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Abstract. Scheduling when, where, and under what conditions to re-
charge an electric vehicle poses unique challenges absent in internal com-
bustion vehicles. Charging scheduling of an electric vehicle for time- and
cost-efficiency depends on many variables in a dynamic environment,
such as the time-of-use price and the availability of charging piles at a
charging station. This paper presents an adaptive charging scheduling
strategy that accounts for the uncertainty in the charging price and the
availability of charging stations. We consider the charging scheduling of
an electric vehicle in consideration of these variables. We develop a Mul-
tiagent Rainbow Deep Q Network with Imparting Preference where the
two agents select a charging station and determine the charging quan-
tity. An imparting preference technique is introduced to share experience
and learn the charging scheduling strategy for the vehicle en route. Real-
world data is used to simulate the vehicle and to learn the charging
scheduling. The performance of the model is compared against two re-
inforcement learning-based benchmarks and a human-imitative charging
scheduling strategy on four scenarios. Results indicate that the proposed
model outperforms the existing approaches in terms of charging time,
cost, and state-of-charge reserve assurance indices.

Keywords: Electric Vehicle · Adaptive Charging Scheduling · Rein-
forcement Learning · Multi-agent systems

1 Introduction

The production and sale of electric vehicles (EVs) have grown considerably in re-
cent years. This growth is mainly driven by stringent regulations on greenhouse
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gas emissions that cannot be met by internal combustion vehicles [3]. Despite
their phenomenal growth, unresolved issues hinder their widespread adoption.
Like the fuel price for conventional vehicles, the charging price for EVs varies
in time and differs at each Charging Station (CS) due to the time-of-use (ToU)
electricity price and other factors. In contrast, the duration of recharging an EV
compared to conventional vehicles sometimes renders EVs impractical. Charging
its battery can require 20 to 30 minutes for fast charging and can make a CS un-
available to incoming vehicles [14]. Therefore, drivers of EVs must manage time-
and cost-efficient charging plans to meet their requirements (e.g., minimizing
charging cost or the queuing time) and the characteristics of their EVs.

These issues raise a practical challenge to scheduling recharges en route. To
formulate the problem, we consider concepts from the Internet of Things and
Edge Computing [9]. Communication technologies, such as fifth-generation (5G)
cellular networks, have promoted the role of vehicles to an intelligent platform
that can provide a wide range of services. Connected vehicles display a variety
of applications on Edge Computing architectures [13]. Owing to the benefits of
these advanced technologies, we propose a charging scheduling service that has
the potential to use the in-vehicle infotainment system to display recommenda-
tions for charging an EV. The charging scheduling service receives data from
sensors on an EV and from nearby CSs to provide recommendations on charging
schedules in real-time. In particular, we aim to address the following questions:
1) how can the EV select CSs and determine charging schedules that meet the
driver’s requirements given limited data from nearby CSs; and 2) how much
energy to recharge at each CS in order to avoid excessive charging times while
maintaining best practice guidelines on State-of-Charge (SoC), which require
EVs to maintain a minimum SoC of 20% [15].

In this paper, we propose a multi-objective problem to solve the challenges
described above. Utilizing a Reinforcement Learning (RL) approach, the pro-
posed charging scheduling model provides an adaptive charging scheduling for
the EV en route. The RL agent receives data from its sensors and makes charging
decisions in real-time. The advantage of using RL to make charging decisions is
that the agent is trained to maximize their long-term objectives without super-
vision. The agent can avoid recharging when the charging cost or waiting time
is suboptimal in order to recharge in optimal circumstances. However, it is chal-
lenging for a single RL agent to tackle the multi-objective problem as the single
agent faces a high-dimensional action space. We design a Multiagent Rainbow
Deep Q Network (DQN) with Imparting Preference model (MRDI) to address
the charging scheduling problem. Rainbow DQN [4] is applied as the base agents
to construct the proposed multiagent model. The proposed MRDI model is de-
signed with two agents to make charging decisions based on estimates of an
optimal charging price and occupancy rate while considering charging times,
and charging quantity while en route. In summary, the key contributions of this
paper are as follows:

− Adaptive Charging Scheduling : The proposed charging scheduling estimates
the state of the environment and provides an optimal charging decision.
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Furthermore, the system computes the least amount of energy to recharge
and maintains a minimal SoC in the battery upon arrival at the destination.
The charging scheduling adapts to the dynamic CS environment and makes
charging decisions only when necessary.

