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Abstract

Given a tree, a set of pebbles initially stationed at some nodes
of the tree and a set of target nodes, the Unlabeled Pebble
Motion on Trees problem (UPMT) asks to find a plan to move
the pebbles one-at-a-time from the starting nodes to the target
nodes along the edges of the tree while minimizing the number
of moves. This paper proposes the first optimal algorithm for
UPMT that is asymptotically as fast as possible, as it runs in
a time linear in the size of the input (the tree) and the size of
the output (the optimal plan).

Introduction
The input of the Unlabeled Pebble Motion on Trees problem
(UPMT) is a tree T = (V,E), with n = |V |. A set of k
pebbles is initially located at k distinct nodes of the tree,
called starting nodes. There are also k nodes described as
targets, some of which may coincide with the starting nodes.
A move is an action that moves a single pebble from its
current node to an adjacent pebble-less node. A plan is a
sequence of moves. A feasible plan moves every pebble to a
target. The length of a plan is the number of moves it uses.
The length of an optimal plan is denoted OPT .

In the labeled version of the problem, every starting node
and every target node is labeled with a specific pebble, and
every target node must be reached by its designated pebble. In
unlabeled (or anonymous) Pebble Motion problems, a target
can be reached by any pebble.

Pebble Motion is related and has been used (see e.g. Kulich,
Novák, and Přeucil 2019) to tackle Multi-Agent Pathfinding
(MAPF) (Stern 2019), a problem in which pebbles/agents can
move synchronously, and hence lends itself well to real-life
problems such as automated warehouses.

This paper proposes a novel optimal algorithm for UPMT
with time complexity O(n log n + OPT log n), where the
encoding size of the input is O(n log n), and the encoding
size of the plan is O(OPT log n). We also show that OPT ≤
k(n− 1). The algorithm traverses the tree top-down, and, at
each node, moves pebbles within its subtree to ensure that the
subtrees rooted at its children contain one pebble per target.

The paper is organized as follows. First, we review related
work. Second, we derive a tight lower bound on the length
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of an optimal plan. Third, we introduce an optimal algorithm
using this lower bound. Naturally, we end with conclusions.

Related Work
Kornhauser, Miller, and Spirakis (1984) propose a sub-
optimal algorithm for UPMT with plans of length O(n3).
Ardizzoni et al. (2024) provide a more readable description,
as well as an improvement to path lengths in O(knc+ n2),
where c is the length of a corridor, which is at worst O(n).

Auletta et al. (1999) provide an algorithm linear in n
to determine the feasibility of the labeled problem. In the
feasible cases, they also provide an algorithm that runs in
O(n + OPT l), where OPT l refers to the length of a plan
for the labeled problem, which is in O(k2(n− k)).

Călinescu, Dumitrescu, and Pach (2008) study (un)labeled
problems similar to the Pebble Motion problem on various
classes of graphs, but define a move to be a consecutive se-
quence of edge moves made by a single pebble. They also
give an optimal algorithm for UPMT. This algorithm first
computes all shortest paths between pebbles and targets, and
then solves a minimum-weight matching problem to find
an assignment of pebbles to targets that minimizes the total
distance between pebbles and targets. The time complex-
ity of solving a minimum matching in a complete bipartite
graph with 2k vertices and edge weights of at most n is
O(k2.5 log n) (Gabow and Tarjan 1989) or O(k3) (Edmonds
and Karp 1972).

Lower Bound on the Optimal Plan Length
Pick an arbitrary root node r ∈ V . Let Tu denote the sub-
tree rooted at a node u ∈ V . We write v ∈ Tu to mean
that v is a node of Tu. We define pebble(u) ∈ {0, 1} and
target(u) ∈ {0, 1} as the current number of pebbles and
targets at a node u ∈ V , respectively. Note that pebble(u) is
updated as pebbles move, while target(u) is a fixed input.
We define the demand d : V → Z, such that, for u ∈ V ,

d(u) =
∑
v∈Tu

target(v)−
∑
v∈Tu

pebble(v), (1)

as the number of targets minus the current number of pebbles
in Tu, or, recursively,

d(u) = target(u)− pebble(u) +
∑

v child of u

d(v). (2)



Lemma 1. The problem is solved if and only if d(u) = 0 for
every u ∈ V .

Proof. (⇒) Suppose the problem is solved, i.e. target(u) =
pebble(u) ∀u ∈ V , then (1) implies d = 0. (⇐) By induc-
tion. At every leaf u, (2) gives 0 = target(u)− pebble(u) +
0. Furthermore, for every non-leaf node u, suppose that
d(v) = 0 for each child v of u. Again, (2) simplifies to
0 = target(u)− pebble(u) + 0. Therefore, at every node u,
target(u) = pebble(u).

