 10% 9% 0% 9% 9%
warehouse-10-20-10-2-1 33% 32% 5% 33% 33%
warehouse-10-20-10-2-2 65% 63% 11% 61% 63%
Berlin 1 256 57% 54% 12% 52% 52%
brc202d 26% 26% 1% 24% 23%
ost003d 33% 34% 4% 31% 31%
empty-8-8 98% 93% 34% 96% 97%
empty-32-32 32% 32% 9% 31% 31%
random-32-32-10 28% 28% 5% 28% 29%
random-32-32-20 19% 19% 3% 19% 19%
maze-128-128-1 16% 16% 11% 17% 18%
maze-128-128-2 46% 45% 15% 45% 46%

All 38% 37% 8% 36% 36%

Table 1: Percentage of instances solved optimally. The most
solved instances are shown in bold. The trivial lower bound
is used to determine optimality for LNS2.

LNS2 paired with the trivial sum-of-costs lower bound
already obtains tight optimality gaps. This is a consequence
of the MAPF problem because shuffling the order of agents
within the prioritized planning step of LNS2 or inserting
waits into an agent’s path does not worsen a solution too
much. Therefore, the optimal cost is likely to be within a
few wait actions away from the trivial lower bound. Overall,
LNS2 performs remarkably well due to this characteristic.

The sequential BCP then LNS2 solver sometimes outper-
forms LNS2, especially on instances with lower agent counts,
where collisions are easier to resolve. The plots for BCP
then LNS2 and standalone LNS2 cross over in warehouse-10-
20-10-2-1, warehouse-10-20-10-2-2, Berlin 1 256, ost003d,
empty-32-32, random-32-32-10 and random-32-32-20, sug-
gesting that resolving conflicts at high agent counts in order
to compute a lower bound is prohibitively expensive.

The integrated BCP and LNS2 algorithm essentially dom-
inates the other algorithms on all but two maps. The com-
bined algorithm performs worse than LNS2 on the large game
maps brc202d and ost003d, which have fewer obstacles and
less congestion. The combined solver generally achieves the
lowest optimality gaps on the other maps, which are smaller
and/or have more obstacles, increasing congestion. The maze-
128-128-1 map is arguably the hardest because the optimality
gap blows up at the fewest number of agents. BCP fails at
the fewest number of agents on this map and the sequential
solver performs almost identically to LNS2, indicating that
BCP makes no contribution. In contrast, the integrated al-
gorithm dominates the other solvers, demonstrating that the
improvement is due to the synergy between LNS2 and BCP.

These observations lead to the conclusion that the com-
bined solver generally outperforms the other algorithms on
maps with high congestion (e.g., 10x30-w5, warehouse-10-
20-10-2-1, warehouse-10-20-10-2-2 and maze-128-128-1),
whereas LNS2 performs better on larger maps with lower
congestion (e.g., brc202d and ost003d), where the trivial
lower bound is more accurate.
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Figure 1: Optimality gap for each map and each number of agents averaged over ten instances. Lower is better. An infinite gap is
shown if a solver fails to find an upper bound to at least one of the ten instances with the given number of agents.

Table 1 shows the percentage of instances solved optimally
by each algorithm. BCP with best-first search finds the most
optimal solutions, skewed by the instances with fewer agents.
The combined solver finds more optimal solutions than BCP
on warehouse-10-20-10-2-1, random-32-32-10, maze-128-
128-1 and maze-128-128-2, but overall finds fewer optimal
solutions than BCP. LNS2 finds a surprising number of opti-
mal solutions even when just using the trivial lower bound,
i.e., the trivial lower bound is optimal and LNS2 can find a
solution with this cost.

Conclusions
This paper proposes to integrate BCP and LNS2, two leading
algorithms for optimal and suboptimal MAPF respectively.
While BCP itself is an anytime algorithm in theory, it exhibits
poor anytime behavior in practice because the first few so-
lutions that it finds are near-optimal and occur very late in

the search. LNS2 offers no proof of optimality but can find
low-cost solutions very quickly. The proposed combination
first calls LNS2 to find an initial solution and warm-starts
BCP with this solution. Then, LNS2 is called throughout
the search tree of BCP, and is itself warm-started from the
fractional solutions found by BCP.

Compared against standalone BCP and LNS2, and running
BCP and LNS2 for half the time in sequence, the integrated
algorithm achieves better optimality gaps on most maps and
loses to LNS2 only on two large game maps with many open
spaces and hence lower congestion. The combined algorithm
is even competitive with standalone BCP in proving opti-
mality, only closing 2% fewer instances despite spending a
large amount of time on upper bounding. The results also
show that the trivial lower bound is acceptable in most cases
because the agents can often move a few cells away or wait
a few timesteps, increasing the total cost by a small amount
and hence degrading the gap by only a few percentages.
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