− Multiagent structure with Imparting Preference: The proposed MRDI model
is developed with two Rainbow DQN agents. The agents work on different
tasks while jointly learning to perform a cooperative objective. We adopt the
imparting preference technique to share experience between the two agents.
As a result, it enhances the performance of the model to generate the charg-
ing scheduling. The schedule considers cost and time efficiency while consid-
ering charging times and a minimum amount of energy.

− Real Data Simulation and Evaluation: We employ realistic CS and EV data
to simulate four practical scenarios of an EV driven along the routes. The
experiment is compared with three baselines methods to explore the physical
indications behind the charging decisions. The results demonstrates that the
proposed MRDI model achieves better charging scheduling compared to the
baselines in the four scenarios.

The rest of the paper is organized as follows: In Section 2, we give an overview
of the related work on the charging scheduling problem. In Section 3, we describe
our proposed charging scheduling method. We report experimental results in
Section 4. Section 5 concludes the paper.

2 Related Work

An increasing number of studies have been conducted regarding the optimization
of CS charging scheduling problems for a fleet of EVs. Zhou et al. [19] proposed
a charging scheduling model to minimize the charging cost while enduring a
few uncertainties, i.e., intermittent prediction of renewable generations and in-
determinacy of EV arrival time. Li et al. [5] proposed a model-free approach
and formulate an EV charging scheduling problem that tackles the uncertainty
in the arrival and departure times. However, these studies do not focus on the
charging scheduling problem from the perspective of the EV.

We focus on the charging scheduling problem from the EV’s point-of-view
to search through nearby CSs. Prior work have explored the optimization of EV
charging scheduling considering cost, charging time, and waiting time. Yang et al.
[17] formulated the EV charging time optimization problem by receiving global
CS information while en route. The EV’s waiting time at CSs is minimized, but
they do not consider the charging price at the CSs. Yang et al. [16] proposed
a charging scheduling that considers the dynamic charging price of CSs while
the EV drives along a planned route. However, the charging scheduling neglects
the uncertainty of charging slots. Cao et al. [1] proposed a centralized system
that allows the EV to reserve a charging pile and resolves the occupancy rate
problem from the CSs. However, EVs in this study must connect to a centralized
system to communicate. Considering that individual drivers tend to charge their
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EVs at their convenience, a centralized system could be impractical in realistic
scenarios.

While en route, the EV is presumed to encounter different CSs, which forms a
dynamic environment to determine the charging schedule. The adaptive charging
scheduling aims to build a service that suggests and selects a preferable CS
to charge in the near future. A stochastic optimization problem is of interest,
in which some information is previously unknown, but can be obtained in the
query time. RL has proven to be an effective technique for handling dynamic
environments in various domains [12,18,7]. RL has been used to optimize the
charging cost of a fleet of EVs based on the perspective of CS. Da Silva et al.
[2] proposed a Multiagent Multiobjective RL method that minimizes the energy
cost for recharging. The RL model adapts by changing the charging decisions
whenever a new EV arrives at the CS. Panayiotou et al. [8] devised a charging
scheduling by applying the RL model considering the price, charging times, and
distance while driving in a planned route. However, these approaches do not
consider the occupancy rate of each CS and assume that the EV can charge
upon arrival. These studies demonstrate that RL is feasible and applicable to
the charging scheduling problem.

3 The Charging Scheduling Model

This section presents the charging scheduling problem while en route. We reduce
our charging scheduling problem to a discrete-time stochastic control process.
Then, we formulate the charging scheduling problem into a Markov Decision
Process (MDP), which is then subsequently solved using RL. Finally, we demon-
strate how the proposed MRDI structure is developed based on the Rainbow
DQN agents with imparting preference. The agents are designed with a shared
objective and produce decisions corresponding to the charging schedule.

3.1 Problem Description

Building an effective charging schedule in a dynamic environment poses many
challenges. Figure 1 illustrates the problem framework. The driver anticipates
that they will encounter CSs en route. It is challenging to determine the charg-
ing schedule under diverse CS information within a certain radius. Following
charging preferences, the driver is searching for a suitable CS based on a few
factors, e.g., time- and cost-efficiency. We consider the charging scheduling to
take charging decisions only when necessary to avoid superfluous charging times.
The charging quantity associated with each charging decision must also be op-
timized to prevent charging excessively. Furthermore, the current best practice
for recharging a battery stipulates that it must hold between 20% and 80% SoC
[15]. When the EV arrives at the destination, its SoC must maintain enough en-
ergy to accommodate a future trip. The proposed charging scheduling problem
focuses on multiple considerations when taking charging decisions en route, i.e.,
selecting optimal CSs based on time-efficient and cost-efficient indices, charging
quantity, charging times, and battery constraints.
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Fig. 1. An illustration of the charging scheduling problem.