Lemma 2. A feasible plan has length at least
∑

u∈V |d(u)|.

Proof. Consider a non-root node v ∈ V \ {r} and its parent
u ∈ V . Suppose that d(v) ≥ 0, i.e. there are d(v) more
targets than pebbles in the subtree Tv . Any feasible plan must
include at least d(v) moves from u through v, otherwise the
subtree Tv will have missing pebbles after the execution of
the plan. In the case where Tv has extra pebbles, i.e. d(v) ≤ 0,
there must be −d(v) moves from v through u. Therefore, in
a feasible plan, the number of moves on edge uv is at least
|d(v)|. Finally, observe that d(r) = 0.

Optimal Unlabeled Pebble Motion on Trees
We now use the demand d to design an algorithm that makes
no unnecessary moves. To do so, only moves that decrease
the lower bound (Lemma 2) are performed. We present a
recursive top-down algorithm that realizes this.

Algorithm Description
Algorithm 1, balance subtrees , starts at a node u
with zero demand (Precondition 1.b). The first part of
balance subtrees , Lines 1-7, ensures that every child of u has
zero demand, by balancing the pebbles between the children.
A balance between children is achievable because d(u) = 0.
For the same reason, balance subtrees implicitly handles
the case of u being a target because ensuring all children
are balanced means that a pebble is left on u if and only if
u is a target. Node u interacts with the subtree of a child
v via the functions inject pebble(v) and extract pebble(v),
not by direct moves between u and v, as moving pebbles
from one subtree to another can require moves inside these
subtrees. The second part of balance subtrees , Lines 8-9,
recursively calls balance subtrees on all children to ensure
that all descendants have zero demand (Postcondition 1.c).

Algorithm 2, inject pebble, is called on v by its parent u
when a pebble needs to be moved from u to v. It handles
the case where v already holds a pebble. If so, v must first
inject pebble its pebble to one of its children, before the peb-
ble on u is moved to v. Because d(v) > 0 (Precondition 2.c),
this is guaranteed to succeed.

Algorithm 3, extract pebble , moves a pebble from v to its
parent u. It handles the case where there is no pebble on v
by recursively extracting a pebble from within Tv . Thanks to
Precondition 3.c, this is guaranteed to succeed.

Algorithm 4, move pebble, updates pebble(·) and d(·),
and finally performs a move.

Algorithm 1: balance subtrees(u)

Precondition 1.a: A node u ∈ V
Precondition 1.b: d(u) = 0
Postcondition 1.c: d(v) = 0 for all v ∈ Tu

1: while a child v of u with d(v) ̸= 0 exists do
2: if pebble(u) = 1 then
3: Pick a child v of u with d(v) > 0
4: inject pebble(v)
5: else
6: Pick a child v of u with d(v) < 0
7: extract pebble(v)
8: for v child of u do
9: balance subtrees(v)

Algorithm 2: inject pebble(v)

Precondition 2.a: A node v ∈ V \ {r} with parent u
Precondition 2.b: pebble(u) = 1
Precondition 2.c: d(v) > 0
Postcondition 2.d: pebble(u) = 0
Postcondition 2.e: pebble(v) = 1

1: if pebble(v) = 1 then
2: Pick a child w of v such that d(w) > 0
3: inject pebble(w)
4: move pebble(u, v)

Algorithm 3: extract pebble(v)

Precondition 3.a: A node v ∈ V \ {r} with parent u
Precondition 3.b: pebble(u) = 0
Precondition 3.c: d(v) < 0
Postcondition 3.d: pebble(u) = 1
Postcondition 3.e: pebble(v) = 0

1: if pebble(v) = 0 then
2: Pick a child w of v such that d(w) < 0
3: extract pebble(w)
4: move pebble(v, u)

Algorithm 4: move pebble(u, v)

Precondition 4.a: A node u ∈ V adjacent to a node v ∈ V
Precondition 4.b: pebble(u) = 1
Precondition 4.c: pebble(v) = 0
Precondition 4.d: if v is a child of u, then d(v) > 0
Precondition 4.e: if u is a child of v, then d(u) < 0
Postcondition 4.f: pebble(u) = 0
Postcondition 4.g: pebble(v) = 1

1: pebble(u)← 0
2: pebble(v)← 1
3: if v is a child of u then
4: d(v)← d(v)− 1
5: else
6: d(u)← d(u) + 1
7: Output move (u, v)



Algorithm Correctness
We prove that the algorithm terminates after having ensured
that all pebbles are located at a target.

Correctness of move pebble

Lemma 3. A call to move pebble correctly updates d.