3.2 MDP Problem Formulation

We decompose the charging scheduling problem into two individual tasks that
are jointly considered in a practical charging scheduling. We thus formulate the
charging scheduling problem as a multiagent MDP. A multiagent MDP is a
tuple 〈S,Ai,P i,Ri, γ〉, which comprises of a set of states S, action space Ai,
the transition probabilities of P i, and the reward function of Ri. i denotes the
index of the agents and γ ∈ (0, 1] represents the discount rate. S is the state
space of the joint environment. The agents observe the state and interact with
the environment by taking actions from their action space Ai. P i comprises
probabilities of transferring from the current state to the next state. Ri is the
reward received by the agents when taking the actions.

Typically, the objective of an RL model is to maximize the sum of rewards
over a sequence of time steps. At each time step t ∈ T , agent i observes the
state st and chooses the actions that produce the next state st+1 according
to the transition probability pi(st+1|st, ait), where st, st+1 ∈ S, and ait ∈ Ai.
The agents choose actions according to their policy πi(ait|st) where st ∈ S and
ait ∈ Ai. The state st generates reward values rit(st, a

i
t, st+1) ∈ Ri, reflecting by

the actions ait at state st. Through the sequence, the agents aim to maximize
their cumulative reward rit(st, a

i
t, st+1) by following a policy πi. The expected

cumulative reward function is Eai∼πi,s∼T [
∑T
t=1 γ

trit(st, a
i
t, st+1)].

State: In each time step, the EV expects to encounter CSs within a defined
radius. The EV will drive to its destination over the time interval t = 1, 2, . . . , T .
Let soct be the SoC of the EV at time step t. The energy consumption et denotes
the energy consumption between the previous time step and the current time step
t and is calculated by et = (soct−soct−1)∗bcap, where bcap is the battery capacity.
In each time step, the EV collects data from up to ten of the nearest CSs within a
certain radius. The EV collects the charging price λz,t, where z = {1, 2, ..., 10} is
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the index of the CS at time t. Other than the price, occz,t denotes the occupancy
rate of the CS z at time t where occz,t ∈ [0, 1]. If all charging piles at CS z
are occupied at time t, the occupancy rate occz,t is equal to 1. All of the CS
charging prices λz,t and occupancy rate occz,t values are normalized with min-
max normalization, where the values represent the range from 0 to 1. Each CS
can be represented as a pair csz,t = (λz,t, occz,t). In summary when the EV
drives along a route, the EV receives the state st = [(λ, occ)z,t, (soct, et)] ∈ S.

Action: Consider the optimal charging scheduling while en route, the EV owner
requires two decisions at each time step t: 1) the decision to select a CS and 2)
the quantity of energy to charge sequentially. While two decisions need to be
made, we separate the decisions into two actions. In the multiagent settings, we
consider two agents to carry out the two actions respectively. The first agent
has 11 discrete actions to choose from regarding selecting an index z of the CS
to charge where a1

t = {0, 1, 2, ..., 10} and a1t = 0 represents the decision of not
selecting any CS at the current time step. The second agent has to determine
a charging quantity at each time step. The second action set a2

t = {0, 1, ..., 9}
contains 10 discrete actions. The action a2t can be interpreted as a charging ratio
of the quantities, and action 0 means no charging. We calculate the charging
amount with a charging scale function

q(a2t ) =
a2t (socupper − soct)

9
, (1)

where socupper is an upper bound of the battery’s SoC. It charges at different
quantities based on the current SoC.

Transition Probability: The transition probability pi(st+1|st, ait) is affected
by the charging decisions and energy consumption while en route. Initially, the
model interacts with the environment, in which the transition from state st to
state st+1 is controlled by action at. The state-action pairs are stored to learn to
estimate the optimal policy, which approaches the optimal charging scheduling
decision through the episodes.

Reward: We evaluate the two decisions in terms of selecting an optimal CS
and charging quantity through the time series. The search for an optimal CS
csz,t aims to emphasize minimizing the price λz,t and occupancy rate occz,t. To
balance between the price and occupancy rate, we consider a trade-off parame-
ter ξ to calculate weighing between the price and occupancy. The first reward
function is presented as follows:

r1t =
ξ

(λz,t)
η +

(1− ξ)
(occz,t)

η , (2)

where η is an amplification factor and acts as the incentive to amplify the dif-
ferences in rewards. By powering the values of price and occupancy rate, the
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optimal selections separate from other decisions through the sequence. As a re-
sult, the reward is amplified for the agent to learn the optimal decision of price
and occupancy rate. Subsequently, the decision regarding the charging amount
must not charge above an upper bound socupper of the SoC. The constraint to
regulate the charging amount can be expressed as soct + q(a2t ) ≤ socupper. The
charging amount aims to charge as least amount as possible. Also, it is impracti-
cal to take charging decisions frequently. We define a frequent charging penalty
coefficient ζ where ζ ∈ (0, 1] to discourage the second agent from charging ex-
cessively. On the other hand, the ϕ reward apprises the agent when it is possibly
better not to charge frequently en route. The second reward function for the
charging quantity can be denoted as follows:

r2t=1,...,T−1 =

{
ζ

q(a2t )
, a2t = {1, ..., 9}

ϕ, a2t = 0
(3)

where t = 1, 2, ..., T − 1. Conditionally, we improve the reward function for the
agent to be aware of the rule when the episode ends, that is, to save sufficient
energy at the end of the time step T − 1. The parameters α and β inform the
second agent to follow the rule of an assurance threshold. At the end of the
time horizon, the current SoC compares with an assurance threshold parameter
δ. The second agent’s reward, on the evaluation of the charging amount, is
promoted if the SoC fulfills the constraint. And discouraged if the SoC violates
the restriction. The adjusted reward function is shown as follows:

r2T−1 =

{
r2T−1 + α, socT−1 ≥ δ
r2T−1 − β, socT−1 < δ

(4)

3.3 Multiagent Framework

In this section, we present our MRDI model approach to challenge the charging
scheduling problem. Hessel et al. [4] introduced the Rainbow DQN model and
achieved state-of-the-art performance on Atari games. The Rainbow DQN is best
constructed from multiple improvements from the original DQN model [6]. The
Rainbow DQN combines the DQN algorithm as a base model with Double DQN,
dueling DQN, prioritized experience replay, distributional reinforcement learn-
ing, n-step learning, and noisy network for exploration. The proposed MRDI
model assembles two Rainbow DQN agents. In the multiagent setting, the com-
plexity grows exponentially with the action-space dimension for a single agent
to explore. We consider two agents to observe the same state and take two ac-
tions simultaneously for the charging scheduling problem. The actions jointly
optimize the charging scheduling decisions and provide a practical solution. The
first agent’s experience is imparted to the second agent, improving the overall
charging scheduling objective. The second agent aims to choose a decisive charg-
ing quantity that is related to the preferred CS. Also, it assists the second agent
to reduce excessive charging amounts.
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Shared Objective and Impart Preferences On exploring with adequate
iteration training, the MRDI model gains sufficient historical experience and es-
timates to approach the optimal charging scheduling, namely, the ideal selection
of a CS and charging quantity. However, it seems ambiguous if one agent takes a
No action, but the other agent chooses solution action, i.e., a1t = 0 with a2t 6= 0 or
vice versa. We introduce an imparting preference technique to transfer the pref-
erence with an AND logical gate. If both the two actions chooses a Yes action,
i.e., a1t 6= 0 AND a2t 6= 0, we interpret this action as a logical true state. We use
the normalization factors ν1, ν2 to normalize the rewards r1t , r

2
t . The discount

factor ψ ∈ (0, 1] is to discourage impractical decisions from the two agents. As a
result, both agents learn to perform charging decisions simultaneously and avoid
impractical choices. The calculated reward of r2t in each time step is defined as:

r2t =

{
ψ(ν1r1t + ν2r2t ), a1t ∧ a2t = 0

ν1r1t + ν2r2t , a1t ∧ a2t = 1
(5)