Proof. Assuming that d is correct when move pebble is
called, we prove it is still correct after the call. A move
from u to v can only change d(u) and d(v). If v is a child of
u, moving a pebble from u to v does not change the number
of pebbles in Tu. But the number of pebbles in Tv increases
by 1, therefore the demand d(v) decreases by 1. Similarly, if
v is the parent of u, moving a pebble from u to v increases
the demand d(u) by 1.

Lemma 4. A call to move pebble decrements
∑

u∈V |d(u)|
by 1.

Proof. If v is a child of u, then by Precondition 4.d, d(v) > 0,
and it is decremented on Line 4. Otherwise, by Precondi-
tion 4.e, d(u) < 0, and it is incremented on Line 6. The value
of d at other nodes are unchanged.

Lemma 5. Postconditions 4.f and 4.g are satisfied.

Correctness of inject pebble

Lemma 6. Preconditions 2.a to 2.c are satisfied when
inject pebble calls itself recursively on Line 3.

Proof. Note that pebble(v) = 1 on Line 3. Precondition 2.a
and Precondition 2.b are clearly satisfied. To show Precondi-
tion 2.c, we check that there must be a child w of v such that
d(w) > 0 on Line 2. Evaluating (2) for v gives:

d(v) = target(v)− pebble(v) +
∑

w child of v

d(w)

=⇒ 0 < d(v) ≤ max(0, 1)− 1 +
∑

w child of v

d(w)

=⇒ 0 <
∑

w child of v

d(w).

Lemma 7. Preconditions 4.a to 4.e are satisfied when
move pebble is called by inject pebble on Line 4.

Proof. Precondition 4.a: node u is the parent of v, therefore
they are adjacent.

Precondition 4.b: Precondition 2.b remains true until
move pebble is called on Line 4, as only pebbles within
Tv may have moved before Line 4.

Precondition 4.c: if pebble(v) = 1 on Line 1, then
inject pebble is called on Line 3, which, by Postcondi-
tion 2.d, ensures pebble(v) = 0 on Line 4.

Precondition 4.d: Precondition 2.c remains true until Line
4, since the number of pebbles in Tv does not change before
Line 4.

Lemma 8. Postconditions 2.d and 2.e are satisfied.

Proof. Direct consequence of Line 4 and Lemma 5.

Correctness of extract pebble The results and proofs are
similar to those of inject pebble.

Correctness of balance subtrees

Lemma 9. Preconditions 2.a to 2.c are satisfied when
inject pebble is called by balance subtrees .

Proof. Precondition 2.a is satisfied, as v has a parent u. Pre-
condition 2.b is satisfied, since pebble(u) = 1 on Line 2. To
show that Precondition 2.c is satisfied, we show that there
is indeed a child v of u with d(v) > 0. Suppose there is not.
Then, applying (2) at u,

d(u) = target(u)− pebble(u) +
∑

v child of u

d(v)

≤ max(0, 1)− 1−
∑

v child of u

|d(v)|

≤ −
∑

v child of u

|d(v)|

< 0,

where the last inequality holds because the while condition
on Line 1 is true. Since d(u) = 0 (by Precondition 1.b, and
no pebble moving out of Tu), this is a contradiction.

Lemma 10. Preconditions 3.a to 3.c are satisfied when
extract pebble is called by balance subtrees .

Proof. The proof is similar to that of Lemma 9.

Lemma 11. Preconditions 1.a and 1.b are satisfied for all
children v of u when balance subtrees calls itself recursively.

Proof. The while condition on Line 1 is false on Line 8,
therefore d(v) = 0 for every child v of u. No pebble moves
between u and any of its children on or after Line 8, hence
this remains true for all recursive calls.

Lemma 12. Postcondition 1.c is satisfied.

Proof. We first observe that, after each iteration of the
while loop, at least one call to move pebble is made via
inject pebble or extract pebble, therefore, by Lemma 4,∑

v child of u |d(v)| is decremented by at least 1. Hence, Line 8
is ultimately reached. Since balance subtrees is then called
on all descendants of u via recursion, and since Precondi-
tion 1.b is satisfied for all these calls (Lemma 11), all nodes
v ∈ Tu satisfy d(v) = 0 at the end of the call.

Theorem 13. Algorithm balance subtrees produces a feasi-
ble plan for UPMT.

Proof. Direct from Lemma 1 and Lemma 12.



Algorithm Optimality
We show that the plan output by balance subtrees has mini-
mum size, as it meets the bound given in Lemma 2.
Theorem 14. Algorithm balance subtrees outputs a plan of
optimal length OPT =

∑
u∈V |d(u)|.

Proof. Each pebble move is the result of exactly one call
to move pebble . Lemma 4 ensures that move pebble can be
called at most

∑
u∈V |d(u)| times. Thus, the plan produced

by balance subtrees has the length at most OPT . Since the
plan is feasible (Theorem 13), its length is OPT (Lemma 2).