Multiagent Rainbow DQN with Imparting preference The proposed
MRDI model is constructed based on the Rainbow DQN [4] agents with the
imparting preference technique. Algorithm 1 describes our MRDI framework.
Given a set of states S received by the EV, T is the time slot while en route, a
batch size N to sample from the Prioritized replay buffers (B1,B2), and Rainbow
agents (I1, I2). In the training stage, the MRDI model starts from performing
through the time series T in episode E. For each time slot, the Rainbow agents
perform actions based on the current state and compute the rewards sequentially
(line 6-8). Afterward, the MRDI model imparts the first agent’s reward to the
second agent, while the model discounts the ambiguous decisions from the second
reward (line 9). The transitions (st, a

1
t , r

1
t , st+1) and (st, a

2
t , r

2
t , st+1) are stored

in the Prioritized replay buffers (B1,B2) to perform mini-batch training on the
model. Instead of sampling from the buffer uniformly, the Prioritized Replay
samples important transitions more frequently, therefore, learn more efficiently.
The n-step learning technique, introduced by [10], is adopted to sample forwardly
with multiple steps of reward instead of a single reward value. The number of
steps n is a hyper-parameter that often leads to faster learning [11]. In conclusion,
the proposed model determines the charging scheduling for the EV while en
route. Unlike Atari games, the charging scheduling problem does not consider
finding the shortest paths from all states to a goal state. The problem is required
to explore through the time slots in each episode. As a result, the complexity of
the proposed model is O(n2) based on the route’s length.

4 Performance Evaluation and Experiments

We conducted experiments in a realistic simulator by applying real-world data
from historical CSs and vehicle driving data. We used driving records from pub-
lic transportation data to derive EV energy consumption. We developed a dis-
tributed environment of CSs from historical data. We discuss the design of the
realistic simulator in the next section.
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Algorithm 1: MRDI

Input: episode number E; each episode’s step number T ; state s1, s2, ..., sT ;
batch to train N

1 Initialize Rainbow agents (I1, I2), Prioritized replay buffer (B1,B2)
2 for episode = 1, 2, ..., E do
3 Initialize state
4 for t = 1, 2, ..., T do
5 while not terminal do
6 agents chooses a1t and a2t based on its state st
7 process and compute action a2t (Equation 1)
8 compute rewards r1t , r2t (Equation 2, 3, 4)
9 Imparting preference and compute r1t and r2t (Equation 5)

10 Obtain next state st+1

11 Compute N -step learning reward and store transitions
(st, a

1
t , r

1
t , st+1) and (st, a

2
t , r

2
t , st+1) in B1, B2 respectively

12 if size of B1,B2 ≥ N then
13 Sample mini-batches from prioritized buffer B1,B2

14 Compute N -step learning loss and update agents I1, I2
respectively

15 end

16 end

17 end

18 end

4.1 Simulation Setup

EV Driving Records: We derive driving records along regular routes using
historical data from the New York MTA Bus Time®1. The timestamp records,
inferred route id, and distance are used to generate the driving records of a
particular route for a vehicle. We assume that the driver begins driving the EV
from 10 AM and arrives at the destination at 6 PM. We assume that the length
of each time step is t = 5 minutes and the total time horizon is T = 96. The
velocity is calculated with the average velocity function v̄ = ∆x/∆t, where ∆x
is the resultant displacement and ∆t is the period. Furthermore, we consider
the Tesla Model 3 as the chosen EV. We referenced the velocity and power
consumption graph on ABetterRouteplanner.com,2 which provides the power
consumption (kW) at various constant speeds (m/s). We used the yellow dots
from the velocity and power consumption figure in the reference (the median

data) and built a quadratic function (∆p = 2(∆v̄)
2
/125−∆v̄/250+3) to estimate

the velocity-power consumption en route. We calculate the energy consumption
in kilowatt-hour (kWh) in each time interval ∆t by

∆energy(kwh) =
∆p(kW ) ∗∆t(s)

3600
.

1 http://web.mta.info/developers/MTA-Bus-Time-historical-data.html
2 https://forum.abetterrouteplanner.com/blogs/entry/22-tesla-model-3-

performance-vs-rwd-consumption-real-driving-data-from-233-cars/

http://web.mta.info/developers/MTA-Bus-Time-historical-data.html
https://forum.abetterrouteplanner.com/blogs/entry/22-tesla-model-3-performance-vs-rwd-consumption-real-driving-data-from-233-cars/
https://forum.abetterrouteplanner.com/blogs/entry/22-tesla-model-3-performance-vs-rwd-consumption-real-driving-data-from-233-cars/
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Data Preprocessing for Charging Stations: We designed a simulated envi-
ronment with randomly distributed CSs in each time step. The dataset4 includes
the historical data of the EV charging sessions for each charging pile. We sam-
pled charging piles from the data to construct samples of CSs with different
sizes. The occupancy rate of each CS is calculated from the charging sessions in
the dataset. By organizing the charging sessions hourly, we divide the sessions
by the total sessions in the day. The occupancy rate from a particular CS varied
by the hour and is simulated and calculated by

occhourz,t =

∑n
0 cpz,t∑23

0

∑n
0 cpz,t

,

where cpz,t represents the charging session counts and n is the total number of
charging piles within the CS z at time t. Additionally, we referenced commercial
charging prices from open charging data.5 The samples of CSs are paired with
one charging price randomly. In different time steps, the ToU price rates are
calculated with the charging price based on the time step in semi-peak or peak
periods. We referenced the ToU price rates, semi-peak, and peak periods from
Taiwan Power Company data.6 We set the peak periods from 10 AM to 12 PM
and 1 PM to 5 PM. The semi-peak periods are from 12 PM to 1 PM and 5 PM
to 6 PM. As a result, the charging prices are calculated by

λz,t =


λz,t ∗ 1.55, t = 1, ..., 24

λz,t ∗ 1.002, t = 25, ..., 36

λz,t ∗ 1.55, t = 37, ..., 84

λz,t ∗ 1.002, t = 85, ..., 96

4.2 Results and Analysis

Experimental Settings: We considered four practical scenarios to demon-
strate different driving behaviors for the simulation. The trade-off parameter
ξ was tested and observed for two different situations. In the cost-efficiency
scenario (ξ = 0.9), the EV driver prefers charging at an optimal price when
searching for the charging schedule. Furthermore, the parameter is set to 0.1 to
search for a low occupancy rate, which is significantly more promising for the
EV driver who wants to charge instantly without waiting in line. Other than the
trade-off parameters, we analyzed more extreme scenarios by setting different
assurance threshold parameters δ and initial SoC soct=1 values at the beginning
of the time series. The assurance threshold and initial SoC significantly affect
the charging times and amount of the charging scheduling. Table 1 presents the
settings of the four scenarios that demonstrate different driving behaviors. The
trade-off parameter reflects the driver’s decision of selecting the CS based on
the cost or time. And the assurance threshold and initial SoC present a different
application usage of the EV.
4 https://data.dundeecity.gov.uk/dataset/ev-charging-data
5 https://openchargemap.org/site
6 https://www.taipower.com.tw/en/page.aspx?mid=317

https://data.dundeecity.gov.uk/dataset/ev-charging-data
https://openchargemap.org/site
https://www.taipower.com.tw/en/page.aspx?mid=317
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Table 1. Driving behaviors for four scenarios

Description Trade-off ξ Assurance Threshold δ Initial SoC soct=1

Cost-efficient (CE) 0.9 0.4 0.9

Time-efficient (TE) 0.1 0.4 0.9

Intensive Charging (IC) 0.9 0.7 0.9

Low Initial SoC (LIS) 0.9 0.4 0.5

Fig. 2. Performance comparison of the baseline models with the proposed model.
(Left) Median cumulative rewards comparison with two baseline RL models. (Right)
The cost/occupancy decisions among 4 driving scenarios in the global distribution of
charging stations’ cost/occupancy. Each gray dot represents a cost/occupancy pair of
a single charging station.

Performance comparison: We compare our MRDI model with three other
baselines. (i) Multiagent Rainbow DQN (MRD): The same multiagent Rain-
bow DQN model without imparting preference. We evaluate the performance
without experience sharing to measure the improvements in the results of the
charging scheduling. (ii) Multiagent Double DQN (MDD): The multiagent Dou-
ble DQN model without imparting preference. We construct another multiagent
RL model to analyze the learning performance with our model. (iii) Upon De-
pletion Charging Policy (UDP): We design the charging scheduling that imitates
human charging behavior. Like fueling conventional vehicles, drivers intend to
fill up the gas tank if the fuel is almost depleted. We emulate this fueling behav-
ior by charging the EV when the SoC is near 20% left of the battery. The driver
will search for the most affordable charging price or the lowest occupancy rate
among the CSs available in the current time step.