The results below further characterize optimal plans.
Corollary 15. OPT ≤ k(n− 1)

Proof. Direct from Theorem 14, the fact that |d(u)| ≤ k for
all u ∈ V , and d(r) = 0.

Theorem 16. In an optimal plan, every pebble reaches its
target via a shortest path.

Proof. Preconditions 4.d and 4.e ensure that a move between
two nodes can occur in at most one direction throughout the
algorithm. Therefore, since a feasible plan is returned, all
paths are simple, i.e. do not cycle. It remains only to recall
that there is a unique simple path between two nodes in a
tree (Diestel 2017), and thus it is shortest.

While this proof only shows that optimal plans produced by
balance subtrees have this property, notice that if a different
optimal plan contained a longer-than-shortest path for one
pebble, then the path of another pebble in the plan would need
to be shorter-than-shortest, which is a contradiction.

Algorithm Complexity
We suppose that a reference (e.g. index or pointer) to a node
uses O(log n) bits, and thus reading or writing a reference
to a node takes O(log n) time. Therefore, the size of the
encoding of an n-ary tree on n nodes is n log n. Furthermore,
the encoding of a plan is the number of moves times two node
indices, one for each endpoint, so its size is O(OPT log n)
if it is optimal.

We prove that the runtime of this algorithm is asymp-
totically optimal, as it runs in a time linear in the encod-
ing size of the input plus the encoding size of the plan, i.e.
O(n log n+OPT log n).

In the proofs that follow, observe that, if, for the analysis,
we chose a computational model where all numbers could be
encoded in constant size, all log terms would disappear. The
runtime would then simplify to O(n+OPT ), which, in this
model, would also be the encoding size of the input and the
encoding size of the output.
Lemma 17. Function d can be computed in O(n log n) time.

Proof. Note that d holds numbers of encoding size at most
O(log k). The base case of the recursive definition (2) of d
occurs at the leaves, thus d can be computed by a postorder
traversal of T . At each node u, we access all of its nu children,
which takes O(nu log n) time, and add up the nu + 2 terms
of (2), which takes O(nu log k) time. Since k ≤ n, this is

O(nu log n) per node. Since there are
∑

u∈V nu = n − 1
children in T , the runtime is in O(n log n).

Lemma 18. move pebble runs in O(log n).

Proof. This is simply the time to output u and v, access u, v
and related data, as well as the addition in O(log k) time to
update d.

Lemma 19. The total number of calls to inject pebble and
extract pebble is OPT .

Proof. Both inject pebble and extract pebble (whether it
is a recursive call or not) call move pebble exactly once.
Theorem 14 shows that this happens OPT times.

Lemma 20. At a node u, picking a child v with d(v) > 0 or
d(v) < 0 takes O(log n) time.

Proof. When creating the tree, store each child v of u in one
of three lists at u according to whether d(v) > 0, d(v) = 0
or d(v) < 0. Return the first node of each list as required,
which takes O(log n). If, after a move, d(v) is now 0, pop v
out of its list and place it in the d = 0 list, which is in O(1).

Corollary 21. The total runtime for all calls to inject pebble
and extract pebble is in O(OPT log n).

Lemma 22. Across all calls, the total number of while (resp.
for) loop iterations of balance subtrees is at most OPT
(resp. n− 1).

Proof. Each while loop iteration leads to at least one pebble
move, of which there is at most OPT across all calls to
balance subtrees .

Theorem 23. The runtime of balance subtrees is in
O(n log n+OPT log n).

Proof. Reading the input and computing d (Lemma 17)
takes O(n log n) time. All calls to functions move pebble,
inject pebble and extract pebble together take
O(OPT log n) time (Corollary 21). The total number
of iterations in all calls to balance subtrees is O(OPT + n)
(Lemma 22). Lemma 20 shows that each iteration takes
O(log n) time.

Conclusions
Remarkably, the runtime of the algorithm is equal to the
runtime of reading the input and writing the output. Another
interesting property of this algorithm is that for any node
u ∈ V such that d(u) = 0, UPMT can be solved in Tu

independently of the rest of the tree, as no pebble will move
from u to its parent (if any). In particular, this means that the
for loop at Line 8 of balance subtrees is “embarrassingly
parallelizable”. Independent subproblems are also interesting
in the context of MAPF, as at least one move per independent
subproblem can take place simultaneously without collision.
Interesting future directions include using this work to solve
Pebble Motion problems on general graphs, for example via
so-called “trans-shipment” nodes (Ardizzoni et al. 2024), as
well as MAPF (see e.g. Kulich, Novák, and Přeucil 2019).
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