Figure 2 summarizes the learning performance of our proposed model and
baseline models. The left figure represents the median cumulative rewards of the
RL models. Our proposed model can impart the preference empirically from the
first agent to the second agent, in which the second agent receives the preference
of the selected CS. The experiment results of the MRD and MDD baselines work
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Table 2. Charging scheduling comparisons of 4 different charging scenarios with dif-
ferent baseline models. The bracket indicates the total charging times through the time
series. The underlined text symbolizes that the method did not fulfill the requirements.
CE, TE, IC, and LIS stands for Cost-Efficient, Time-Efficient, Intensive Charging, and
Low Initial SoC scenarios respectively. The C.A. stands for the charged amount in the
scenarios.

CE TE IC LIS
C.A.
(kWh)

Cost
(USD)

SoC
C.A.
(kWh)

Cost
(USD)

SoC
C.A.
(kWh)

Cost
(USD)

SoC
C.A.
(kWh)

Cost
(USD)

SoC

MRD 11.88 3.08 0.50 14.17 5.71 0.54 14.88 3.85 0.79 17.49(2) 4.53 0.54

MDD 12.57 3.26 0.52 14.21 6.5 0.54 13.05 3.41 0.61 18.04(2) 5.01 0.45

UDP 19.66 6.70 0.88 19.66 7.31 0.88 18.78(2) 5.34 0.83 22.68 5.87 0.52

MRDI 10.8 2.59 0.48 13.58 5.05 0.53 14.73 3.81 0.76 17.04 4.41 0.43

from two individual agents, in which the baseline models decide to choose CSs
and charging amounts separately. The right figure demonstrates the selected
results of charging price and occupancy pairs in the global distribution envi-
ronment. The decisions of our proposed model choose the CS to charge, which
is near the global optimal. Also, it decides to take one charging decision only
through the time series. Note that in the IC scenario, the UDP selects a bet-
ter price compared to the proposed model. However, UDP charges two times to
fulfill the required assurance amount, and the total charging cost is higher than
our proposed model.

Table 2 presents a comparison of the optimal charging schedule against the
other three baseline models. We compare the charged amount (C.A.), cost, and
the SoC at time T . Our charging scheduling aims to charge the least amount of
energy that guarantees the EV to arrive at the end of time steps. In the three
scenarios, CE, IC, and LIS aim at cost-efficient charging, in which the objective
is to minimize the charging cost. Furthermore, the SoC results are much near
the threshold value, in which the charging scheduling charges enough amount
only when arriving at the destination.

Our experiments present a charging schedule recommendation for the EV en
route to a destination. It is designed to accommodate a diverse selection of CSs in
every time step, whereas other work only consider a few CSs for the EV to select
en route [17]. The experimental results in [17] indicate that the proposed method
requires visiting the CSs multiple times, whereas our model requires one charging
time to the destination. In [16], the proposed algorithm aims at the EV route
optimization problem in a planned region. The problem considers fully charging
the battery when the EV returns to the starting point. It considers the charging
cost of both regular charging and fast charging. It is unfair to compare the
performance of charging cost since our experiment considers only fast charging en
route. Our proposed model evaluates the destination and provides the charging
decision with adequate quantity when necessary. It guarantees that the EV has
efficient energy without considering any further charging when the EV arrives
at the destination.
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5 Conclusion

In this paper, we propose a Reinforcement Learning model named Multiagent
Rainbow DQN with Imparting Preference. Leveraging concepts from Edge Com-
puting, the model provides an adaptive charging scheduling service to EV drivers.
The model manages two tasks by recommending suitable charging stations and
determining a proper charging plan that respects battery constraints and arrival
energy guarantees. Imparting experience sharing is embedded within the agents
to balance the coupling effects between the two tasks. This technique increases
the learning efficiency and thus enhances the performance of the scheme. Uti-
lizing real-world data, we compare our proposed approach against three bench-
marks (an idiomatic behavior of EV driver and two other RL-based models) in
the experiments. The results show that our model outperforms the benchmarks
in terms of charging cost, total charging times, and total charged amount. The
overall performance demonstrate the robustness and practicability of our pro-
posed method for efficient charging scheduling. In future work, the simulation can
be extended to consider multiple routes or different routines, such as weekdays
and weekends. We will further investigate the generalization and performance of
the EV charging scheduling behavior across several routes. We aim to develop
the model to operate in a highly realistic environment that considers multiple
routes, which improves the generalization of the model’s charging schedule rec-
ommendations. Another future avenue might investigate the charging scheduling
for two-way EV charging and consider the case for Vehicle-to-Grid (V2G).
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